Numerical Simulation of the Wormhole Propagation in Fractured Carbonate Rocks during Acidization Using a Thermal-Hydrologic-Mechanics-Chemical Coupled Model
Abstract
:1. Introduction
2. Mathematical Model
2.1. Chemical System
2.2. Darcy Scale Model
2.3. Pore Scale Model
2.4. Energy Transport
3. Dimensionless Model
4. Numerical Method
- (1)
- Generate randomly distributed discrete fractures.
- (2)
- Calculate the starting point and end point coordinates of each fracture.
- (3)
- Loop all faces of the grid cell to check whether the fracture segment intersects the face segment.
- (4)
- If the fracture intersects the face segment of the grid cell, set the two cells sharing the face as the fracture cell, and change its porosity to 0.99.
5. Effect of Stress
6. Results and Discussions
6.1. Effect of Fracture Parameters
6.1.1. Effect of Fracture Orientation
6.1.2. Effect of Fracture Length
6.1.3. Effect of Fracture Density
6.2. Effect of Reaction Temperature
6.3. Effect of Stress Sensitivity
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
THmC | Thermal-Hydrologic-mechanics-Chemical |
TSC | Two-Scale Continuum |
TVD | Total Variation Diminishing |
EOR | Enhanced Oil Recovery |
References
- Wei, W.; Varavei, A.; Sanaei, A.; Sepehrnoori, K. Geochemical modeling of wormhole propagation in carbonate acidizing considering mineralogy heterogeneity. SPE J. 2019, 24, 2163–2181. [Google Scholar] [CrossRef]
- Qiu, X.; Aidagulov, G.; Ghommem, M.; Edelman, E.; Brady, D.; Abbad, M. Towards a better understanding of wormhole propagation in carbonate rocks: Linear vs. radial acid injection. J. Pet. Sci. Eng. 2018, 171, 570–583. [Google Scholar] [CrossRef]
- Fredd, C.; Fogler, H.S. Alternative stimulation fluids and their impact on carbonate acidizing. SPE J. 1998, 3, 34–41. [Google Scholar] [CrossRef]
- Fredd, C.N.; Fogler, H.S. Influence of transport and reaction on wormhole formation in porous media. AIChE J. 1998, 44, 1933–1949. [Google Scholar] [CrossRef] [Green Version]
- Fredd, C.N.; Fogler, H. Optimum conditions for wormhole formation in carbonate porous media: Influence of transport and reaction. SPE J. 1999, 4, 196–205. [Google Scholar] [CrossRef]
- McDuff, D.R.; Shuchart, C.E.; Jackson, S.K.; Postl, D.; Brown, J.S. Understanding wormholes in carbonates: Unprecedented experimental scale and 3-D visualization. In Proceedings of the SPE Annual Technical Conference and Exhibition; OnePetro: Dubai, United Arab Emirates, 2010. [Google Scholar]
- Aljawad, M.S.; Aboluhom, H.; Schwalbert, M.P.; Al-Mubarak, A.; Alafnan, S.; Mahmoud, M. Temperature impact on linear and radial wormhole propagation in limestone, dolomite, and mixed mineralogy. J. Nat. Gas Sci. Eng. 2021, 93, 104031. [Google Scholar] [CrossRef]
- Jeffry, S.J.M.; Trjangganung, K.; Chandrakant, A.A.; Madon, B.; Katende, A.; Ismail, I. Selection of suitable acid chemicals for matrix stimulation: A Malaysian Brown field scenario. J. Pet. Sci. Eng. 2020, 186, 106689. [Google Scholar] [CrossRef]
- Aldhayee, K.; Ali, M.T.; Nasr-El-Din, H.A. Modeling wormhole propagation during closed-fracture-acidizing stimulation in tight-carbonate formations. SPE J. 2020, 25, 2373–2400. [Google Scholar] [CrossRef]
- Al-Arji, H.; Al-Azman, A.; Le-Hussain, F.; Regenauer-Lieb, K. Acid stimulation in carbonates: A laboratory test of a wormhole model based on Damköhler and Péclet numbers. J. Pet. Sci. Eng. 2021, 203, 108593. [Google Scholar] [CrossRef]
- Cheng, H.; Zhu, D.; Hill, A. The effect of evolved CO2 on wormhole propagation in carbonate acidizing. SPE Prod. Oper. 2017, 32, 325–332. [Google Scholar] [CrossRef]
- Daccord, G. Chemical dissolution of a porous medium by a reactive fluid. Phys. Rev. Lett. 1987, 58, 479. [Google Scholar] [CrossRef]
- Daccord, G.; Lenormand, R.; Lietard, O. Chemical dissolution of a porous medium by a reactive fluid—I. Model for the “wormholing” phenomenon. Chem. Eng. Sci. 1993, 48, 169–178. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Whitehead, J.; Aharonov, E.; Jordahl, K.A. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. J. Geophys. Res. Solid Earth 1995, 100, 475–496. [Google Scholar] [CrossRef]
- Golfier, F.; Zarcone, C.; Bazin, B.; Lenormand, R.; Lasseux, D.; Quintard, M. On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 2002, 457, 213–254. [Google Scholar] [CrossRef]
- Siddiqui, S.; Nasr-El-Din, H.A.; Khamees, A.A. Wormhole initiation and propagation of emulsified acid in carbonate cores using computerized tomography. J. Pet. Sci. Eng. 2006, 54, 93–111. [Google Scholar] [CrossRef]
- Machado, A.; Oliveira, T.; Cruz, F.; Lopes, R.; Lima, I. X-ray microtomography of hydrochloric acid propagation in carbonate rocks. Appl. Radiat. Isot. 2015, 96, 129–134. [Google Scholar] [CrossRef]
- Maheshwari, P.; Ratnakar, R.; Kalia, N.; Balakotaiah, V. 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks. Chem. Eng. Sci. 2013, 90, 258–274. [Google Scholar] [CrossRef]
- Frick, T.; Mostofizadeh, B.; Economides, M. Analysis of radial core experiments for hydrochloric acid interaction with limestones. In Proceedings of the SPE Formation Damage Control Symposium; OnePetro: Dubai, United Arab Emirates, 1994. [Google Scholar]
- Dong, K.; Jin, X.; Zhu, D.; Hill, A. The effect of core dimensions on the optimum acid flux in carbonate acidizing. In Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control; OnePetro: Dubai, United Arab Emirates, 2014. [Google Scholar]
- Karale, C.; Beuterbaugh, A.; Pinto, M.; Hipparge, G.; Prakash, A. HP/HT Carbonate Acidizing—Recent Discoveries and Contradictions in Wormhole Phenomenon. In Proceedings of the Offshore Technology Conference Asia; OnePetro: Dubai, United Arab Emirates, 2016. [Google Scholar]
- Panga, M.K.; Ziauddin, M.; Balakotaiah, V. Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J. 2005, 51, 3231–3248. [Google Scholar] [CrossRef]
- Li, Y.; Liao, Y.; Zhao, J.; Peng, Y.; Pu, X. Simulation and analysis of wormhole formation in carbonate rocks considering heat transmission process. J. Nat. Gas Sci. Eng. 2017, 42, 120–132. [Google Scholar] [CrossRef]
- Liu, P.; Li, J.; Sun, S.; Yao, J.; Zhang, K. Numerical investigation of carbonate acidizing with gelled acid using a coupled thermal–hydrologic–chemical model. Int. J. Therm. Sci. 2021, 160, 106700. [Google Scholar] [CrossRef]
- Xue, H.; Huang, Z.; Zhao, L.; Wang, H.; Kang, B.; Liu, P.; Liu, F.; Cheng, Y.; Xin, J. Influence of acid-rock reaction heat and heat transmission on wormholing in carbonate rock. J. Nat. Gas Sci. Eng. 2018, 50, 189–204. [Google Scholar] [CrossRef]
- Liu, P.; Couples, G.D.; Yao, J.; Huang, Z.; Song, W.; Ma, J. A general method for simulating reactive dissolution in carbonate rocks with arbitrary geometry. Comput. Geosci. 2018, 22, 1187–1201. [Google Scholar] [CrossRef]
- Liu, P.; Yan, X.; Yao, J.; Sun, S. Modeling and analysis of the acidizing process in carbonate rocks using a two-phase thermal-hydrologic-chemical coupled model. Chem. Eng. Sci. 2019, 207, 215–234. [Google Scholar] [CrossRef]
- Liu, P.; Yao, J.; Couples, G.D.; Ma, J.; Iliev, O. 3-D modelling and experimental comparison of reactive flow in carbonates under radial flow conditions. Sci. Rep. 2017, 7, 17711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, C.; Sepehrnoori, K.; Huang, Z.; Zhang, H.; Yao, J. Numerical studies and analysis on reactive flow in carbonate matrix acidizing. J. Pet. Sci. Eng. 2021, 201, 108487. [Google Scholar] [CrossRef]
- Liu, P.; Xue, H.; Zhao, L.; Zhao, X.; Cui, M. Simulation of 3D multi-scale wormhole propagation in carbonates considering correlation spatial distribution of petrophysical properties. J. Nat. Gas Sci. Eng. 2016, 32, 81–94. [Google Scholar] [CrossRef]
- Qi, N.; Chen, G.; Liang, C.; Guo, T.; Liu, G.; Zhang, K. Numerical simulation and analysis of the influence of fracture geometry on wormhole propagation in carbonate reservoirs. Chem. Eng. Sci. 2019, 198, 124–143. [Google Scholar] [CrossRef]
- Jia, C.; Huang, Z.; Sepehrnoori, K.; Yao, J. Modification of two-scale continuum model and numerical studies for carbonate matrix acidizing. J. Pet. Sci. Eng. 2020, 197, 107972. [Google Scholar] [CrossRef]
- Liu, P.; Yao, J.; Couples, G.D.; Huang, Z.; Sun, H.; Ma, J. Numerical modelling and analysis of reactive flow and wormhole formation in fractured carbonate rocks. Chem. Eng. Sci. 2017, 172, 143–157. [Google Scholar] [CrossRef]
- Liu, P.; Yao, J.; Couples, G.D.; Ma, J.; Huang, Z.; Sun, H. Modeling and simulation of wormhole formation during acidization of fractured carbonate rocks. J. Pet. Sci. Eng. 2017, 154, 284–301. [Google Scholar] [CrossRef]
- Mou, J.; Yu, X.; Wang, L.; Zhang, S.; Ma, X.; Lyu, X. Effect of Natural Fractures on Wormhole-Propagation Behavior. SPE Prod. Oper. 2019, 34, 145–158. [Google Scholar] [CrossRef]
- Deng, H.; Molins, S.; Steefel, C.; DePaolo, D.; Voltolini, M.; Yang, L.; Ajo-Franklin, J. A 2.5 D reactive transport model for fracture alteration simulation. Environ. Sci. Technol. 2016, 50, 7564–7571. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.; Zhu, D.; Dong, C.; Luna-Garcia, A. Computer model predicts matrix acidizing of naturally fractured carbonate. J. Pet. Technol. 2001, 53, 20–25. [Google Scholar] [CrossRef]
- Hanna, R.B.; Rajaram, H. Influence of aperture variability on dissolutional growth of fissures in karst formations. Water Resour. Res. 1998, 34, 2843–2853. [Google Scholar] [CrossRef]
- Upadhyay, V.K.; Szymczak, P.; Ladd, A.J. Initial conditions or emergence: What determines dissolution patterns in rough fractures? J. Geophys. Res. Solid Earth 2015, 120, 6102–6121. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Zhu, D.; Hill, A. Modeling of the acidizing process in naturally fractured carbonates. SPE J. 2002, 7, 400–408. [Google Scholar] [CrossRef]
- Detwiler, R.L.; Rajaram, H. Predicting dissolution patterns in variable aperture fractures: Evaluation of an enhanced depth-averaged computational model. Water Resour. Res. 2007, 43, 1–14. [Google Scholar] [CrossRef]
- Szymczak, P.; Ladd, A. Wormhole formation in dissolving fractures. J. Geophys. Res. Solid Earth 2009, 114, 1–22. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, G.; Bean, C.; McDermott, F. Numerical investigations of passive and reactive flow through generic single fractures with heterogeneous permeability. Earth Planet. Sci. Lett. 2003, 213, 271–284. [Google Scholar] [CrossRef]
- Dong, C.; Zhu, D.; Hill, A. Acid penetration in natural fracture networks. SPE Prod. Facil. 2002, 17, 160–170. [Google Scholar] [CrossRef]
- Dong, C.; Zhu, D.; Hill, A. Acidizing in Naturally Fractured Carbonate Reservoirs. In Proceedings of the SPE/DOE Improved Oil Recovery Symposium; OnePetro: Dubai, United Arab Emirates, 2002. [Google Scholar]
- Li, Y.; Liao, Y.; Zhao, J. Wormhole dissolution pattern study in complicated carbonate rock based on two-scale continuum model and equivalent seepage theory. Nat. Gas Geosci. 2016, 27, 121–127. [Google Scholar]
- Kalia, N.; Balakotaiah, V. Effect of medium heterogeneities on reactive dissolution of carbonates. Chem. Eng. Sci. 2009, 64, 376–390. [Google Scholar] [CrossRef]
- Garipov, T.; Karimi-Fard, M.; Tchelepi, H. Discrete fracture model for coupled flow and geomechanics. Comput. Geosci. 2016, 20, 149–160. [Google Scholar] [CrossRef]
- Sandve, T.H.; Berre, I.; Nordbotten, J.M. An efficient multi-point flux approximation method for discrete fracture–matrix simulations. J. Comput. Phys. 2012, 231, 3784–3800. [Google Scholar] [CrossRef]
- Therrien, R.; Sudicky, E. Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J. Contam. Hydrol. 1996, 23, 1–44. [Google Scholar] [CrossRef]
- Alotaibi, M.; Chen, H.; Sun, S. Generalized multiscale finite element methods for the reduced model of Darcy flow in fractured porous media. J. Comput. Appl. Math. 2022, 413, 114305. [Google Scholar] [CrossRef]
- Milliotte, C.; Jonoud, S.; Wennberg, O.P.; Matthäi, S.K.; Jurkiw, A.; Mosser, L. Well-data-based discrete fracture and matrix modelling and flow-based upscaling of multilayer carbonate reservoir horizons. Geol. Soc. Lond. Spec. Publ. 2018, 459, 191–210. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, L.; Yang, H.; Iglauer, S.; Wang, X.; Askari, R.; Yao, J.; Zhang, K.; Zhang, L.; Sun, H. Stress sensitivity of fractured and vuggy carbonate: An X-Ray computed tomography analysis. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018759. [Google Scholar] [CrossRef]
- Bohnsack, D.; Potten, M.; Freitag, S.; Einsiedl, F.; Zosseder, K. Stress sensitivity of porosity and permeability under varying hydrostatic stress conditions for different carbonate rock types of the geothermal Malm reservoir in Southern Germany. Geotherm. Energy 2021, 9, 1–59. [Google Scholar] [CrossRef]
- Wang, L.; Yang, S.; Meng, Z.; Chen, Y.; Qian, K.; Han, W.; Wang, D. Time-dependent shape factors for fractured reservoir simulation: Effect of stress sensitivity in matrix system. J. Pet. Sci. Eng. 2018, 163, 556–569. [Google Scholar] [CrossRef]
- Mustafa, A.; Alzaki, T.; Aljawad, M.S.; Solling, T.; Dvorkin, J. Impact of acid wormhole on the mechanical properties of chalk, limestone, and dolomite: Experimental and modeling studies. Energy Rep. 2022, 8, 605–616. [Google Scholar] [CrossRef]
- Kalia, N.; Glasbergen, G. Wormhole formation in carbonates under varying temperature conditions. In Proceedings of the 8th European Formation Damage Conference; OnePetro: Dubai, United Arab Emirates, 2009. [Google Scholar]
- Wilke, C.; Chang, P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1955, 1, 264–270. [Google Scholar] [CrossRef]
- Vairogs, J.; Hearn, C.; Dareing, D.W.; Rhoades, V. Effect of rock stress on gas production from low-permeability reservoirs. J. Pet. Technol. 1971, 23, 1161–1167. [Google Scholar] [CrossRef]
- Tian, Y. Experimental study on stress sensitivity of naturally fractured reservoirs. In Proceedings of the SPE Annual Technical Conference and Exhibition; OnePetro: Dubai, United Arab Emirates, 2014. [Google Scholar]
- Abass, H.; Ortiz, I.; Khan, M.; Beresky, J.; Sierra, L. Understanding stress dependant permeability of matrix, natural fractures, and hydraulic fractures in carbonate formations. In Proceedings of the SPE Saudi Arabia Section Technical Symposium; OnePetro: Dubai, United Arab Emirates, 2007. [Google Scholar]
- Tan, Q.; Kang, Y.; You, L.; Xu, C.; Zhang, X.; Xie, Z. Stress-sensitivity mechanisms and its controlling factors of saline-lacustrine fractured tight carbonate reservoir. J. Nat. Gas Sci. Eng. 2021, 88, 103864. [Google Scholar] [CrossRef]
- Brehme, M.; Blöcher, G.; Cacace, M.; Kamah, Y.; Sauter, M.; Zimmermann, G. Permeability distribution in the Lahendong geothermal field: A blind fault captured by thermal–hydraulic simulation. Environ. Earth Sci. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Cacace, M.; Jacquey, A.B. Flexible parallel implicit modelling of coupled thermal–hydraulic–mechanical processes in fractured rocks. Solid Earth 2017, 8, 921–941. [Google Scholar] [CrossRef] [Green Version]
- Konrad, F.; Savvatis, A.; Wellmann, F.; Zosseder, K. Hydraulic behavior of fault zones in pump tests of geothermal wells: A parametric analysis using numerical simulations for the Upper Jurassic aquifer of the North Alpine Foreland Basin. Geotherm. Energy 2019, 7, 1–28. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
L | 5 cm |
H | 2 cm |
10 cm | |
0.5 cm | |
0.35 | |
100 md | |
0.2 | |
0.0286 | |
3 | |
1000 | |
0.1 | |
0.004 cms | |
0.5 | |
0.1 | |
0.5 | |
m | 1 |
1 | |
0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, P.; Huang, C.; Jia, L.; Ji, W.; Zhang, Z.; Zhang, K. Numerical Simulation of the Wormhole Propagation in Fractured Carbonate Rocks during Acidization Using a Thermal-Hydrologic-Mechanics-Chemical Coupled Model. Water 2022, 14, 4117. https://doi.org/10.3390/w14244117
Liu P, Huang C, Jia L, Ji W, Zhang Z, Zhang K. Numerical Simulation of the Wormhole Propagation in Fractured Carbonate Rocks during Acidization Using a Thermal-Hydrologic-Mechanics-Chemical Coupled Model. Water. 2022; 14(24):4117. https://doi.org/10.3390/w14244117
Chicago/Turabian StyleLiu, Piyang, Chaoping Huang, Lijing Jia, Weijing Ji, Zhao Zhang, and Kai Zhang. 2022. "Numerical Simulation of the Wormhole Propagation in Fractured Carbonate Rocks during Acidization Using a Thermal-Hydrologic-Mechanics-Chemical Coupled Model" Water 14, no. 24: 4117. https://doi.org/10.3390/w14244117
APA StyleLiu, P., Huang, C., Jia, L., Ji, W., Zhang, Z., & Zhang, K. (2022). Numerical Simulation of the Wormhole Propagation in Fractured Carbonate Rocks during Acidization Using a Thermal-Hydrologic-Mechanics-Chemical Coupled Model. Water, 14(24), 4117. https://doi.org/10.3390/w14244117