Advanced Treatment of Laundry Wastewater by Electro-Hybrid Ozonation–Coagulation Process: Surfactant and Microplastic Removal and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Water
2.2. Experimental Agents
2.3. The E-HOC Experiment
2.4. Analytical Methods
2.4.1. Determination of Physicochemical Indexes
2.4.2. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
2.4.3. EPR Analysis
2.4.4. Microplastics Analysis
3. Results and Discussion
3.1. Removal Performance
3.2. Microplastic Analysis
3.2.1. Microplastics Removal Performance
3.2.2. Shape and Size Analysis
3.2.3. Quantitative Analysis
3.2.4. FT-IR Analysis of Microplastics
3.3. Mechanism Analysis
3.3.1. Reactive Oxygen Species Analysis
3.3.2. FT-IR Analysis of Flocs
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deshayes, S.; Eudes, V.; Bigourie, M.; Droguet, C.; Moilleron, R. Alkylphenol and phthalate contamination of all sources of greywater from French households. Sci. Total Environ. 2017, 599, 883–890. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.C.; Teow, Y.H.; Sum, J.Y.; Ng, Z.J.; Mohammad, A.W. Water pathways through the ages: Integrated laundry wastewater treatment for pollution prevention. Sci. Total Environ. 2021, 760. [Google Scholar] [CrossRef] [PubMed]
- Manouchehri, M.; Kargari, A. Water recovery from laundry wastewater by the cross flow microfiltration process: A strategy for water recycling in residential buildings. J. Clean. Prod. 2017, 168, 227–238. [Google Scholar] [CrossRef]
- Santiago, D.E.; Hernández Rodriguez, M.J.; Pulido-Melian, E. Laundry Wastewater Treatment: Review and Life Cycle Assessment. J. Environ. Eng. 2021, 147, 143966. [Google Scholar] [CrossRef]
- Cesa, F.S.; Turra, A.; Baruque-Ramos, J. Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. Sci. Total Environ. 2017, 598, 1116–1129. [Google Scholar] [CrossRef]
- Shi, K.-W.; Wang, C.-W.; Jiang, S.C. Quantitative microbial risk assessment of Greywater on-site reuse. Sci. Total Environ. 2018, 635, 1507–1519. [Google Scholar] [CrossRef]
- Nicolotti, G.; Rettori, A.; Paoletti, E.; Gullino, M.L. Morphological and physiological damage by surfactant-polluted seaspray on Pinus pinea and Pinus halepensis. Environ. Monit. Assess. 2005, 105, 175–191. [Google Scholar] [CrossRef]
- Wang, L.-F.; Wang, L.-L.; Li, W.-W.; He, D.-Q.; Jiang, H.; Ye, X.-D.; Yuan, H.-P.; Zhu, N.-W.; Yu, H.-Q. Surfactant-mediated settleability and dewaterability of activated sludge. Chem. Eng. Sci. 2014, 116, 228–234. [Google Scholar] [CrossRef]
- Sun, J.; Zhu, Z.R.; Li, W.H.; Yan, X.; Wang, L.K.; Zhang, L.; Jin, J.; Dai, X.; Ni, B.J. Revisiting Microplastics in Landfill Leachate: Unnoticed Tiny Microplastics and Their Fate in Treatment Works. Water Res. 2021, 190, 116784. [Google Scholar] [CrossRef]
- Li, J.Y.; Liu, H.H.; Chen, J.P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Tang, N.; Liu, X.N.; Xing, W. Microplastics in wastewater treatment plants of Wuhan, Central China: Abundance, removal, and potential source in household wastewater. Sci. Total Environ. 2020, 745, 141026. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, X.; Zhang, Z.; Yan, Z.; Zhang, Y. Effects of chronic exposure to different sizes and polymers of microplastics on the characteristics of activated sludge. Sci. Total Environ. 2021, 783, 146954. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.J.; Zhou, S.; Fei, J.; Qin, Z.; Yin, X.; Sun, H.; Sun, Y. Transport of different microplastics in porous media: Effect of the adhesion of surfactants on microplastics. Water Res. 2022, 215, 118262. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, B.K.; Pramanik, S.K.; Monira, S. Understanding the fragmentation of microplastics into nano-plastics and removal of nano/microplastics from wastewater using membrane, air flotation and nano-ferrofluid processes. Chemosphere 2021, 282. [Google Scholar] [CrossRef]
- Borghi, C.C.; Fabbri, M.; Fiorini, M.; Mancini, M.; Ribani, P.L. Magnetic removal of surfactants from wastewater using micrometric iron oxide powders. Sep. Purif. Technol. 2011, 83, 180–188. [Google Scholar] [CrossRef]
- Dimoglo, A.; Sevim-Elibol, P.; Dinc, O.; Gökmen, K.; Erdoğan, H. Electrocoagulation/electroflotation as a combined process for the laundry wastewater purification and reuse. J. Water Process Eng. 2019, 31, 100877. [Google Scholar] [CrossRef]
- Akarsu, C.; Deniz, F. Electrocoagulation/Electroflotation Process for Removal of Organics and Microplastics in Laundry Wastewater. Clean-Soil Air Water 2021, 49, 2000146. [Google Scholar] [CrossRef]
- Bering, S.; Mazur, J.; Tarnowski, K.; Janus, M.; Mozia, S.; Morawski, A.W. The application of moving bed bio-reactor (MBBR) in commercial laundry waste water treatment. Sci. Total Environ. 2018, 627, 1638–1643. [Google Scholar] [CrossRef]
- Perez-Lopez, M.E.; Arreola-Ortiz, A.E.; Malagon Zamora, P. Evaluation of detergent removal in artificial wetlands (biofilters). Ecol. Eng. 2018, 122, 135–142. [Google Scholar] [CrossRef]
- Lv, X.; Dong, Q.; Zuo, Z.; Liu, Y.; Huang, X.; Wu, W.M. Microplastics in a municipal wastewater treatment plant: Fate, dynamic distribution, removal efficiencies, and control strategies. J. Clean. Prod. 2019, 225, 579–586. [Google Scholar] [CrossRef]
- Bilad, M.R.; Nawi, N.I.M.; Subramaniam, D.D.; Shamsuddin, N.; Khan, A.L.; Jaafar, J.; Nandiyanto, A.B.D. Low-pressure submerged membrane filtration for potential reuse of detergent and water from laundry wastewater. J. Water Process Eng. 2020, 36, 101264. [Google Scholar] [CrossRef]
- Kogut, I.; Szwast, M.; Hussy, S.; Polakb, D.; Gerhardtsa, A.; Piątkiewiczd, W. Evaluation of wastewater reuse in commercial laundries: A pilot field study. Desalination Water Treat. 2021, 214, 39–48. [Google Scholar] [CrossRef]
- Park, C.; Kim, S. Fouling behavior and cleaning strategies of ceramic ultrafiltration membranes for the treatment and reuse of laundry wastewater. J. Water Process Eng. 2022, 48, 102840. [Google Scholar]
- Sumisha, A.; Arthanareeswaran, G.; Thuyavan, Y.L.; Ismail, A.F.; Chakraborty, S. Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes. Ecotoxicol. Environ. Saf. 2015, 121, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Szwast, M.; Polak, D. New membranes for industrial laundry wastewater treatment. Przem. Chem. 2018, 97, 439–441. [Google Scholar]
- Esteban Garcia, A.B.; Szymanski, K.; Mozia, S.; Sánchez Pérez, J.A. Treatment of laundry wastewater by solar photo-Fenton process at pilot plant scale. Environ. Sci. Pollut. Res. 2021, 28, 8576–8584. [Google Scholar] [CrossRef]
- Joseph, C.G.; Farm, Y.Y.; Taufiq-Yap, Y.H.; Pang, C.K.; Nga, J.L.; Puma, G.L. Ozonation treatment processes for the remediation of detergent wastewater: A comprehensive review. J. Environ. Chem. Eng. 2021, 9, 106099. [Google Scholar] [CrossRef]
- Bering, S.; Mazur, J.; Tarnowski, K.; Dąbkowska, N.; Janus, M.; Mozia, S.; Morawski, A.W. Removal of organic pollutants and surfactants from laundry wastewater in membrane bioreactor (MBR). Desalination Water Treat. 2018, 134, 281–288. [Google Scholar] [CrossRef]
- Zotesso, J.P.; Cossich, E.S.; Janeiro, V.; Tavares, C.R.G. Treatment of hospital laundry wastewater by UV/H2O2 process. Environ. Sci. Pollut. Res. 2017, 24, 6278–6287. [Google Scholar] [CrossRef]
- Benis, K.Z.; Behnami, A.; Aghayani, E.; Farabi, S.; Pourakbar, M. Water recovery and on-site reuse of laundry wastewater by a facile and cost-effective system: Combined biological and advanced oxidation process. Sci. Total Environ. 2021, 789, 148068. [Google Scholar] [CrossRef]
- Hakizimana, J.N.; Gourich, B.; Chafi, M.; Stiriba, Y.; Vial, C.; Drogui, P.; Naja, J. Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches. Desalination 2017, 404, 1–21. [Google Scholar] [CrossRef]
- Ramcharan, T.; Bissessur, A. Treatment of laundry wastewater by biological and electrocoagulation methods. Water Sci. Technol. 2017, 75, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Pratiwi, N.I.; Mukimin, A.; Zen, N.; Septarina, I. Integration of electrocoagulation, adsorption and wetland technology for jewelry industry wastewater treatment. Sep. Purif. Technol. 2021, 279, 119690. [Google Scholar] [CrossRef]
- Medrano-Hurtado, Z.Y.; Medina-Aguirre, J.C.; Marcelo-Medrano, H.; Castillón-Barraza, A.; Zamora-Alarcón, R.; Casillas-Lamadrid, M.E.; Jumilla-Corral, A.A.; Mayorga-Ortiz, P. Domestic wastewater treatment by electrocoagulation system using photovoltaic solar energy. Rev. Mex. Ing. Quim. 2022, 21, IA2809. [Google Scholar] [CrossRef]
- Li, J.; Dagnew, M.; Ray, M.B. Effect of coagulation on microfibers in laundry wastewater. Environ. Res. 2022, 212, 113401. [Google Scholar] [CrossRef]
- Da Silva, S.W.; Klauck, C.R.; Siqueira, M.A.; Bernardes, A.M. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes. J. Hazard. Mater. 2015, 282, 241–248. [Google Scholar] [CrossRef]
- Mondal, B.; Adak, A.; Datta, P. Anionic surfactant degradation by UV-H2O2 advanced oxidation process and optimization of process parameters. J. Indian Chem. Soc. 2020, 97, 1328–1335. [Google Scholar]
- Rios, F.; Olak-Kucharczyk, M.; Gmurek, M.; Ledakowicz, S. Removal efficiency of anionic surfactants from water during UVC photolysis and advanced oxidation process in H2O2/UVC system. Arch. Environ. Prot. 2017, 43, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Wang, Y.; Zheng, X.; Zhu, K.; Long, A.; Wu, X.; Zhang, H. Remediation of phenanthrene contaminated soil by coupling soil washing with Tween 80, oxidation using the UV/S2O82- process and recycling of the surfactant. Chem. Eng. J. 2019, 369, 1014–1023. [Google Scholar] [CrossRef]
- Wang, X.-J.; Song, Y.; Mai, J.-S. Combined Fenton oxidation and aerobic biological processes for treating a surfactant wastewater containing abundant sulfate. J. Hazard. Mater. 2008, 160, 344–348. [Google Scholar] [CrossRef]
- Linares Hernandez, I.; Barrera Diaz, C.; Valdes Cerecero, M.; Almazan Sanchez, P.T.; Castaneda Juarez, M.; Lugo Lugo, V. Soft drink wastewater treatment by electrocoagulation-electrooxidation processes. Environ. Technol. 2017, 38, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Nayir, T.Y.; Kara, S. Container washing wastewater treatment by combined electrocoagulation-electrooxidation. Sep. Sci. Technol. 2018, 53, 1592–1603. [Google Scholar] [CrossRef]
- Bilinska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chem. Eng. J. 2019, 358, 992–1001. [Google Scholar] [CrossRef]
- Jin, X.; Xie, X.; Liu, Y.; Wang, Y.; Wang, R.; Jin, P.; Yang, C.; Shi, X.; Wang, X.C.; Xu, H. The role of synergistic effects between ozone and coagulants (SOC) in the electro-hybrid ozonation-coagulation process. Water Res. 2020, 177, 115800. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Xie, X.; Zhang, S.; Yang, C.; Xu, L.; Shi, X.; Jin, P.; Wang, X.C. Insights into the electro-hybrid ozonation-coagulation process-Significance of connection configurations and electrode types. Water Res. 2021, 204, 117600. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jin, X.; Guo, K.; Diao, Y.; Jin, P. Simultaneous removal of organics and ammonia using a novel composite magnetic anode in the electro-hybrid ozonation-coagulation (E-HOC) process toward leachate treatment. J. Hazard. Mater. 2022, 439, 129664. [Google Scholar] [CrossRef] [PubMed]
- Ramcharan, T.; Bissessur, A. Analysis of Linear Alkylbenzene Sulfonate in Laundry Wastewater by HPLC-UV and UV-Vis Spectrophotometry. J. Surfactants Deterg. 2016, 19, 209–218. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Yu, T.; Dong, H.L.; Huang, L.; Chu, R.K.; Tolic, N.; Wang, X.; Zeng, Q. Chemical oxygen demand (COD) removal from bio-treated coking wastewater by hydroxyl radicals produced from a reduced clay mineral. Appl. Clay Sci. 2019, 180, 105199. [Google Scholar] [CrossRef]
- Hu, N.; Li, Y.F.; Yang, C.Y.; Wu, Z.; Liu, W. In-Situ activated nanoparticle as an efficient and recyclable foam stabilizer for enhancing foam separation of LAS. J. Hazard. Mater. 2019, 379, 120843. [Google Scholar] [CrossRef]
- Kumar, S.; Mostafazadeh, A.K.; Kumar, L.R.; Tyagi, R.D.; Drogui, P.; Brien, E. Advancements in laundry wastewater treatment for reuse: A review. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2022, 57, 927–946. [Google Scholar] [CrossRef]
- Rookesh, T.; Samaei, M.R.; Yousefinejad, S.; Hashemi, H.; Derakhshan, Z.; Abbasi, F.; Jalili, M.; Giannakis, S.; Bilal, M. Investigating the Electrocoagulation Treatment of Landfill Leachate by Iron/Graphite Electrodes: Process Parameters and Efficacy Assessment. Water 2022, 14, 205. [Google Scholar] [CrossRef]
- Rodriguez, A.Z.; Wang, H.; Hu, L.; Zhang, Y.; Xu, P. Treatment of Produced Water in the Permian Basin for Hydraulic Fracturing: Comparison of Different Coagulation Processes and Innovative Filter Media. Water 2020, 12, 770. [Google Scholar] [CrossRef] [Green Version]
- Llanos, J.; Cotillas, S.; Canizares, P.; Rodrigo, M.A. Effect of bipolar electrode material on the reclamation of urban wastewater by an integrated electrodisinfection/electrocoagulation process. Water Res. 2014, 53, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Khor, C.M.; Wang, J.; Li, M.; Oettel, B.A.; Kaner, R.B.; Jassby, D.; Hoek, E.M. Performance, Energy and Cost of Produced Water Treatment by Chemical and Electrochemical Coagulation. Water 2020, 12, 3426. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Bautista-Toledo, M.I.; Sanchez-Polo, M.; Méndez-Díaz, J.D. Removal of surfactant dodecylbenzenesulfonate by consecutive use of ozonation and biodegradation. Eng. Life Sci. 2012, 12, 113–116. [Google Scholar] [CrossRef]
- Chu, W.; Chan, K.H.; Graham, N.J.D. Enhancement of ozone oxidation and its associated processes in the presence of surfactant: Degradation of atrazine. Chemosphere 2006, 64, 931–936. [Google Scholar] [CrossRef]
- Ma, Y. Study on Treatment and Reuse of Laundry Wastewater by Electrocoagulation-Ozone. Master’s Thesis, Jiangsu University, Zhenjiang, China, 2020. (In Chinese). [Google Scholar]
- Motteran, F.; Nascimento, R.F.; Nadai, B.M.; Titato, G.M.; dos Santos Neto, Á.J.; Silva, E.L.; Varesche, M.B.A. Identification of Anionic and Nonionic Surfactant and Recalcitrants Compounds in Commercial Laundry Wastewater by GC-MS Analysis after Anaerobic Fluidized Bed Reactor Treatment. Water Air Soil Pollut. 2019, 230, 301. [Google Scholar] [CrossRef]
- Tang, W.H.; Li, H.; Fei, L.Y.; Wei, B.; Zhou, T.; Zhang, H. The removal of microplastics from water by coagulation: A comprehensive review. Sci. Total Environ. 2022, 851, 158224. [Google Scholar] [CrossRef]
- Elkhatib, D.; Oyanedel-Craver, V.; Carissimi, E. Electrocoagulation applied for the removal of microplastics from wastewater treatment facilities. Sep. Purif. Technol. 2021, 276, 118877. [Google Scholar] [CrossRef]
- Shen, M.C.; Zhang, Y.X.; Almatrafi, E.; Hu, T.; Zhou, C.; Song, B.; Zeng, Z.; Zeng, G. Efficient removal of microplastics from wastewater by an electrocoagulation process. Chem. Eng. J. 2022, 428, 131161. [Google Scholar] [CrossRef]
- Xu, R.Y.; Yang, Z.N.; Niu, Y.X.; Xu, D.; Wang, J.; Han, J.; Wang, H. Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Sep. Purif. Technol. 2022, 290, 120905. [Google Scholar] [CrossRef]
- Perren, W.; Wojtasik, A.; Cai, Q. Removal of Microbeads from Wastewater Using Electrocoagulation. Acs Omega 2018, 3, 3357–3364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, R.X.; Deng, Y.F.; Zhang, S.H.; Wolosker, M.B.; Zhu, Q.; Ren, H.; Zhang, Y. Accumulation of different shapes of microplastics initiates intestinal injury and gut microbiota dysbiosis in the gut of zebrafish. Chemosphere 2019, 236, 124334. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Hwang, J.; Bang, J.; Han, S.; Kim, T.; Oh, Y.; Hwang, Y.; Choi, J.; Hong, J. In Vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Sci. Total Environ. 2021, 752, 142242. [Google Scholar] [CrossRef]
- Chia, R.W.; Lee, J.Y.; Kim, H.; Jang, J. Microplastic pollution in soil and groundwater: A review. Environ. Chem. Lett. 2021, 19, 4211–4224. [Google Scholar] [CrossRef]
- Ding, J.F.; Li, J.X.; Sun, C.J.; Jiang, F.; Ju, P.; Qu, L.; Zheng, Y.; He, C. Detection of microplastics in local marine organisms using a multi-technology system. Anal. Methods 2019, 11, 78–87. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Z.; Zhang, J.; Wang, Z.; Zhu, Y.; Wang, P.; Zhang, T.; Pu, J.; Sun, H.; Wang, L. An innovative evaluation method based on polymer mass detection to evaluate the contribution of microfibers from laundry process to municipal wastewater. J. Hazard. Mater. 2021, 407, 124861. [Google Scholar] [CrossRef]
- Praveena, S.M.; Asmawi, M.S.; Chyi, J.L.Y. Microplastic emissions from household washing machines: Preliminary findings from Greater Kuala Lumpur (Malaysia). Environ. Sci. Pollut. Res. 2021, 28, 18518–18522. [Google Scholar] [CrossRef]
- Galvao, A.; Aleixo, M.; De Pablo, H.; Lopes, C.; Raimundo, J. Microplastics in wastewater: Microfiber emissions from common household laundry. Environ. Sci. Pollut. Res. 2020, 27, 26643–26649. [Google Scholar] [CrossRef]
- Sudheshna, A.A.; Srivastava, M.; Prakash, C. Characterization of microfibers emission from textile washing from a domestic environment. Sci. Total Environ. 2022, 852, 158511. [Google Scholar] [CrossRef]
- Berruezo, M.; Bonet-Aracil, M.; Montava, I.; Bou-Belda, E.; Díaz-García, P.; Gisbert-Payá, J. Preliminary study of weave pattern influence on microplastics from fabric laundering. Text. Res. J. 2021, 91, 1037–1045. [Google Scholar] [CrossRef]
- Ozkan, I.; Gundogdu, S. Investigation on the microfiber release under controlled washings from the knitted fabrics produced by recycled and virgin polyester yarns. J. Text. Inst. 2021, 112, 264–272. [Google Scholar] [CrossRef]
- Prajapati, S.; Beal, M.; Maley, J.; Brinkmann, M. Qualitative and quantitative analysis of microplastics and microfiber contamination in effluents of the City of Saskatoon wastewater treatment plant. Environ. Sci. Pollut. Res. 2021, 28, 32545–32553. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Neale, P.A.; Rintoul, L.; Leusch, F.D. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017, 112, 93–99. [Google Scholar] [CrossRef]
- Hongprasith, N.; Kittimethawong, C.; Lertluksanaporn, R.; Eamchotchawalit, T.; Kittipongvises, S.; Lohwacharin, J. IR microspectroscopic identification of microplastics in municipal wastewater treatment plants. Environ. Sci. Pollut. Res. 2020, 27, 18557–18564. [Google Scholar] [CrossRef]
- Fontmorin, J.M.; Castillo, R.C.B.; Tang, W.Z.; Sillanpää, M. Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction. Water Res. 2016, 99, 24–32. [Google Scholar] [CrossRef]
- Xu, L.; Yang, L.; Bai, X.; Du, X.; Wang, Y.; Jin, P. Persulfate activation towards organic decomposition and Cr(VI) reduction achieved by a novel CQDs-TiO2-x/rGO nanocomposite. Chem. Eng. J. 2019, 373, 238–250. [Google Scholar] [CrossRef]
- Wang, H.J.; Yuan, S.; Zhan, J.H.; Wang, Y.; Yu, G.; Deng, S.; Huang, J.; Wang, B. Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electro-peroxone process. Water Res. 2015, 80, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Xia, J.; Tian, R.; Wang, J.; Fan, J.; Du, J.; Long, S.; Song, X.; Foley, J.W.; Peng, X. Near-Infrared Light-Initiated Molecular Superoxide Radical Generator: Rejuvenating Photodynamic Therapy against Hypoxic Tumors. J. Am. Chem. Soc. 2018, 140, 14851–14859. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Joshi, N.; Dankwort, T.; Lin, L.; Kienle, L. Au-TiO2-Loaded Cubic gC3N4 Nanohybrids for Photocatalytic and Volatile Organic Amine Sensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 34087–34097. [Google Scholar] [CrossRef]
- Zhou, R.; Liu, F.Y.; Du, X.Y.; Zhang, C.; Yang, C.; Offiong, N.A.; Bi, Y.; Zeng, W.; Ren, H. Removal of metronidazole from wastewater by electrocoagulation with chloride ions electrolyte: The role of reactive chlorine species and process optimization. Sep. Purif. Technol. 2022, 290, 120799. [Google Scholar] [CrossRef]
- Karatas, O.; Gengec, N.A.; Gengec, E.; Khataee, A.; Kobya, M. High-performance carbon black electrode for oxygen reduction reaction and oxidation of atrazine by electro-Fenton process. Chemosphere 2022, 287, 132370. [Google Scholar] [CrossRef]
- Qiu, R.L.; Zhang, D.D.; Diao, Z.H.; Huang, X.; He, C.; Morel, J.L.; Xiong, Y. Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation. Water Res. 2012, 46, 2299–2306. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.J.G.; Atambo, D.O.; Das, K.K.; Cocke, D.L.; Das, K.P. Electrochemical remediation of chicken processing plant wastewater. J. Environ. Chem. Eng. 2018, 6, 6028–6036. [Google Scholar] [CrossRef]
- Asfaha, Y.G.; Zewge, F.; Yohannes, T.; Kebede, S. Application of hybrid electrocoagulation and electrooxidation process for treatment of wastewater from the cotton textile industry. Chemosphere 2022, 302. [Google Scholar] [CrossRef]
- Kumari, S.; Kumar, R.N. River water treatment using electrocoagulation for removal of acetaminophen and natural organic matter. Chemosphere 2021, 273, 128571. [Google Scholar] [CrossRef]
- Jin, X.; Liu, Y.; Wang, Y.; Zhang, S.; Zhang, W.; Jin, P.; Xu, L.; Shi, X.; Wang, X.C.; Lv, S. Towards a comparison between the hybrid ozonation-coagulation (HOC) process using Al- and Fe-based coagulants: Performance and mechanism. Chemosphere 2020, 253, 126625. [Google Scholar] [CrossRef]
Raw Water | CODcr (mg/L) | Turbidity (NTU) | LAS (mg/L) |
---|---|---|---|
synthetic wastewater | 800 ± 50 | 90 ± 20 | 100 ± 20 |
laundry wastewater | 800 ± 100 | 97.5 ± 17.5 | 800 ± 50 |
primary rinsing water | 140 ± 40 | 22.5 ± 7.5 | 15.5 ± 4.5 |
secondary rinsing water | 80 ± 20 | 10.5 ± 4.5 | 8 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Jin, X.; Wang, Y.; Jin, P. Advanced Treatment of Laundry Wastewater by Electro-Hybrid Ozonation–Coagulation Process: Surfactant and Microplastic Removal and Mechanism. Water 2022, 14, 4138. https://doi.org/10.3390/w14244138
Luo J, Jin X, Wang Y, Jin P. Advanced Treatment of Laundry Wastewater by Electro-Hybrid Ozonation–Coagulation Process: Surfactant and Microplastic Removal and Mechanism. Water. 2022; 14(24):4138. https://doi.org/10.3390/w14244138
Chicago/Turabian StyleLuo, Jiahao, Xin Jin, Yadong Wang, and Pengkang Jin. 2022. "Advanced Treatment of Laundry Wastewater by Electro-Hybrid Ozonation–Coagulation Process: Surfactant and Microplastic Removal and Mechanism" Water 14, no. 24: 4138. https://doi.org/10.3390/w14244138
APA StyleLuo, J., Jin, X., Wang, Y., & Jin, P. (2022). Advanced Treatment of Laundry Wastewater by Electro-Hybrid Ozonation–Coagulation Process: Surfactant and Microplastic Removal and Mechanism. Water, 14(24), 4138. https://doi.org/10.3390/w14244138