Deterministic and Stochastic Generation of Evaporation Data for Long-Term Mine Pit Lake Water Balance Modelling
Abstract
:1. Introduction
- Assess deterministic models for reconstructing historical daily evaporation data set for a mine pit lake in semi-arid Australia.
- Develop stochastic models of evaporation and rainfall at daily, monthly and annual time steps, and assess their accuracy including the rainfall-evaporation interdependence.
- Discuss options for improving the accuracy of open water evaporation data used in long-term projections of pit lake water balances.
2. Materials and Methods
2.1. Case Study Description
2.2. Historical Data Reconstruction
2.3. Stochastic Models
3. Results
3.1. Observed In Situ Weather Data
3.2. Identified Wind Function
3.3. Constructing Long-Term Evaporation Data
3.4. Stochastic Model Results
4. Summary and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Infilling of Historical Wind Speed Data
Appendix B. Performance of Daily Stochastic Model Conditional on whether the Day Is Wet or Dry
References
- McCullough, C.D.; Lund, M.A. Opportunities for sustainable mining pit lakes in Australia. Mine Water Environ. 2006, 25, 220–226. [Google Scholar] [CrossRef]
- McCullough, C.D.; Marchand, G.; Unseld, J. Mine closure of pit lakes as terminal sinks: Best available practice when options are limited? Mine Water Environ. 2013, 32, 302–313. [Google Scholar] [CrossRef] [Green Version]
- Cook, P.G.; Black, S.; Cote, C.; Kahe, M.S.; Linge, K.; Oldham, C.; Ordens, C.; McIntyre, N.; Simmons, C.; Wallis, I. Hydrological and Geochemical Processes and Closure Options for Below Water Table Open Pit Mines; CRC TiME Limited: Perth, Australia, 2021. [Google Scholar]
- Paulsson, O.; Widerlund, A. Modelled impact of climate change scenarios on hydrodynamics and water quality of the Rävlidmyran pit lake, northern Sweden. Appl. Geochem. 2022, 139, 105235. [Google Scholar] [CrossRef]
- McJannet, D.; Hawdon, A.; Van Niel, T.; Boadle, D.; Baker, B.; Trefry, M.; Rea, I. Measurements of evaporation from a mine void lake and testing of modelling approaches. J. Hydrol. 2017, 555, 631–647. [Google Scholar] [CrossRef]
- McJannet, D.; Hawdon, A.; Baker, B.; Ahwang, K.; Gallant, J.; Henderson, S.; Hocking, A. Evaporation from coal mine pit lakes: Measurements and modelling. In Mine Closure 2019: Proceedings of the 13th International Conference on Mine Closure, Eds. Fourie, A.B. and Tibbett, M., Australian Centre for Geomechanics, Perth, Australia; Australian Centre for Geomechanics: Crawley, Australia, 2019; pp. 1391–1404. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; Nathan, R.; Buckley, S.; Hocking, A. Climate Change Adaptation in BHP’s Queensland Mine Water Planning and Hydrologic Designs. In Proc. Of IMWA; Pope, J., Wolkersdorfer, C., Weber, A., Sartz, L., Wolkersdorfer, K., Eds. 2020. Available online: https://www.imwa.info/docs/imwa_2020/IMWA2020_Zhan_231.pdf (accessed on 24 November 2022).
- Hounam, C.E. Comparison between Pan and Lake Evaporation; Technical Note No. 126; World Meteorological Organisa-tion: Geneva, Switzerland, 1973. [Google Scholar]
- Finch, J.; Calver, A. Methods for the Quantification of Evaporation from Lakes; Centre for Ecology and Hydrology: Wallingford, UK, 2008. [Google Scholar]
- McJannet, D.L.; Cook, F.J.; Burn, S. Comparison of techniques for estimating evaporation from an irrigation water storage. Water Resour. Res. 2013, 49, 1415–1428. [Google Scholar] [CrossRef]
- Tuheteru, E.J.; Gautama, R.S.; Kusuma, G.J.; Kuntoro, A.A.; Pranoto, K.; Palinggi, Y. Water balance of pit lake development in the equatorial region. Water 2021, 13, 3106. [Google Scholar] [CrossRef]
- McMahon, T.A.; Peel, M.C.; Lowe, L.; Srikanthan, R.; Mcvicar, T.R. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: A pragmatic synthesis. Hydrol. Earth Syst. Sci. 2013, 17, 1331–1363. [Google Scholar] [CrossRef] [Green Version]
- La Fuente, S.; Jennings, E.; Gal, G.; Kirillin, G.; Shatwell, T.; Ladwig, R.; Moore, T.; Couture, R.-M.; Côté, M.; Vinnå, C.L.R.; et al. Multi-model projections of future evaporation in a sub-tropical lake. J. Hydrol. 2022, 615 Pt A, 128729. [Google Scholar] [CrossRef]
- Srikanthan, S.; Chiew, F.; Frost, A. Stochastic Climate Library User Guide, v2.1b; CRC for Catchment Hydrology: Canberra, Australia, 2007. [Google Scholar]
- Peleg, N.; Fatichi, S.; Paschalis, A.; Molnar, P.; Burlando, P. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables. J. Adv. Model. Earth Syst. 2017, 9, 1595–1627. [Google Scholar] [CrossRef]
- Chandler, R.E. Multisite, multivariate weather generation based on generalised linear models. Environ. Model. Softw. 2020, 134, 104867. [Google Scholar] [CrossRef]
- Duan, J.; McIntyre, N.; Onof, C. A regional rainfall model for drought risk assessment in south-east UK. Proc. Inst. Civil Eng. Water Manag. 2013, 166, 519–535. [Google Scholar] [CrossRef] [Green Version]
- Kenabatho, P.; McIntyre, N.; Chandler, R.; Wheater, H. Stochastic simulation of rainfall in the semi-arid Limpopo basin. Int. J. Climatol. 2012 32, 1113–1127. [CrossRef]
- McJannet, D.L.; Webster, I.T.; Cook, F.J. An area-dependent wind function for estimating open water evapo-ration using land-based meteorological data. Environ. Model. Softw. 2012, 31, 76–83. [Google Scholar] [CrossRef]
- De Bruin, H.A.R. Temperature and energy balance of a water reservoir determined from standard weather data of a land station. J. Hydrol. 1982 59, 261–274. [CrossRef]
- Edinger, J.E.; Duttweiler, D.W.; Geyer, J.C. The response of water temperature to meteorological conditions. Water Resour. Res. 1968, 4, 1137–1143. [Google Scholar] [CrossRef]
- Keijman, J.Q. The estimation of the energy balance of a lake from simple weather data. Bound. Layer Meteorol. 1974, 7, 399–407. [Google Scholar] [CrossRef]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Modell. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Mandaran, K.J. Modelling Evaporation from a Mine Pit Lake. Master of Philosophy Thesis, The University of Queensland, Brisbane, Australia, 2021. [Google Scholar]
- Smith, C.A.; Sardeshmukh, P. The effect of ENSO on the intraseasonal variance of surface temperature in winter. Int. J. Climatol. 2000, 20, 1543–1557. [Google Scholar] [CrossRef]
- Klingaman, N.P.; Woolnough, S.J.; Syktus, J. On the drivers of inter-annual and decadal rainfall variability in Queensland, Australia. Int. J. Climatol. 2013, 33, 2413–2430. [Google Scholar] [CrossRef]
- Mehrotra, R.; Sharma, A. Development and Application of a Multisite Rainfall Stochastic Downscaling Framework for Climate Change Impact Assessment. Water Resour. Res. 2010, 46, W07526. [Google Scholar] [CrossRef]
- Chandler, R.E. On the use of generalized linear models for interpreting climate variability. Environmetrics 2005, 16, 699–715. [Google Scholar] [CrossRef]
- Harms, A.A.; Campbell, T.H. An extension tothe Thomas-Fiering Model for the sequentialgeneration of streamflow. Water Resour. Res. 1967, 3, 653–661. [Google Scholar] [CrossRef]
- Kiem, A.S.; Kuczera, G.; Kozarovski, P.; Zhang, L.; Willgoose, G. Stochastic generation of future hydroclimate using temperature as a climate change covariate. Water Resour. Res. 2021, 57, 2020WR027331 doiorg/101029/2020WR027331. [Google Scholar] [CrossRef]
Matrix M0 | |||
---|---|---|---|
Variable | Rainfall | Evaporation | Max Temperature |
Rainfall | 1.000 | −0.771 | −0.679 |
Evaporation | −0.771 | 1.000 | 0.778 |
Max Temperature | −0.679 | 0.778 | 1.000 |
Matrix M1 | |||
Variable | Rainfall | Evaporation | Max Temperature |
Rainfall | 0.079 | −0.033 | −0.069 |
Evaporation | −0.403 | 0.311 | 0.277 |
Max Temperature | −0.228 | 0.215 | 0.383 |
Simulated Percentiles using 500 Replicates | |||||||
---|---|---|---|---|---|---|---|
Value Observed during 1974–2017 | 10% | 25% | 50% | 75% | 90% | ||
Rainfall | Mean (mm) | 467 | 403 | 441 | 465 | 490 | 534 |
Standard deviation (mm) | 212 | 161 | 191 | 209 | 228 | 268 | |
Skewness coefficient | 0.89 | 0.07 | 0.48 | 0.72 | 1.01 | 1.81 | |
Evaporation | Mean | 3056 | 2961 | 3027 | 3061 | 3091 | 3146 |
Standard deviation | 232 | 179 | 210 | 226 | 245 | 278 | |
Skewness coefficient | −0.141 | −0.758 | −0.331 | −0.086 | 0.119 | 0.532 | |
Rainfall-evaporation | Cross-correlation | −0.681 | −0.807 | −0.718 | −0.665 | −0.611 | −0.498 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandaran, K.; McIntyre, N.; McJannet, D. Deterministic and Stochastic Generation of Evaporation Data for Long-Term Mine Pit Lake Water Balance Modelling. Water 2022, 14, 4123. https://doi.org/10.3390/w14244123
Mandaran K, McIntyre N, McJannet D. Deterministic and Stochastic Generation of Evaporation Data for Long-Term Mine Pit Lake Water Balance Modelling. Water. 2022; 14(24):4123. https://doi.org/10.3390/w14244123
Chicago/Turabian StyleMandaran, Kristian, Neil McIntyre, and David McJannet. 2022. "Deterministic and Stochastic Generation of Evaporation Data for Long-Term Mine Pit Lake Water Balance Modelling" Water 14, no. 24: 4123. https://doi.org/10.3390/w14244123
APA StyleMandaran, K., McIntyre, N., & McJannet, D. (2022). Deterministic and Stochastic Generation of Evaporation Data for Long-Term Mine Pit Lake Water Balance Modelling. Water, 14(24), 4123. https://doi.org/10.3390/w14244123