Ecotoxicological and Chemical Approach to Assessing Environmental Effects from Pesticide Use in Organic and Conventional Rice Paddies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study
2.2. Sampling Strategy
2.3. Chemical Characterization
2.3.1. Soil Samples
2.3.2. Water Samples
2.4. Ecotoxicological Characterization
2.5. Ecotoxicological Hazard Assessment
2.6. Statistical Analyses
3. Results and Discussion
3.1. Chemical Characteristics of Soil
3.2. Chemical Characteristics of Water
3.3. Ecotoxicological Effects of Soil
3.4. Ecotoxicological Effects of Water
3.5. Ecotoxicological Hazard Index and Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tejada, A.W. Pesticide residues in foods and the environment as a consequence of crop protection. Phillip. J. Agric. 1995, 78, 63–79. [Google Scholar]
- Lam, P.V.; Soon, B.H. Influence of broad-spectrum insecticides on main population of main predators in the rice field. Plant Prot. Bull. Vietnam 1994, 6, 7–12. [Google Scholar]
- Beketov, M.; Liess, M. Delayed effects of the neonicotinoid insecticide thiacloprid on seven freshwater arthropods. Environ. Toxicol. Chem. 2008, 27, 461–470. [Google Scholar] [CrossRef]
- Beketov, M.A.; Schäfer, R.B.; Marwitz, A.; Paschke, A.; Liess, M. Long-term stream invertebrate community alterations induced by the insecticide thiacloprid: Effect concentrations and recovery dynamics. Sci. Total Environ. 2008, 405, 96–108. [Google Scholar] [CrossRef]
- Botias, C.; David, A.; Hill, E.M.; Goulson, D. Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environ. Pollut. 2017, 222, 73–82. [Google Scholar] [CrossRef]
- Brühl, C.A.; Pieper, S.; Weber, B. Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environ. Toxicol. Chem. 2011, 30, 2465–2472. [Google Scholar] [CrossRef]
- Brühl, C.A.; Schmidt, T.; Pieper, S.; Alscher, A. Terrestrial pesticide exposure of amphibians: An underestimated cause of global decline? Sci. Rep. 2013, 3, 1135. [Google Scholar] [CrossRef] [Green Version]
- Desnev, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef]
- Diaz, S.; Settele, J.; Brondizio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, 6471. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food safety Authority). Toxicological data analysis to support grouping of pesticide active substances for cumulative risk assessment of effects on liver, on the nervous system and on reproduction and development. EFSA Support. Publ. 2013, 10, 392E. [Google Scholar] [CrossRef] [Green Version]
- Howe, C.M.; Berrill, M.; Pauli, B.D.; Helbing, C.C.; Werry, K.; Veldhoen, N. Toxicity of Glifosate-based pesticides to four North American frog species. Environ. Toxicol. Chem. 2004, 23, 1928–1938. [Google Scholar] [CrossRef] [PubMed]
- Mohr, S.; Berghahn, R.; Schmiediche, R.; Hübner, V.; Loth, S. Macroinvertebrate community response to repeated short-term pulses of the insecticide imidacloprid. Aquat. Toxicol. 2012, 110–111, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Slooff, W.; Canton, J.H.; Hermens, J.L.M. Comparison of the susceptibility of 22 freshwater species to 15 chemical compounds. I. (sub)acute toxicity tests. Aquat. Toxicol. 1983, 4, 113–128. [Google Scholar] [CrossRef]
- Stahlschmidt, P.; Brühl, C.A. Bats at risk? Bat activity and insecticide residue analysis of food items in an apple orchard. Environ. Toxicol. Chem. 2012, 31, 1556–1563. [Google Scholar] [CrossRef]
- Van Wijngaarden, R.P.A.; Brock, T.C.M.; Van Den Brink, P.J. Threshold levels for effects of insecticides in freshwater ecosystems: A review. Ecotoxicology 2005, 14, 355–380. [Google Scholar] [CrossRef]
- Van Swaay, C.A.M.; Van Strien, A.J.; Harpke, A.; Fontaine, B.; Stefanescu, C.; Roy, D.; Maes, D.; Kühn, E.; Õunap, E.; Regan, E.; et al. The European Grassland Butterfly Indicator: 1990–2011; European Environment Agency, Technical Report No. 11/2013; De Vlinderstichting: Wageningen, The Netherlands, 2013; p. 36. [Google Scholar]
- Santovito, A.; Audisio, M.; Bonelli, S. A micronucleus assay detects genotoxic effects of herbicide exposure in a protected butterfly species. Ecotoxicology 2020, 29, 1390–1398. [Google Scholar] [CrossRef]
- Zacharia, J.T. Ecological Effects of Pesticides. In Pesticides in the Modern World—Risks and Benefits; Stoytcheva, M., Ed.; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Liess, M.; Von Der Ohe, P.C. Analyzing effects of pesticides on invertebrate communities in streams. Environ. Toxicol. Chem. 2009, 24, 954–965. [Google Scholar] [CrossRef]
- Burrows, L.A.; Edwards, C.A. The use of integrated soil microcosm to predict effects of pesticides on soil ecosystems. Eur. J. Soil Biol. 2002, 38, 245–249. [Google Scholar] [CrossRef]
- Kovach, J.; Petzoldt, C.; Degni, J.; Tette, J. A method to measure the environmental impact of pesticides. New York’s Food Life Sci. Bull. 1992, 139, 1–8. [Google Scholar]
- Jayasiri, M.J.G.C.N.; Yadav, S.; Propper, C.R.; Kumar, V.; Dayawansa, N.D.K.; Singleton, G.R. Assessing potential environmental impacts of pesticides usage in paddy ecosystems: A case study in the Deduru Oya River basin, Sri Lanka. Environ. Toxicol Chem. 2022, 41, 343–355. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Goka, K. Evaluation of suitable endpoints for assessing the impacts of toxicants at the community level. Ecotoxicology 2012, 21, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Directive 2009/128/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for Community Action to Achieve the Sustainable Use of Pesticides. Available online: http://data.europa.eu/eli/dir/2009/128/oj (accessed on 5 December 2022).
- Legislative Decree 14 August 2012, n. 150. Attuazione Della Direttiva 2009/128/CE che Istituisce un Quadro per L’azione Comunitaria ai fini Dell’utilizzo Sostenibile dei Pesticidi. Supplemento Ordinario n. 177/L, Gazzetta Ufficiale n. 202 del 30/08/2012. Available online: https://www.mite.gov.it/normative/dlgs-14-agosto-2012-n-150-attuazione-della-direttiva-2009128ce-che-istituisce-un-quadro (accessed on 5 December 2022).
- Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Available online: https://www.legislation.gov.uk/eudr/1992/43/contents (accessed on 5 December 2022).
- Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:020:0007:0025:EN:PDF (accessed on 5 December 2022).
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0060 (accessed on 5 December 2022).
- Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online: https://www.legislation.gov.uk/eur/2009/1107/contents (accessed on 28 November 2022).
- Environmental Protection Agency (EPA). Pesticides; Data Requirements for Conventional Chemicals. Federal Register, Vol. 72, No. 207/October 26, 2007/Rules and Regulations. Available online: https://www.federalregister.gov/documents/2007/10/26/E7-20826/pesticides-data-requirements-for-conventional-chemicals (accessed on 28 November 2022).
- Japan’s Ministry Of Environment. Setting of Pesticides Registration Criteria Regarding the Effect on Living Environmental Animals and Plants (Initial Report); Godochosha No. 5; Central Environment Council: Tokyo, Japan, 2019. (In Japanese)
- Nagai, T. Ecological effect assessment by species sensitivity distribution for 38 pesticides with various modes of action. J. Pestic. Sci. 2021, 46, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Posthuma, L.; Suter, G.W.; Traas, T.P. (Eds.) Species Sensitivity Distributions in Ecotoxicology (Environmental and Ecological Risk Assessment); Lewis Publisher: Boca Raton, FL, USA, 2001; p. 587. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Revised Deletion Process for the Site-Specific Recalculation Procedure for Aquatic Life Criteria; Environmental Protection Agency: Washington, DC, USA, 2013.
- National Institute for Public Health and the Environment (RIVM). Guidance for the Derivation of Environmental Risk Limits. Part 3. Derivation of ERLs for Freshwater and Marine Water; Version 1.0; National Institute for Public Health and the Environment: De Bilt, The Netherlands, 2015; p. 60.
- Scientific Committee on Health, Environmental and Emerging Risks (SCHEER). Scientific Advice on Guidance Document n. 27: Technical Guidance for Deriving Environmental Quality Standards; European Commission, Directorate General for Health and Food Safety: Brussels, Belgium, 2018; p. 31. [Google Scholar] [CrossRef]
- Nagai, T.; Yokoyama, A. Comparison of ecological risks of insecticides for nursery-box application using species sensitivity distribution. J. Pestic. Sci. 2012, 37, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Nagai, T. Studies on ecological risk assessment of pesticide using species sensitivity distribution. J. Pestic. Sci. 2017, 42, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency (EPA). Method 3051A: Microwave assisted acid digestion of sediments, sludges, soils, and oils. Z. Für Anal. Chem. 2007, 111, 362–366. [Google Scholar]
- Environmental Protection Agency (EPA). Method 6010C (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry. 2007. Available online: https://19january2017snapshot.epa.gov/sites/production/files/2015-07/documents/epa-6010c.pdf (accessed on 5 December 2022).
- Environmental Protection Agency (EPA). Method 7010: Graphite Furnace Atomic Absorption Spectrophotometry. 2007. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/7010.pdf (accessed on 5 December 2022).
- Piva, F.; Ciaprini, F.; Onorati, F.; Benedetti, M.; Fattorini, D.; Ausili, A.; Regoli, F. Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: A practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. Chemosphere 2011, 83, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.; Ciaprini, F.; Piva, F.; Onorati, F.; Fattorini, D.; Notti, A.; Ausili, A.; Regoli, F. A multidisciplinary weight of evidence approach for classifying polluted sediments: Integrating sediment chemistry, bioavailability, biomarkers responses and bioassays. Environ. Int. 2012, 38, 17–28. [Google Scholar] [CrossRef]
- Regoli, F.; D’Errico, G.; Nardi, A.; Mezzelani, M.; Fattorini, D.; Benedetti, M.; Di Carlo, M.; Pellegrini, D.; Gorbi, S. Application of a weight of evidence approach for monitoring complex environmental scenarios: The case-study of off-shore platforms. Front. Mar. Sci. 2019, 6, 377. [Google Scholar] [CrossRef] [Green Version]
- Giardini, L. Agronomia Generale, 3rd ed.; Patron: Bologna, Italy, 1986; Available online: https://www.hoepli.it/libro/agronomia-generale/9788855526388.html (accessed on 5 December 2022).
- Ministry of Health. Withdrawal of Plant Protection Products Containing the Active Substance Oxadiazon Following the Expiry of Its Period of Community Approval under Regulation (EU) 1107/2009. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:309:0001:0050:en:PDF (accessed on 5 December 2022). (In Italian).
- Martínez-Jerónimo, F.; Villaseñor, R.; Rios, G.; Espinosa, F. Effect of food type and concentration on the survival, longevity, and Reproduction of Daphnia magna. Hydrobiologia 1994, 287, 207–214. [Google Scholar] [CrossRef]
- Deblois, C.P.; Qiu, B.; Juneau, P. Effect of Herbicides (Diuron and Oxadiazon) on Photosynthetic Energy Dissipation Processes of Different Species of Cyanobacteria and Two Green Algae. In Photosynthesis. Energy from the Sun; Springer: Dordrecht, The Netherlands, 2008; ISBN 978-1-4020-6707-5. [Google Scholar] [CrossRef]
- Comoretto, L.; Arfib, B.; Talva, R.; Chauvelon, P.; Pichaud, M.; Chiron, S.; Höhener, P. Runoff of pesticides from rice fields in the Ile de Camargue (Rhone River delta, France): Field study and modelling. Environ. Pollut. 2008, 151, 486–493. [Google Scholar] [CrossRef]
- Tanabe, S.; Ramesh, A.; Sakashita, D.; Iwata, H.; Mohan, D.; Subramaniam, A.N.; Tatsukawa, R. Fate of HCH in tropical paddy field: Application test in South India. Int. J. Environ. Anal. Chem. 1992, 45, 45–53. [Google Scholar] [CrossRef]
- Sethunathan, N.; Yoshida, T. Fate of diazinon in submerged soil: Accumulation of hydrolysis product. J. Agric. Food Chem. 1969, 17, 1192–1195. [Google Scholar] [CrossRef]
- Seiber, J.N.; Heinrichs, E.A.; Aquino, G.B.; Valencia, S.L.; Andrade, P.; Argente, A.M. Residues of Carbofuran Applied as a Systemic Insecticide in Irrigated Wetland Rice: Implications for Insect Control; IRRI Research Paper Series No. 17; FAO: Rome, Italy, 1978; pp. 1–28. [Google Scholar]
- Varca, L.M.; Magallona, E.D. Dissipation and degradation of DDT and DDE in Philippine soil under field conditions. J. Environ. Sci. Health 2008, 29, 25–35. [Google Scholar] [CrossRef]
- Venkateswarlu, K.; Sethunathan, N. Degradation of carbofuran by Azospirillum lipoferum and Streptomyces spp. isolated from flooded alluvial soil. Bull. Environ. Contam. Toxicol. 1984, 33, 556–560. [Google Scholar] [CrossRef]
Code | Municipality | Protected Areas of the Natura 2000 Network | Agronomic Management | Year |
---|---|---|---|---|
RT1 | Villarboit | ZSC/ZPS IT1120014 Druma River marsh | Conventional | 2018–2019 |
RT4 | Rovasenda | SIC IT1120026 Station of Isoetes malinverniana | Conventional | 2018–2019 |
RT5 | Crescentino | - | Conventional | 2018–2019 |
RB1 | Rovasenda | ZSC IT1120004 Baraggia of Rovasenda/EUAP0349 Natural Reserve of Baragge | Organic | 2018–2019 |
RB4 | Villarboit | ZSC/ZPS IT1120014 Druma River marsh | Organic | 2018 |
RB5 | Crescentino | - | Organic | 2018–2019 |
RB6 | Crova | ZPS IT1120021 Paddies of Vercelli | Organic | 2019 |
Sampling Point | Species | Common Name | Environmental Matrix | End-Point | Exposition | Method |
---|---|---|---|---|---|---|
Embankment and paddy chamber soil | Lepidium sativum | Watercress | Soil | Germination and root elongation | 72 h | ISO 18763:2016 |
Sinapis alba | Mustard | |||||
Sorghum saccharatum | Sorghum | |||||
Aliivibrio fischeri | Bacterium | Eluate | Biolumin. | 30 min | ISO 11348-3:2019 | |
Water | Raphidocelis subcapitata | Green algae | Water | Growth rate | 72 h | ISO 8692:2012 |
Daphnia magna | Water flea | Water | Immobilization | 24 h | ISO 6341:2013 | |
Spirodela polyrhiza | Duckmeat | Water | Leaves growth | 72 h | ISO 20227:2017 | |
Aliivibrio fischeri | Bacterium | Water | Biolumin. | 30 min | ISO 11348-3:2019 |
Sample | Ca (mg L−1) | K (mg L−1) | Mg (mg L−1) | Cu (μg L−1) | S (mg L−1) | Λ-Cyalothrin (μg L−1) | Metolachlor (μg L−1) | Oxadiazon (μg L−1) | Oxyfluorfen (μg L−1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | |||||||||||
RB1 | in | t0 | 4.81 | 1.07 | 1.12 | 3.60 | 1.79 | <0.1 | <0.1 | 0.15 | <0.1 |
t1 | 8.86 | 2.78 | 2.02 | 2.85 | 2.31 | <0.1 | <0.1 | 0.14 | <0.1 | ||
out | t0 | 9.44 | 19.79 | 3.08 | 8.07 | 2.44 | <0.1 | <0.1 | 0.13 | <0.1 | |
t1 | 12.76 | <1.00 | 3.57 | <1.00 | <1.00 | <0.1 | <0.1 | 0.10 | <0.1 | ||
RB4 | in | t0 | 9.22 | 5.57 | 2.25 | 1.85 | 2.7 | <0.1 | <0.1 | 1.68 | <0.1 |
t1 | 11.00 | 4.00 | 3.1 | 1.94 | 1.17 | <0.1 | <0.1 | 0.67 | <0.1 | ||
out | t0 | 13.85 | 3.81 | 3.31 | 6.86 | 3.13 | <0.1 | <0.1 | 0.21 | <0.1 | |
t1 | 9.89 | 1.90 | 2.81 | 5.67 | <1.00 | <0.1 | <0.1 | 0.52 | <0.1 | ||
RB5 | in | t0 | 27.39 | 6.92 | 8.00 | 4.92 | 10.08 | <0.1 | <0.1 | 1.72 | <0.1 |
t1 | 34.05 | <1.00 | 3.57 | 2.10 | 5.06 | <0.1 | <0.1 | 1.09 | <0.1 | ||
out | t0 | 36.59 | 8.24 | 8.22 | 2.73 | 7.01 | <0.1 | <0.1 | 0.52 | <0.1 | |
t1 | 36.59 | 1.53 | 9.99 | 3.03 | 19.58 | <0.1 | <0.1 | 0.23 | <0.1 | ||
RT1 | in | t0 | 6.29 | 2.09 | 1.34 | 2.67 | 2.27 | <0.1 | <0.1 | 1.75 | 0.23 |
t1 | 10.9 | 2.79 | 2.56 | 5.58 | 2.44 | <0.1 | <0.1 | 0.61 | <0.1 | ||
out | t0 | 5.63 | 2.40 | 1.09 | 5.56 | 3.12 | <0.1 | <0.1 | 1.24 | 0.12 | |
t1 | 9.52 | 33.93 | 3.05 | 6.69 | 1.50 | <0.1 | <0.1 | 0.35 | <0.1 | ||
RT4 | in | t0 | n.d. | n.d. | n.d. | n.d. | n.d. | <0.1 | <0.1 | 0.13 | <0.1 |
t1 | 5.60 | <1.00 | 1.22 | 6.73 | 1.63 | <0.1 | <0.1 | 0.17 | <0.1 | ||
out | t0 | 4.27 | 1.96 | <1.00 | 3.82 | 2.43 | <0.1 | <0.1 | 0.15 | <0.1 | |
t1 | 6.14 | 1.31 | 1.85 | 7.22 | <1.00 | <0.1 | <0.1 | 0.42 | <0.1 | ||
RT5 | in | t0 | 42.66 | 3.58 | 8.72 | 2.12 | 10.42 | <0.1 | <0.1 | 0.82 | <0.1 |
t1 | 30.73 | 3.85 | 15.01 | <1.00 | 9.25 | <0.1 | 0.13 | 0.22 | <0.1 | ||
out | t0 | 25.13 | 16.9 | 6.68 | 4.56 | 9.31 | <0.1 | <0.1 | 0.26 | <0.1 | |
t1 | 30.16 | 3.13 | 6.89 | 2.59 | 6.92 | <0.1 | 0.47 | 0.35 | <0.1 | ||
2019 | |||||||||||
RB1 | in | t0 | 8.02 | 6.4 | 1.74 | 1.03 | 1.88 | <0.1 | <0.1 | 1.56 | <0.1 |
t1 | 9.58 | 2.03 | 1.93 | 1.16 | 1.61 | <0.1 | <0.1 | 0.11 | <0.1 | ||
out | t0 | 12.19 | 13.35 | 3.19 | 2.75 | 2.81 | <0.1 | <0.1 | <0.1 | <0.1 | |
t1 | 8.95 | 2.00 | 1.80 | 1.29 | 1.31 | <0.1 | <0.1 | 0.17 | <0.1 | ||
RB5 | in | t0 | 39.14 | 4.57 | 9.54 | 1.92 | 16.36 | <0.1 | <0.1 | 0.26 | <0.1 |
t1 | 44.25 | 5.99 | 11.3 | 2.34 | 10.08 | <0.1 | <0.1 | 0.18 | <0.1 | ||
out | t0 | 42.17 | 16.74 | 8.11 | 2.23 | 7.41 | <0.1 | <0.1 | <0.1 | <0.1 | |
t1 | 31.53 | 6.28 | 9.95 | <1.00 | 4.32 | <0.1 | <0.1 | 0.23 | <0.1 | ||
RB6 | in | t0 | 15.26 | 1.71 | 3.45 | 1.06 | 5.78 | 0.17 | <0.1 | 0.20 | <0.1 |
t1 | 17.70 | 1.08 | 4.73 | <1.00 | 4.85 | <0.1 | <0.1 | <0.1 | <0.1 | ||
out | t0 | 13.88 | 1.98 | 3.11 | <1.00 | 6.61 | <0.1 | <0.1 | 0.43 | <0.1 | |
t1 | 17.46 | <1.00 | 3.98 | <1.00 | 3.81 | <0.1 | <0.1 | 0.46 | <0.1 | ||
RT1 | in | t0 | 6.05 | 1.89 | 1.35 | <1.00 | 2.34 | <0.1 | <0.1 | 0.13 | <0.1 |
t1 | 6.58 | 2.65 | 1.37 | 1.05 | <1.00 | <0.1 | <0.1 | 0.37 | <0.1 | ||
out | t0 | 5.43 | 3.32 | 1.11 | 6.86 | 3.2 | <0.1 | <0.1 | <0.1 | <0.1 | |
t1 | 12.15 | <1.00 | 2.34 | 1.14 | <1.00 | <0.1 | <0.1 | 0.40 | <0.1 | ||
RT4 | in | t0 | 6.47 | <1.00 | 1.04 | <1.00 | 1.90 | <0.1 | <0.1 | 0.17 | <0.1 |
t1 | 6.37 | 1.40 | 1.41 | 1.23 | 2.06 | <0.1 | <0.1 | <0.1 | <0.1 | ||
out | t0 | 5.11 | 1.57 | 1.06 | 2.63 | 3.01 | <0.1 | <0.1 | <0.1 | <0.1 | |
t1 | 6.11 | 1.11 | 1.11 | 1.44 | 2.11 | <0.1 | <0.1 | 0.14 | <0.1 | ||
RT5 | in | t0 | 29.79 | 3.47 | 8.47 | 1.30 | 15.28 | <0.1 | <0.1 | 0.29 | <0.1 |
t1 | 16.98 | 2.99 | 4.67 | <1.00 | 6.17 | <0.1 | <0.1 | 0.29 | <0.1 | ||
out | t0 | 27.45 | 4.55 | 4.73 | 2.24 | 12.97 | <0.1 | <0.1 | 47.6 | <0.1 | |
t1 | 24.07 | 5.61 | 7.69 | 2.47 | 7.64 | <0.1 | <0.1 | 0.71 | <0.1 |
2018 | Ls | Sa | Ss | 2018 | Ls | Sa | Ss | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Conventional | (%) | ±sd | (%) | ±sd | % | ±sd | Organic | (%) | ±sd | (%) | ±sd | (%) | ±sd | ||||
RT1 | ch | t0 | 17.81 | 7.61 | 1.84 | 2.75 | −48.62 | 7.88 | t0 | em | RB4 | 30.48 | 12.24 | 21.80 | 9.86 | 19.47 | 7.04 |
t1 | 38.20 | 4.88 | 24.53 | 7.83 | 4.66 | 12.09 | t1 | 26.94 | 17.37 | 15.51 | 14.62 | 21.04 | 15.51 | ||||
RT4 | em | t0 | 25.84 | 13.36 | 36.27 | 14.63 | 40.81 | 3.88 | t0 | em | RB1 | 18.11 | 14.57 | −6.79 | 10.25 | −12.43 | 22.14 |
t1 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | t1 | 23.67 | 2.34 | −1.50 | 11.38 | −11.97 | 13.09 | ||||
ch | t0 | 30.91 | 15.18 | 29.94 | 10.42 | 35.84 | 15.39 | t0 | ch | −4.05 | 8.69 | 3.13 | 15.74 | −20.45 | 24.46 | ||
RT5 | em | t1 | 94.34 | 0.58 | 82.90 | 3.25 | 32.62 | 12.63 | t0 | em | RB5 | 24.41 | 10.99 | 7.69 | 8.27 | 23.60 | 14.84 |
ch | t0 | 25.15 | 6.45 | 8.28 | 6.38 | 15.96 | 1.02 | ||||||||||
t1 | 59.71 | 9.35 | 53.18 | 6.48 | 24.62 | 7.46 | t1 | 57.66 | 14.97 | 23.59 | 6.33 | 19.57 | 23.58 | ||||
2019 | Ls | Sa | Ss | 2019 | Ls | Sa | Ss | ||||||||||
RT1 | em | t0 | 24.18 | 5.92 | 41.66 | 5.33 | 17.52 | 12.06 | t0 | em | RB6 | 20.26 | 3.96 | 20.71 | 16.14 | 14.02 | 2.83 |
t1 | 49.06 | 3.37 | 59.85 | 6.02 | 24.37 | 5.53 | t1 | 6.07 | 8.59 | 9.04 | 11.63 | −10.85 | 5.62 | ||||
RT4 | em | t0 | 22.40 | 5.52 | 21.14 | 2.96 | 1.60 | 14.33 | t0 | em | RB1 | 28.56 | 2.60 | −8.25 | 10.64 | 5.54 | 3.60 |
t1 | 18.19 | 2.79 | 34.99 | 10.24 | 8.75 | 8.11 | t1 | 32.26 | 2.70 | 6.97 | 20.02 | 5.90 | 5.22 | ||||
RT5 | em | t0 | 30.55 | 10.42 | 23.79 | 0.13 | 19.44 | 2.39 | t0 | em | RB5 | 21.11 | 16.30 | 10.62 | 13.76 | 14.08 | 11.87 |
t1 | 72.78 | 4.83 | 73.08 | 2.18 | 58.79 | 5.15 | t1 | 15.85 | 9.83 | 11.19 | 10.04 | 13.47 | 8.86 |
2018 | |||||||||
Conventional crops | % | ±sd | Organic crops | (%) | ±sd | ||||
RT1 | ch | t0 | −15.60 | 7.92 | RB4 | em | t0 | 21.50 | 9.50 |
t1 | 31.67 | 20.65 | t1 | −11.32 | 18.49 | ||||
RT4 | em | t0 | −3.51 | 25.78 | RB1 | em | t0 | −0.24 | 15.68 |
t1 | −28.70 | 36.55 | |||||||
ch | t0 | −11.04 | 21.68 | ch | t0 | 25.32 | 14.53 | ||
RT5 | em | t0 | −18.65 | 19.62 | RB5 | ch | t0 | 10.88 | 7.90 |
ch | t0 | 25.26 | 14.42 | em | t0 | −24.77 | 39.92 | ||
t1 | 1.16 | 21.12 | t1 | 2.69 | 4.60 | ||||
2019 | |||||||||
RT1 | em | t0 | 10.00 | 18.21 | RB6 | em | t0 | −90.59 | 107.65 |
t1 | −11.28 | 32.56 | t1 | −11.84 | 13.97 | ||||
RT4 | em | t0 | 30.57 | 33.73 | RB1 | em | t0 | −26.33 | 58.08 |
t1 | 10.56 | 14.81 | t1 | −0.33 | 11.21 | ||||
RT5 | em | t0 | −24.17 | 33.99 | RB5 | em | t0 | −3.23 | 8.73 |
t1 | −55.48 | 78.87 | t1 | −18.89 | 11.82 |
Aliivibrio fischeri | |||||||||||||
Conventional | 2018 | 2019 | Organic | 2018 | 2019 | ||||||||
(%) | ds | (%) | ds | (%) | ds | (%) | ds | ||||||
RT1 | in | t0 | −11.1 | 8.4 | −4.00 | 10.00 | t0 | in | RB4 (2018) RB6 (2019) | −6.5 | 6.8 | 96.13 | 10.24 |
out | −8.9 | 7.4 | 95.99 | 10.60 | out | 14.4 | 13.3 | −7.36 | 7.97 | ||||
in | t1 | −5.4 | 12.8 | −4.28 | 14.08 | t1 | in | −3.1 | 8.5 | −19.61 | 13.75 | ||
out | −5.9 | 5.4 | −12.05 | 9.74 | out | −7.4 | 5.5 | −26.92 | 17.46 | ||||
RT4 | in | t0 | −11.2 | 20.8 | 3.11 | 17.97 | t0 | in | RB1 | −8.2 | 11.9 | 94.04 | 11.48 |
out | −1.5 | 8.3 | 94.95 | 11.51 | out | 21.2 | 26.9 | 90.22 | 17.59 | ||||
in | t1 | −7.1 | 10.1 | −5.35 | 6.57 | t1 | in | −10.0 | 11.0 | 81.88 | 18.99 | ||
out | −0.8 | 10.1 | 97.16 | 7.52 | out | 60.1 | 24.7 | 46.99 | 10.76 | ||||
RT5 | in | t0 | 1.3 | 11.4 | 69.53 | 13.28 | t0 | in | RB5 | 4.7 | 9.1 | 32.38 | 10.02 |
out | 7.7 | 4.3 | 77.95 | 19.08 | out | 4.9 | 14.7 | 39.99 | 21.93 | ||||
in | t1 | −6.4 | 10.4 | 36.77 | 10.96 | t1 | in | −17.1 | 17.7 | 38.67 | 7.59 | ||
out | −15.0 | 14.9 | 42.00 | 5.00 | out | 7.9 | 10.1 | 37.85 | 9.30 | ||||
Daphnia magna | |||||||||||||
Conventional | 2018 | 2019 | Organic | 2018 | 2019 | ||||||||
(%) | ds | (%) | ds | (%) | ds | (%) | ds | ||||||
RT1 | in | t0 | 37.0 | 51.8 | 0.0 | 0.0 | t0 | in | RB4 (2018) RB6 (2019) | 25.0 | 27.8 | 0.0 | 0.0 |
out | 97.0 | 7.1 | 0.0 | 0.0 | out | 7.5 | 10.4 | 0.0 | 0.0 | ||||
in | t1 | 0.0 | 0.0 | 0.0 | 0.0 | t1 | in | 0.0 | 0.0 | 0.0 | 0.0 | ||
out | 7.5 | 10.4 | 0.0 | 0.0 | out | 2.5 | 7.1 | 0.0 | 0.0 | ||||
RT4 | in | t0 | 62.5 | 51.8 | 5.0 | 0.0 | t0 | in | RB1 | 0.0 | 0.0 | 5.0 | 10.0 |
out | 15.0 | 23.3 | 0.0 | 0.0 | out | 97.5 | 7.1 | 55.0 | 19.1 | ||||
in | t1 | 0.0 | 0.0 | 0.0 | 0.0 | t1 | in | 2.5 | 7.1 | 45.0 | 19.1 | ||
out | 50.0 | 53.5 | 0.0 | 0.0 | out | 15.0 | 9.3 | 75.0 | 19.1 | ||||
RT5 | in | t0 | 25.0 | 20.7 | 15.0 | 10.0 | t0 | in | RB5 | 0.0 | 0.0 | 15.0 | 19.1 |
out | 5.0 | 9.3 | 45.0 | 34.2 | out | 0.0 | 0.0 | 40.0 | 23.1 | ||||
in | t1 | 0.0 | 0.0 | 25.0 | 19.1 | t1 | in | 0.0 | 0.0 | 20.0 | 16.3 | ||
out | 0.0 | 0.0 | 25.0 | 10.0 | out | 2.5 | 7.1 | 0.0 | 0.0 | ||||
Raphidocelis subcapitata | |||||||||||||
Conventional | 2018 | 2019 | Organic | 2018 | 2019 | ||||||||
(%) | ds | (%) | ds | (%) | ds | (%) | ds | ||||||
RT1 | in | t0 | 92.0 | 2.1 | 96.8 | 1.7 | t0 | in | RB4 (2018) RB6 (2019) | 100.0 | 11.0 | 95.0 | 1.2 |
out | 91.1 | 2.9 | 97.2 | 1.9 | out | 100.0 | 4.3 | 95.3 | 3.1 | ||||
in | t1 | 87.0 | 0.6 | 98.3 | 1.7 | t1 | in | 89.0 | 0.6 | 99.4 | 2.8 | ||
out | 100.0 | 3.8 | 97.6 | 4.4 | out | 86.0 | 2.1 | 99.4 | 2.0 | ||||
RT4 | in | t0 | 100.0 | 7.6 | 89.1 | 4.5 | t0 | in | RB1 | 100.0 | 10.3 | 88.5 | 3.9 |
out | 93.0 | 2.3 | 97.8 | 3.5 | out | 84.5 | 5.1 | 70.3 | 7.3 | ||||
in | t1 | 87.0 | 3.3 | 94.5 | 1.7 | t1 | in | 100.0 | 7.2 | 100.0 | 4.6 | ||
out | 87.3 | 2.4 | 80.5 | 3.9 | out | 90.0 | 11.9 | 77.1 | 8.3 | ||||
RT5 | in | t0 | 97.5 | 2.9 | 55.1 | 8.3 | t0 | in | RB5 | 84.1 | 2.2 | 100.0 | 3.7 |
out | 96.3 | 3.8 | 36.6 | 4.5 | out | 93.0 | 2.3 | 78.4 | 3.7 | ||||
in | t1 | 95.5 | 1.7 | 99.0 | 5.4 | t1 | in | 94.3 | 1.0 | 51.4 | 5.9 | ||
out | 94.8 | 1.4 | 75.3 | 5.7 | out | 98.7 | 2.2 | 76.0 | 2.6 | ||||
Spirodela polyrhiza | |||||||||||||
Conventional | 2018 | Organic | 2018 | ||||||||||
(%) | sd (%) | (%) | sd (%) | ||||||||||
RT1 | in | t0 | −37.9 | 33.8 | t0 | in | RB4/RB6 | −16.3 | 47.2 | ||||
out | −0.6 | 23.8 | out | −5.1 | 35.6 | ||||||||
in | t1 | −10.4 | 34.4 | t1 | in | −19.5 | 26.8 | ||||||
out | −8.0 | 34.5 | out | −11.8 | 37.2 | ||||||||
RT4 | in | t0 | −15.6 | 28.0 | t0 | in | RB1 | −44.6 | 51.0 | ||||
out | −2.6 | 30.5 | out | −35.9 | 32.9 | ||||||||
in | t1 | 12.7 | 32.7 | t1 | in | −19.5 | 45.4 | ||||||
out | −34.4 | 27.2 | out | −30.2 | 42.6 | ||||||||
RT5 | in | t0 | 25.6 | 20.4 | t0 | in | RB5 | 81.9 | 6.8 | ||||
out | 10.0 | 27.7 | out | 51.5 | 10.2 | ||||||||
in | t1 | −0.2 | 26.2 | t1 | in | −1.7 | 27.8 | ||||||
out | 23.7 | 23.0 | out | −3.3 | 31.9 |
2018 | 2019 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil | Water | Soil | Water | ||||||||||
ID | Sampling Point and Campaign | HQeco | Sampling Point and Campaign | HQeco | ID | Sampling Point and Campaign | HQeco | Sampling Point and Campaign | HQeco | ||||
RB1 | em | t0 | 0.16 | in | t0 | 2.37 | RB1 | em | t0 | 0.10 | in | t0 | 5.13 |
ch | t0 | 0.14 | out | 8.37 | out | 7.32 | |||||||
in | t1 | 2.41 | t1 | 0.17 | in | t1 | 6.29 | ||||||
em | t1 | 0.09 | out | 4.64 | out | 7.42 | |||||||
RB4 | em | t0 | 0.59 | in | t0 | 3.6 | RB5 | em | t0 | 0.10 | in | t0 | 3.63 |
out | 3.22 | out | 5.96 | ||||||||||
t1 | 0.13 | in | t1 | 2.37 | t1 | 0.05 | in | t1 | 3.94 | ||||
out | 2.41 | out | 3.69 | ||||||||||
RB5 | em | t0 | 0.07 | in | t0 | 2.42 | RB6 | em | t0 | 0.38 | in | t0 | 5.06 |
out | 3.01 | out | 2.37 | ||||||||||
in | t1 | 2.37 | t1 | 0.01 | in | t1 | 2.37 | ||||||
t1 | 0.30 | out | 2.59 | out | 2.37 | ||||||||
RT1 | ch | t0 | 0.01 | in | t0 | 3.14 | RT1 | em | t0 | 0.35 | in | t0 | 2.37 |
out | 7.16 | out | 5.06 | ||||||||||
t1 | 0.68 | in | t1 | 2.37 | t1 | 0.45 | in | t1 | 2.37 | ||||
out | 2.55 | out | 2.37 | ||||||||||
RT4 | em | t0 | 0.29 | in | t0 | 5.48 | RT4 | em | t0 | 0.66 | in | t0 | 5.06 |
out | 2.66 | in | 2.46 | ||||||||||
ch | t1 | 0.25 | in | t1 | 2.37 | t1 | 0.21 | in | t1 | 2.37 | |||
out | 4.84 | out | 5.06 | ||||||||||
RT5 | em | t0 | 0.71 | in | t0 | 3.61 | RT5 | em | t0 | 0.26 | in | t0 | 4.62 |
ch | t0 | 0.57 | out | 2.69 | out | 3.49 | |||||||
t1 | 0.50 | in | t1 | 2.37 | t1 | in | t1 | 4.15 | |||||
out | 2.37 | 0.98 | out | 4.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onorati, F.; Tornambé, A.; Paina, A.; Maggi, C.; Sesta, G.; Berducci, M.T.; Bellucci, M.; Rivella, E.; D’Antoni, S. Ecotoxicological and Chemical Approach to Assessing Environmental Effects from Pesticide Use in Organic and Conventional Rice Paddies. Water 2022, 14, 4136. https://doi.org/10.3390/w14244136
Onorati F, Tornambé A, Paina A, Maggi C, Sesta G, Berducci MT, Bellucci M, Rivella E, D’Antoni S. Ecotoxicological and Chemical Approach to Assessing Environmental Effects from Pesticide Use in Organic and Conventional Rice Paddies. Water. 2022; 14(24):4136. https://doi.org/10.3390/w14244136
Chicago/Turabian StyleOnorati, Fulvio, Andrea Tornambé, Andrea Paina, Chiara Maggi, Giulio Sesta, Maria Teresa Berducci, Micol Bellucci, Enrico Rivella, and Susanna D’Antoni. 2022. "Ecotoxicological and Chemical Approach to Assessing Environmental Effects from Pesticide Use in Organic and Conventional Rice Paddies" Water 14, no. 24: 4136. https://doi.org/10.3390/w14244136
APA StyleOnorati, F., Tornambé, A., Paina, A., Maggi, C., Sesta, G., Berducci, M. T., Bellucci, M., Rivella, E., & D’Antoni, S. (2022). Ecotoxicological and Chemical Approach to Assessing Environmental Effects from Pesticide Use in Organic and Conventional Rice Paddies. Water, 14(24), 4136. https://doi.org/10.3390/w14244136