Prioritizing Water Resources for Conservation in a Land of Water Crisis: The Case of Protected Areas of Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Images Classification
2.3.2. Water Resources Prioritization
3. Results
3.1. Assessment of Water Resources Status
3.2. Assessment of Water Resource Status
3.3. Water Resources Covered by PAs in Iran
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Province | Water Resources (Area in ha) | Province | Water Resources (Area in ha) | Province | Water Resources (Area in ha) |
---|---|---|---|---|---|
Alborz | Salehieh Wetland (150) | Gilan | Anzali Wetland (19,000) | Kohgiluyeh and Boyer Ahmad | Mor Zard Zeilaei Wetland (35) |
Bushehr | Mand Wetland (2000) | Bojagh Wetland (160) | Brom Alwan Wetland (15) | ||
Hele Wetland (2000) | Mountain Gol Lake (1) | ||||
Amirkalayeh Wetland (458) | Kordestan | Zarivar Wetland (2403) | |||
Nayband Wetland (4000) | Golestan | Incheh Wetland (1250) | Lorestan | Gahar Lake (85) | |
Nayband Marine National Park (19,500) | Alagol-Ulmagol-Ajigol Wetlands Complex (3027) | Bishe Dalan Wetland (913) | |||
Deir- Nakhilo Marine National Park (20,000) | Gomishan Wetland (17,700) | Markazi | Meighan Wetland (25,000) | ||
Chaharmahal and Bakhtiari | Gandoman Wetland (700) | Hamedan | Pirsalman Wetland (3) | ||
Mazandaran | Miankaleh Wetland (40,000) | ||||
Solagan Wetland (3000) | Aqgol Wetland (3000) | Fereydunkenar Wteland (4500) | |||
Aliabad Wetland (140) | Cham Shor Wetland (500) | Shurmast Lake (1.5) | |||
Choghakhor Wetland (2300) | Hormozgan | Shahreno Estuary and Khore Khalasi * | North Khorasan | Aq Gheshlagh Wetland (800) | |
East Azerbaijan | Qareh Gheshlagh Wetland (57,000) | Central Jask Estuary * | |||
Ghorigol Wetland (120) | Delta of Shor, Shirin and Minab Rivers (31,606) | Qom | Namak Lake (180,000) | ||
Esfahan | Gavkhoni Wetland (47,000) | Hara East Gabrik (5519) | Hoze Soltan Wetland (37,075) | ||
Golpayegan Shor Wetland (7628) | Khorkhoran Wetland (102,000) | Sistan and Baluchestan | Hamoun Wetland (60,000) | ||
Fars | Maharloo Lake (60,000) | Shidvar Wetland (98) | Khorbahoo Wetland and Gowatr Bay (29,500) | ||
Barm Firooz Lake (283,200) | Kerman | Jazmourian Wetland (330,000) | Hamoun Helmand Wetland (150,000) | ||
Barmeshor Lake (30) | Kermanshah | Hashilan Wetland (450) | Hamoun Pozak Wetland (160,000) | ||
Kamjan Wetland (10,000) | Niloofar Lake (1331) | ||||
Kaftar Wetland (4800) | Khorasan Razavi | Bazangan Lake (80) | South Khorasan | Kaji Namkzar Wetland (22,000) | |
Haft Barm Wetland (20,000) | Khuzestan | Gaz and Hara Wetland (27,830) | West Azerbaijan | Pir Ahmad Kandi Wetland (100) | |
Garde Gheit and Meymand Wetland (800) | |||||
Bakhtegan Wetland (350,000) | Khor Musa and Khor Al-Umayya Wetland* | Shorgol, Yadegarloo and Dargeh Sangi Wetlands Complex (2494) | |||
Haram and Karion Wetland (10,000) | Shadegan Wetland (328,500) | Soldoz Wetland (375) | |||
Parishan Wetland (4300) | Bamdej Wetland (4000) | Aq Ziarat Wetland (10) | |||
Ghazvin | Ovan Lake (7) | Shimbar Wetland (15,000) | Kani Barazan Wetland (907) | ||
Gilan | Astara Steel Wetland (56) | Hur al-Azim Wetland (120,000) | Urmia Lake (521,000) | ||
Jokandan Talesh Wetland (238) | Miangaran Wetland (2500) | Qopi Baba Ali Lake (500) |
References
- Bonet-García, F.J.; Pérez-Luque, A.J.; Moreno-Llorca, R.A.; Pérez-Pérez, R.; Puerta-Piñero, C.; Zamora, R. Protected areas as elicitors of human well-being in a developed region: A new synthetic (socioeconomic) approach. Biol. Conserv. 2015, 187, 221–229. [Google Scholar] [CrossRef]
- Azaryan, M.; Vajari, K.A.; Amanzadeh, B. Herb-layer diversity and morphological traits of beech trees (Fagus orientalis L.) in development stages of natural temperate forests. Biologia 2022, 78, 1–8. [Google Scholar] [CrossRef]
- Nabout, J.C.; Tessarolo, G.; Pinheiro, G.H.B.; Marquez, L.A.M.; de Carvalho, R.A. Unraveling the paths of water as aquatic cultural services for the ecotourism in Brazilian Protected Areas. Glob. Ecol. Conserv. 2022, 33, 01958. [Google Scholar] [CrossRef]
- Li, M.; Liang, D.; Xia, J.; Song, J.; Cheng, D.; Wu, J.; Li, Q. Evaluation of water conservation function of Danjiang River Basin in Qinling Mountains, China based on InVEST model. J. Environ. Manag. 2021, 286, 112212. [Google Scholar] [CrossRef]
- López-Morales, C.A.; Mesa-Jurado, M.A. Valuation of hidden water ecosystem services: The replacement cost of the aquifer system in Central Mexico. Water 2017, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Karimi, Z.; Abdi, E.; Deljouei, A.; Cislaghi, A.; Shirvany, A.; Schwarz, M.; Hales, T.C. Vegetation-induced soil stabilization in coastal area: An example from a natural mangrove forest. Catena 2022, 216, 106410. [Google Scholar] [CrossRef]
- Valera, C.A.; Pissarra, T.C.T.; Filho, M.V.M.; Valle Júnior, R.F.D.; Oliveira, C.F.; Moura, J.P.; Sanches Fernandes, L.F.; Pacheco, F.A.L. The buffer capacity of riparian vegetation to control water quality in anthropogenic catchments from a legally protected area: A critical view over the Brazilian new forest code. Water 2019, 11, 549. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Chen, Y.; Wang, W.; Yang, Y.; Hou, Y.; Zhang, S.; Zhu, Z. Assessing the influences of land use change on groundwater hydrochemistry in an oasis-desert region of Central Asia. Water 2022, 14, 651. [Google Scholar] [CrossRef]
- Torremorell, A.; Hegoburu, C.; Brandimarte, A.L.; Rodrigues, E.H.C.; Pompêo, M.; da Silva, S.C.; Moschini-Carlos, V.; Caputo, L.; Fierro, P.; Mojica, J.I. Current and future threats for ecological quality management of South American freshwater ecosystems. Inland Waters 2021, 11, 125–140. [Google Scholar] [CrossRef]
- Ao, S.; Ye, L.; Liu, X.; Cai, Q.; He, F. Elevational patterns of trait composition and functional diversity of stream macroinvertebrates in the Hengduan Mountains region, Southwest China. Ecol. Indic. 2022, 144, 109558. [Google Scholar] [CrossRef]
- Binet, S.; Gogo, S.; Laggoun-Défarge, F. A water-table dependent reservoir model to investigate the effect of drought and vascular plant invasion on peatland hydrology. J. Hydrol. 2013, 499, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Masud, M.M.; Othman, A.; Akhtar, R.; Rana, M.S. The underlying drivers of sustainable management of natural resources: The case of marine protected areas (MPAs). Ocean Coast. Manag. 2021, 199, 105405. [Google Scholar] [CrossRef]
- Gopal, B. A conceptual framework for environmental flows assessment based on ecosystem services and their economic valuation. Ecosyst. Serv. 2016, 21, 53–58. [Google Scholar] [CrossRef]
- Gunderson, L.H.; Cosens, B.; Garmestani, A.S. Adaptive governance of riverine and wetland ecosystem goods and services. J. Environ. Manag. 2016, 183, 353–360. [Google Scholar] [CrossRef] [Green Version]
- Gurney, G.G.; Cinner, J.; Ban, N.C.; Pressey, R.L.; Pollnac, R.; Campbell, S.J.; Tasidjawa, S.; Setiawan, F. Poverty and protected areas: An evaluation of a marine integrated conservation and development project in Indonesia. Glob. Environ. Chang. 2014, 26, 98–107. [Google Scholar] [CrossRef]
- Rinawati, F.; Stein, K.; Lindner, A. Climate change impacts on biodiversity—The setting of a lingering global crisis. Diversity 2013, 5, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Azizi Jalilian, M.; Salmanmahiny, A.; Shayesteh, K.; Taheri Sarteshnizi, F. Conservation prioritization of the Iran’s Surface Water resources based on ecological sensitivity. J. Water Sustain. Develop. 2021, 8, 33–46. [Google Scholar]
- Bakhtar, A.; Rahmati, A.; Shayeghi, A.; Teymoori, J.; Ghajarnia, N.; Saemian, P. Spatio-temporal evaluation of GPM-IMERGV6.0 final run precipitation product in capturing extreme precipitation events across Iran. Water 2022, 14, 1650. [Google Scholar] [CrossRef]
- Ward, F.A.; Salman, D.; Amer, S.A. Managing food-ecosystem synergies to sustain water resource systems. Sci. Tot. Environ. 2021, 796, 148945. [Google Scholar] [CrossRef]
- Irannezhad, M.; Ahmadi, B.; Liu, J.; Chen, D.; Matthews, J.H. Global water security: A shining star in the dark sky of achieving the sustainable development goals. Sustain. Horiz. 2022, 1, 100005. [Google Scholar] [CrossRef]
- Walker, D.W.; Smigaj, M.; Tani, M. The benefits and negative impacts of citizen science applications to water as experienced by participants and communities. Wiley Interdiscip. Rev. Water 2021, 8, e1488. [Google Scholar] [CrossRef]
- Failler, P.; Touron-Gardic, G.; Drakeford, B.; Sadio, O.; Traore, M.-S. Perception of threats and related management measures: The case of 32 marine protected areas in West Africa. Mar. Policy 2020, 117, 103936. [Google Scholar] [CrossRef]
- Caro-Borrero, A.; Carmona-Jiménez, J.; Figueroa, F. Water resources conservation and rural livelihoods in protected areas of central Mexico. J. Rural Stud. 2020, 78, 12–24. [Google Scholar] [CrossRef]
- Tyllianakis, E. “Please let me visit”: Management options for marine ecosystems in a Mediterranean Marine Protected Area. J. Nat. Conserv. 2022, 67, 126174. [Google Scholar] [CrossRef]
- Afshar, N.R.; Fahmi, H. Impact of climate change on water resources in Iran. Int. J. Energy Wat. Resour. 2019, 3, 55–60. [Google Scholar] [CrossRef]
- Ramsar Convention Secretariat. An Introduction to the Ramsar Convention on Wetlands; Ramsar Convention Secretariat: Gland, Switzerland, 2016. [Google Scholar]
- Department of Environment of Iran. Reports of Iran’s PAs; Department of Environment of Iran: Tehran, Iran, 2021.
- Fahmi, H. An Overview of Water Resources Management in the IR of Iran; Ministry of Energy of Iran: Tehran, Iran, 2012.
- Eini, M.R.; Olyaei, M.A.; Kamyab, T.; Teymoori, J.; Brocca, L.; Piniewski, M. Evaluating three non-gauge-corrected satellite precipitation estimates by a regional gauge interpolated dataset over Iran. J. Hydrol. Reg. Stud. 2021, 38, 100942. [Google Scholar] [CrossRef]
- Lor, S.; Malecki, R.A. Breeding ecology and nesting habitat associations of five marsh bird species in western New York. Waterbirds 2006, 29, 427–436. [Google Scholar] [CrossRef]
- Harms, T.M.; Dinsmore, S.J. Habitat associations of secretive marsh birds in Iowa. Wetlands 2013, 33, 561–571. [Google Scholar] [CrossRef] [Green Version]
- Jahani Shakib, F.; Malekmohamadi, B.; Yusefi, E.; Alipour, M. Developing management strategies using a new method for vulnerability assessment of wetland ecosystems (Case study: Choghakhor wetland). J. Environ. Sci. Tech. 2017, 19, 377–391. [Google Scholar]
- Giese, E.E.G.; Howe, R.W.; Wolf, A.T.; Niemi, G.J. Breeding birds and anurans of dynamic coastal wetlands in Green Bay, Lake Michigan. J. Great Lakes Res. 2018, 44, 950–959. [Google Scholar] [CrossRef]
- Saunders, S.P.; Hall, K.A.; Hill, N.; Michel, N.L. Multiscale effects of wetland availability and matrix composition on wetland breeding birds in Minnesota, USA. Condor 2019, 121, 24–30. [Google Scholar] [CrossRef]
- Wiest, W.A.; Correll, M.D.; Marcot, B.G.; Olsen, B.J.; Elphick, C.S.; Hodgman, T.P.; Guntenspergen, G.R.; Shriver, W.G. Estimates of tidal-marsh bird densities using Bayesian networks. J. Wildl. Manag. 2019, 83, 109–120. [Google Scholar] [CrossRef]
- Castello, L. Science for conserving Amazon freshwater ecosystems. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 999–1004. [Google Scholar] [CrossRef]
- Sarkheil, H.; Rahbari, S.; Azimi, Y. Fuzzy-Mamdani environmental quality assessment of gas refinery chemical wastewater in the Pars special economic and energy zone. Environ. Chall. 2021, 3, 100065. [Google Scholar] [CrossRef]
- Magdalena, U.R.; Francisco, C.N.; Lopes, L.G.; Rodriguez, D.A. Conservation policy changes in protected areas on hilltops in Brazil: Effects on hydrological response in a small watershed. Water Resour. Manag. 2022, 36, 1251–1270. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, J.; Jin, R.; Yan, H.; LI, C.; Zhu, W. Changes of water yield in Tumen River Basin, China: Trade-offs between precipitation and actual evapotranspiration. Arab. J. Geosci. 2022, 15, 1–14. [Google Scholar] [CrossRef]
- Iban, M.C.; Sahin, E. Monitoring land use and land cover change near a nuclear power plant construction site: Akkuyu case, Turkey. Environ. Monitor. Assess. 2022, 194, 1–19. [Google Scholar] [CrossRef]
- Chen, B.; Cui, P.; Xu, H.; Lu, X.; Lei, J.; Wu, Y.; Shao, M.; Ding, H.; Wu, J.; Cao, M. Assessing the suitability of habitat for wintering Siberian cranes (Leucogeranus leucogeranus) at different water levels in Poyang lake area, China. Polish J. Ecol. 2016, 64, 84–97. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Peng, D.; Gonsamo, A.; Liu, Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agricul. For. Meteorol. 2018, 256, 61–74. [Google Scholar] [CrossRef]
- Zou, Z.; Dong, J.; Menarguez, M.A.; Xiao, X.; Qin, Y.; Doughty, R.B.; Hooker, K.V.; Hambright, K.D. Continued decrease of open surface water body area in Oklahoma during 1984–2015. Sci. Tot. Environ. 2017, 595, 451–460. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Al Rakib, A.; Akter, K.S.; Rahaman, Z.A.; Mallik, S.; Nasher, N.R.; Hossain, M.I.; Ali, M.Y. Monitoring the effects of vegetation cover losses on land surface temperature dynamics using geospatial approach in Rajshahi city, Bangladesh. Environ. Chall. 2021, 4, 100187. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in water surface area during 1989–2017 in the Huai River Basin using Landsat data and Google earth engine. Remote Sens. 2019, 11, 1824. [Google Scholar] [CrossRef]
- Yazdandoost, F. Dams, drought and water shortage in today’s Iran. Iran. Stud. 2016, 49, 1017–1028. [Google Scholar] [CrossRef]
- Zeydalinejad, N.; Nassery, H.R. A review on the climate-induced depletion of Iran’s aquifers. Stoch. Environ. Res. Risk Assess. 2022, 13, 1–24. [Google Scholar] [CrossRef]
- Ashraf, S.; Nazemi, A.; AghaKouchak, A. Anthropogenic drought dominates groundwater depletion in Iran. Sci. Rep. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- Razavi, S.; Gober, P.; Maier, H.R.; Brouwer, R.; Wheater, H. Anthropocene flooding: Challenges for science and society. Hydrol. Process. 2020, 34, 1996–2000. [Google Scholar] [CrossRef] [Green Version]
- The Statistical Centre of Iran. Reports of Water Resources State; Ministry of Water: Tehran, Iran, 2021. [Google Scholar]
- Kseňak, Ľ.; Pukanská, K.; Bartoš, K.; Blišťan, P. Assessment of the Usability of SAR and Optical Satellite Data for Monitoring Spatio-Temporal Changes in Surface Water: Bodrog River Case Study. Water 2022, 14, 299. [Google Scholar] [CrossRef]
- Sarkheil, H.; Rezaei, H.R.; Rayegani, B.; Khorramdin, S.; Rahbari, S. Fuzzy dynamic system analysis of pollution accumulation in the Anzali wetland using empirical-nonlinear aspects of an economically-socio-environmental interest conflict. Environ. Chall. 2021, 2, 100025. [Google Scholar] [CrossRef]
- Jafari, M.; Majedi, H.; Monavari, S.M.; Alesheikh, A.A.; Kheirkhah Zarkesh, M. Dynamic simulation of urban expansion based on cellular automata and logistic regression model: Case study of the Hyrcanian Region of Iran. Sustainability 2016, 8, 810. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilzadeh, M.; Mahmoudpuor, E.; Haghighat, S.; Esmaeilzadeh, S.; Aliani, H.; Yazdanfar, N. Contamination and ecological risk assessment of trace elements in sediments of the Anzali Wetland, Northern Iran. Water Sci. Tech. 2021, 84, 2578–2590. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Asadi, H.; Joudi, M.; Rashti, M.R.; Farhangi, M.B.; Ashrafzadeh, A.; Khodadadi, M. Variation entry of sediment, organic matter and different forms of phosphorus and nitrogen in flood and normal events in the Anzali wetland. J. Water Clim. Chang. 2022, 13, 434–450. [Google Scholar] [CrossRef]
- Fallah, M.; Zamani-Ahmadmahmoodi, R. Assessment of water quality in Iran’s Anzali Wetland, using qualitative indices from 1985, 2007, and 2014. Wetl. Ecol. Manag. 2017, 25, 597–605. [Google Scholar] [CrossRef]
- Qureshi, S.; Alavipanah, S.K.; Konyushkova, M.; Mijani, N.; Fathololomi, S.; Firozjaei, M.K.; Homaee, M.; Hamzeh, S.; Kakroodi, A.A. A remotely sensed assessment of surface ecological change over the Gomishan Wetland, Iran. Remote Sens. 2020, 12, 2989. [Google Scholar] [CrossRef]
- Kalani, N.; Riazi, B.; Karbassi, A.; Moattar, F. Measurement and ecological risk assessment of heavy metals accumulated in sediment and water collected from Gomishan international wetland, Iran. Water Sci. Tech. 2021, 84, 1498–1508. [Google Scholar] [CrossRef]
- Shirood Mirzaie, F.; Ghorbani, R.; Parafkandeh, F.; Nasrollahzadeh Saravi, H. Environmental Impact Assessment of Aquaculture Effluent on Benthic Fauna; Case Study: Gomishan Wetland, Golestan Province. J. Anim. Environ. 2018, 10, 499–510. [Google Scholar]
- Es’haghi, S.R.; Karimi, H.; Rezaei, A.; Ataei, P. Content Analysis of the Problems and Challenges of Agricultural Water Use: A Case Study of Lake Urmia Basin at Miandoab, Iran. SAGE Open 2022, 12, 21582440221091247. [Google Scholar] [CrossRef]
- Alvyar, Z.; Shahbazi, F.; Oustan, S.; Dengiz, O.; Minasny, B. Digital mapping of potentially toxic elements enrichment in soils of Urmia Lake due to water level decline. Sci. Tot. Environ. 2022, 808, 152086. [Google Scholar] [CrossRef]
- Hamidi, S.M.; Fürst, C.; Nazmfar, H.; Rezayan, A.; Yazdani, M.H. A Future Study of an Environment Driving Force (EDR): The Impacts of Urmia Lake Water-Level Fluctuations on Human Settlements. Sustainability 2021, 13, 11495. [Google Scholar] [CrossRef]
- Moadel, M.; Amidpour, M.; Abedi, Z.; Kani, A. Prospect of water energy environment nexus under energy and climate change scenarios (case study: Urmia Lake Basin). Int. J. Environ. Sci. Technol. 2022, 19, 10649–10662. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Filizadeh, Y.; Asgari, K. Anzali wetland hydrology monitoring to detect the effects of land use and climate change. In Proceedings of the 2009 Second International Conference on Environmental and Computer Science, Dubai, United Arab Emirates, 28–30 December 2009; pp. 122–127. [Google Scholar]
Criteria | Indicators | Reference |
---|---|---|
Biodiversity | Animal species: Birds Mammals Fish Reptiles Amphibian | [26,29,30,31,32,33,34,35,36,37,38,39] |
Plant species: Medicinal consumption Soil protection Livestock grazing Birds feeding Industrial and commercial consumption | ||
Natural or man-made origin | Natural source Man-made source | |
Extensiveness | Area | |
Flow regime | Permanent Seasonal | |
Managerial classification (according to conservation goals) | NPs PASUNRAs NNMs WRs No-hunting areas | |
Protective importance | Degree of animal species protection (CR-EN-VU-cd-nt-Ic) Birds list (IBA and EBA) | |
Water resource state | Water quality Aquatic resource state Surface water supply Groundwater supply | |
Reclamation and reconstruction | Suitability for preservation Sustainable reconstruction process Flood mitigation actions | |
Habitat quality | Prominent and unique Suitable to sustain life Meeting human needs Accessibility level Population abundance | |
Cultural and social values | Cultural and historical importance | |
Economic value | Importance for the national economy Employment Economic benefits | |
Ecological potential | Ecotourism activity development Education Research and interpretation |
Basin/Year | 1990 | 2009 | 2021 |
---|---|---|---|
Area (ha) | |||
Central Plateau | 80 | 130 | 180 |
Oman Gulf | 24 | 78 | 140 |
Lake Urmia | 110 | 220 | 480 |
Eastern Border | 15 | 68 | 95 |
Qareh Qum | 18 | 45 | 48 |
Caspian Sea | 110 | 240 | 270 |
Water Resources | Value | Water Resources | Value | Water Resources | Value |
---|---|---|---|---|---|
Anzali Wetland | 4.36 | Hamoun Wetland | 3.11 | Hara East Gabrik | 2.52 |
Bakhtegan Wetland | 4.28 | Hashilan Wetland | 3.05 | Aq Ziarat Wetland | 2.48 |
Arjan Wetland | 4.18 | Bazangan Lake | 3.02 | Gandoman Wetland | 2.46 |
Miankaleh Wetland | 4.00 | Ovan Lake | 3.00 | Bojagh Wetland | 2.45 |
Choghakhor Wetland | 3.96 | Kaftar Wetland | 2.96 | Shorgol, Yadegarloo and Dargeh Sangi Wetland | 2.44 |
Deir- Nakhilo Marine National Park | 3.95 | Barm Firooz Lake | 2.94 | Cham Shor Wetland | 2.38 |
Aq Gheshlagh Wetland | 3.88 | Khorbahoo Wetland and Gowatr Bay | 2.90 | Incheh Wetland | 2.38 |
Urmia Lake | 3.88 | Shimbar Wetland | 2.85 | Pirsalman Wetland | 2.36 |
Hamoun Helmand Wetland | 3.82 | Zarivar Wetland | 2.84 | Hamoun Pozak Wetland | 2.36 |
Shadegan Wetland | 3.76 | Golpayegan Shor Wetland | 2.82 | Shidvar Wetland | 2.33 |
Nayband Marine National Park | 3.70 | Meighan Wetland | 2.81 | Fereydunkenar Wteland | 2.28 |
Alagol-Ulmagol-Ajigol Wetland Complex | 3.64 | Mor Zard Zeilaei Wetland | 2.78 | Jokandan Talesh Wetland | 2.26 |
Khorkhoran Wetland | 3.48 | Central Jask Estuary | 2.77 | Bamdej Wetland | 2.23 |
Nayband Wetland | 3.44 | Kaji Namakzar Wetland | 2.77 | Soldoz Wetland | 2.23 |
Mand Wetland | 3.43 | Salehieh Wetland | 2.76 | Astara Steel Wetland | 2.18 |
Amirkalayeh Wetland | 3.38 | Sulagan Wetland | 2.74 | Shurmast Lake | 2.14 |
Hoze Soltan Wetland | 3.34 | Ghorigol Wetland | 2.76 | Aliabad Wetland | 2.00 |
Gaz and Hara Wetland | 3.32 | Bishe Dalan Wetland | 2.73 | Niloofar Mirage Lake | 1.92 |
Miangaran Wetland | 3.26 | Hele Wetland | 2.68 | Delta of Shor, Shirin and Minab Rivers | 1.85 |
Haft Barm Wetland | 3.24 | Haram and Karion Wetland | 2.66 | Qareh Gheshlagh Wetland | 1.76 |
Aqgol wetland | 3.23 | Kamjan Wetland | 2.64 | Barmeshor Lake | 1.76 |
Gavkhoni Wetland | 3.22 | Jazmourian Wetland | 2.64 | Qopi Baba Ali Lake | 1.73 |
Hur al-Azim Wetland | 3.20 | Shahreno Estuary and Khore Khalasi | 2.63 | Garde Gheit and Meymand Wetland | 1.68 |
Pir Ahmad Kandi Wetland | 3.20 | Gahar Lake | 2.63 | Mountain Gol Lake | 1.55 |
Parishan Wetland | 3.14 | Kani Barazan Wetland | 2.54 | Gomishan Wetland | 1.55 |
Khor Musa and Khor Al-Umayya Wetland | 3.13 | Maharloo Lake | 2.54 | Namak Lake | 1.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobhani, P.; Esmaeilzadeh, H.; Sadeghi, S.M.M.; Wolf, I.D.; Deljouei, A. Prioritizing Water Resources for Conservation in a Land of Water Crisis: The Case of Protected Areas of Iran. Water 2022, 14, 4121. https://doi.org/10.3390/w14244121
Sobhani P, Esmaeilzadeh H, Sadeghi SMM, Wolf ID, Deljouei A. Prioritizing Water Resources for Conservation in a Land of Water Crisis: The Case of Protected Areas of Iran. Water. 2022; 14(24):4121. https://doi.org/10.3390/w14244121
Chicago/Turabian StyleSobhani, Parvaneh, Hassan Esmaeilzadeh, Seyed Mohammad Moein Sadeghi, Isabelle D. Wolf, and Azade Deljouei. 2022. "Prioritizing Water Resources for Conservation in a Land of Water Crisis: The Case of Protected Areas of Iran" Water 14, no. 24: 4121. https://doi.org/10.3390/w14244121
APA StyleSobhani, P., Esmaeilzadeh, H., Sadeghi, S. M. M., Wolf, I. D., & Deljouei, A. (2022). Prioritizing Water Resources for Conservation in a Land of Water Crisis: The Case of Protected Areas of Iran. Water, 14(24), 4121. https://doi.org/10.3390/w14244121