Impact of Rainfall Variability and Land Use Change on River Discharge in South Cameroon
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Hydroclimatic Data
2.2.2. Spatial Data
2.3. Data Analysis
2.3.1. Hydroclimatic Data
2.3.2. Spatial Data
3. Results
3.1. Evolution of Annual and Seasonal Precipitation
3.1.1. Interannual Evolution of Precipitated Quantities
Annual Precipitation
Seasonal Precipitation
3.1.2. Spatial Evolution of Precipitation
3.1.3. Relationships between Rainfall and Some Potential Sources of Variability
3.2. Evolution of Average and Extreme Discharge
3.2.1. Average Flows
Average Annual Discharges
Evolution of Average Seasonal Discharges
3.2.2. Extreme Flows
Maximum Flows
The Minimum Flows
4. Discussion
4.1. The Impact of Changes in Land Use Patterns
4.2. The Impact of Precipitation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aulenbach, B.T.; Landers, M.N.; Musser, J.W.; Painter, J.A. Effects of impervious area and BMP implementation and design on storm runoff and water quality on eight small watersheds. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 382–399. [Google Scholar] [CrossRef]
- Diem, J.E.; Hill, T.C.; Milligan, R.A. Diverse multi-decadal changes in streamflow within a rapidly urbanizing region. J. Hydrol. 2018, 556, 61–71. [Google Scholar] [CrossRef]
- Oudin, L.; Salavati, B.; Furusho-Percot, C.; Ribstein, P.; Saadi, M. Hydrological impacts of urbanization at the catchment Scale. J. Hydrol. 2018, 559, 774–786. [Google Scholar] [CrossRef] [Green Version]
- Ebodé, V.B.; Mahé, G.; Amoussou, E. Changement climatique dans le bassin versant de l′Ogooué: Évolution récente et impact sur les écoulements. Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 247–253. [Google Scholar] [CrossRef]
- Larbi, I.; Hountondjic, F.C.; Dotse, S.Q.; Mama, D.; Nyamekyee, C.; Adeyerif, O.E.; Koubodanab, H.D.; Odoomi, P.R.; Asarej, Y.M. Local climate change projections and impact on the surface hydrology in the Vea catchment, West Africa. Hydrol. Res. 2021, 52, 6. [Google Scholar] [CrossRef]
- Gibson, C.A.; Meyer, J.L.; Poff, L.E.; Georgakakos, A. Flow regime alterations under changing climate in two river basins: Implications for freshwater ecosystems. River Res. Appl. 2005, 21, 849–864. [Google Scholar] [CrossRef]
- Salavati, B. Impact de l′Urbanisation sur la Réponse Hydrologique des Bassins Versants Urbains. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France, 2015. [Google Scholar]
- Hadour, A.; Meddi, M.; Mahé, G. Effects of Climate Change and Human Action on the Decrease of Sediment Discharge to the Coast: An Example of the Largest Wadi in the Maghreb. Int. J. Sediment Res. 2021, 36, 268–278. [Google Scholar] [CrossRef]
- Mzava, P.; Valimbab, P.; Nobertb, J. Quantitative analysis of the impacts of climate and land-cover changes on urban flood runoffs: A case of Dar es Salaam, Tanzania. J. Water Clim. Change 2021, 12, 2835–2853. [Google Scholar] [CrossRef]
- Tian, J.; Guo, S.; Yin, J.; Pan, Z.; Xiong, F.; He, S. Quantifying both climate and land use/cover changes on runoff variation in Han River basin. China Front. Earth Sci. 2022. [Google Scholar] [CrossRef]
- Onyutha, C.; Nyesigire, R.; Nakagiri, A. Contributions of Human Activities and Climatic Variability to Changes in River Rwizi Flows in Uganda, East Africa. Hydrology 2021, 8, 145. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, M.; Xie, Z.; Li, J.; Ma, M.; Lai, P.; Wang, J. Quantifying the Contributions of Climate Change and Human Activities toWater Volume in Lake Qinghai, China. Remote Sens. 2022, 14, 99. [Google Scholar] [CrossRef]
- Idrissou, M.; Diekkrüger, B.; Tischbein, B.; Op de Hipt, F.; Näschen, K.; Poméon, T.; Yira, Y.; Ibrahim, B. Modeling the Impact of Climate and Land Use/Land Cover Change onWater Availability in an Inland Valley Catchment in Burkina Faso. Hydrology 2022, 9, 12. [Google Scholar] [CrossRef]
- Yira, Y.; Diekkrüger, B.; Steup, G.; Aymar, Y.B. Impact of climate change on hydrological conditions in a tropical West African catchment using an ensemble of climate simulations. Hydrol. Earth Syst. Sci. 2017, 21, 2143–2161. [Google Scholar] [CrossRef] [Green Version]
- Namugize, J.N.; Jewitt, J.; Graham, M. Effects of land use and land cover changes on water quality in the Umngeni river catchment, South Africa. Phys. Chem. Earth Parts A/B/C 2018, 105, 247–264. [Google Scholar] [CrossRef]
- Nonki, R.M.; Lenouo, A.; Lennard, C.J.; Tchawoua, C. Assessing climate change impacts on water resources in the Benue River Basin, Northern Cameroon. Environ. Earth Sci. 2019, 78, 606. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Gregorio, J.; Rios, A.; Alonso, J.; Chreties, C.; Fossati, M. Influence of land use/land cover on surface-water quality of Santa Lucìa river, Uruguay. Sustainability 2020, 12, 4692. [Google Scholar] [CrossRef]
- Getahun, Y.S.; Li, M.H.; Chen, P.Y. Assessing impact of climate change on hydrology of Melka Kuntrie Subbasin, Ethiopia with Ar4 and Ar5 projections. Water 2020, 12, 1308. [Google Scholar] [CrossRef]
- L’Hôte, Y.; Mahé, G.; Somé, B. The 1990s rainfall in the Sahel: The third driest decade since the beginning of the century. Reply to discussion. Hydrol. Sci. J. 2003, 48, 493–496. [Google Scholar] [CrossRef] [Green Version]
- Sarr, M.A.; Zoromé, M.; Seidou, O.; Bryant, C.R.; Gachon, P. Recent trends in selected extreme precipitation indices in Senegal—A changepoint approach. J. Hydrol. 2013, 505, 326–334. [Google Scholar] [CrossRef]
- Cisse, M.T.; Sambou, S.; Dieme, Y.; Diatta, C.; Bop, M. Analyse des écoulements dans le bassin du fleuve Sénégal de 1960 à 2008. Revue Sci. Eau 2014, 27, 167–187. [Google Scholar] [CrossRef] [Green Version]
- Nka, N.B.; Oudin, L.; Karambiri, H.; Paturel, J.E.; Ribstein, P. Trends in floods in West Africa: Analysis based on 11 catchments in the region. Hydrol. Earth Syst. Sci. 2015, 19, 4707–4719. [Google Scholar] [CrossRef] [Green Version]
- Bodian, A.; Diop, L.; Panthou, G.; Dacosta, H.; Deme, A.; Dezetter, A.; Ndiaye, P.M.; Diouf, I.; Vischel, T. Recent Trend in Hydroclimatic Conditions in the Senegal River Basin. Water 2020, 12, 436. [Google Scholar] [CrossRef] [Green Version]
- Buisson, A. La grande saison sèche 1985 au Gabon. Situation climatique en Afrique intertropicale. Météorologie 1985, 15, 5–13. [Google Scholar]
- Kpoumié, A.; Ngouh, A.N.; Mfonka, Z.; Nsangou, D.; Bustillo, V.; Ndam, N.J.; Ekodeck, G.E. Spatio-temporal assessing rainfall and dam impacts on surface runoff in the Sanaga river basin (transition tropical zone in central part of Cameroon). Sustain. Water Resour. Manag. 2022, 8, 26. [Google Scholar] [CrossRef]
- Liénou, G.; Mahé, G.; Paturel, J.E.; Servat, E.; Sighomnou, D.; Ekodeck, G.E.; Dezetter, A.; Dieulin, C. Evolution des régimes hydrologiques en région équatoriale camerounaise: Un impact de la variabilité climatique en zone équatoriale? Hydrol. Sci. J. 2008, 53, 789–801. [Google Scholar] [CrossRef]
- Kouassi, A. Caractérisation d’une Modification Eventuelle de la Relation Pluie-Débit et ses Impacts Sur Les Ressources en eau en Afrique de l’Ouest: Cas du Bassin Versant du N’zi (Bandama) en Côte d’Ivoire. Ph.D. Thesis, Université de Cocody, Abidjan, Côte d’Ivoire, 2007. [Google Scholar]
- Ebodé, V.B.; Mahé, G.; Dzana, J.G.; Amougou, J.A. Anthropization and Climate Change: Impact on the Discharges of Forest Watersheds in Central Africa. Water 2020, 12, 2718. [Google Scholar] [CrossRef]
- Ewane, E.B.; Lee, H.H. Assessing land use/land cover change impacts on the hydrology of Nyong River Basin, Cameroon. J. Mt. Sci. 2020, 17, 50–67. [Google Scholar] [CrossRef]
- BUCREP. Rapport de Présentation des Résultats Définitifs du Recensement de la Population en 2005; BUCREP: Yaoundé, Cameroon, 2011. [Google Scholar]
- Nkiaka, E.; Nawaz, N.R.; Lovett, J.C. Using self-organizing maps to infill missing data in hydro-meteorological time series from the Logone catchment, Lake Chad basin. Environ. Monit. Assess. 2016, 188, 400. [Google Scholar] [CrossRef] [Green Version]
- Olivry, J.C. Fleuves et Rivieres du Cameroun; MESIRES-ORSTOM: Paris, France, 1986. [Google Scholar]
- Letouzey, R. Notice de la Carte Phytogéographique du Cameroun au 1/500000; Institut de la Carte Internationale de la Végétation: Toulouse, France, 1985. [Google Scholar]
- Bush, E.R.; Jeffery, K.; Bunnefeld, N.; Tutin, C.; Musgrave, R.; Moussavou, G.; Mihindou, V.; Malhi, Y.; Lehmann, D.; Edzang, N.J.; et al. Rare ground data confirm significant warming and drying in western equatorial Africa. PeerJ 2020, 8, e8732. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Man–Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. Hyrdol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Richter, B.D.; Baumgartner, J.V.; Braun, D.P.; Powell, J. A spatial assessment of hydrologic alteration within river network. Regul. Rivers Res. Manag. 1998, 39, 329–340. [Google Scholar] [CrossRef]
- Bogning, S.; Frappart, F.; Paris, A.; Blarel, F.; Ninõ, F.; Picart, S.S.; Lanet, P.; Seyler, F.; Mahé, G.; Onguene, R.; et al. Hydro-climatology study of the Ogooué River basin using hydrological modeling and satellite altimetry. Adv. Space Res. 2020, 68, 672–690. [Google Scholar] [CrossRef]
- Conway, D.P.; Persechino, A.; Ardoin–Bardin, S.; Hamandawana, H.; Dieulin, C.; Mahé, G. Rainfall and river flow variability in sub-saharan Africa during the 20th century. J. Hydrom. 2009, 10, 41–59. [Google Scholar] [CrossRef]
- Wang, F.; Shao, W.; Yu, H.; Kan, G.; He, X.; Zhang, D.; Ren, M.; Wang, G. Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Front. Earth Sci. 2020, 8, 14. [Google Scholar] [CrossRef]
- Totaro, V.; Gioia, A.; Iacobellis, V. Numerical investigation on the power of parametric and nonparametric tests for trend detection in annual maximum series. Hydrol. Earth Syst. Sci. 2020, 24, 473–488. [Google Scholar] [CrossRef] [Green Version]
- Njogi, B.A. Modélisation du Fonctionnement Hydrologique et Incidences des Activités Anthropiques sur la Dynamique Spatio-temporelle du Bassin Versant de la Mefou (Cameroun); Mémoire de Master, Université de Liège: Liège, Belgique, 2019. [Google Scholar]
- Ebodé, V.B.; Mahé, G.; Amoussou., E. Impact de la variabilité climatique et de l′anthropisation sur les écoulements de la Bénoué (nord Cameroun). Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 261–267. [Google Scholar] [CrossRef]
- Ewane, E.B. Assessing land use and landscape factors as determinants of water quality trends in Nyong River basin, Cameroon. Environ. Monit. Assess. 2020, 192, 507. [Google Scholar] [CrossRef] [PubMed]
- Tadoum, M.; Tchamba, M.; Tanougong, A. Spatio-Temporal Dynamic of Land Use in the Dja-Odzala-Minkebe Landscape between Cameroon, Congo and Gabon: Influence on the Evolution of Forest Cover in a Context of Cross-Border Cooperation. Open J. For. 2021, 11, 222–237. [Google Scholar] [CrossRef]
- Kergoat, L.; Hiernaux, P.; Baup, F.; Boulain, N.; Cappelaere, B.; Cohard, J.M.; Descroix, L.; Galle, S.; Guilbert, S.; Guichard, F.; et al. Land surface in AMMA: Extending Ecosystem, Energy and Water Balance Studies in Space and Time is Some-Times Surprising. In Proceedings of the 2nd International Conference of AMMA Program, Karlsruhe, Germany, 26–30 November 2007. [Google Scholar]
- Leblanc, M.; Favreau, G.; Massuel, S.; Tweed, S.; Loireau, M.; Cappelaere, B. Land clearance and hydrological change in the Sahel: South-west Niger. Glob. Planet. Chang. 2008, 61, 49–62. [Google Scholar] [CrossRef]
- Gebrelibanos, T.; Assen, M. Land use/land cover dynamics and their driving forces in the Hirmi watershed and its adjacent agro-ecosystem, highlands of Northern Ethiopia. J. Land Use Sci. 2015, 10, 81–94. [Google Scholar] [CrossRef]
- Belay, T.; Mengistu, D.A. Land use and land cover dynamics and drivers in the Muga watershed, Upper Blue Nile basin, Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 15, 100249. [Google Scholar] [CrossRef]
- Dzana, J.G.; Amougou, J.A.; Onana, V. Modélisation spatiale des facteurs d′aggravation des écoulements liquides à Yaoundé. Application au bassin versant d′Akë. Mosella 2004, 29, 78–91. [Google Scholar]
- Schueler, T. The importance of imperviousness. Watershed Prot. Tech. 1994, 1, 100–101. [Google Scholar]
- Booth, D.B.; Jackson, C.R. Urbanization of Aquatic Systems: Degradation Thresholds, Stormwater Detection, and the Limits of Mitigation. J. Am. Water Res. Assoc. 1997, 33, 1077–1090. [Google Scholar] [CrossRef]
- Brun, S.E.; Band, L.E. Simulating runoff behavior in an urbanizing watershed. Comp. Environ. Urban Syst. 2000, 24, 5–22. [Google Scholar] [CrossRef]
- Yang, G.X.; Bowling, L.C.; Cherkauer, K.A.; Pijanowski, B.C.; Niyogi, D. Hydroclimatic Response of Watersheds to Urban Intensity: An Observational and Modeling-Based Analysis for the White River Basin, Indiana. J. Hydrometeorol. 2010, 11, 122–138. [Google Scholar] [CrossRef] [Green Version]
- Amogu, O.; Descroix, L.; Yéro, K.S.; Le Breton, É.; Mamadou, I.; Ali, A.; Vischel, T.; Bader, J.-C.; Moussa, I.B.; Gautier, E.; et al. Increasing river flows in Sahel? Water 2010, 2, 170–199. [Google Scholar] [CrossRef] [Green Version]
- Coe, M.T.; Costa, M.H.; Soares-Filho, B.S. The influence of historical and potential future deforestation on the streamflow of the Amazon river—Land surface processes and atmospheric feedbacks. J. Hydrol. 2009, 369, 165–1774. [Google Scholar] [CrossRef]
- Getachew, H.E.; Melesse, A. The impact of land use change on the hydrology of the Angereb watershed. Int. J. Water Sci. 2013, 1, 1–7. [Google Scholar]
- Dias, L.C.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neil, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu river basin, Central Brazil. J. Hydrol. 2015, 4, 108–122. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Livino, A.; Han, S.C.; Zhang, K.; Briscoe, J.; Kelman, J.; Moorcroft, P. Land cover change explains the increasing discharge of the Paraná river. Reg. Environ. Change 2018, 18, 1871–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amougou, J.A.; Ndam, N.J.R.; Djocgoue, P.F.; Bessoh, B.S. Variabilité climatique et régime hydrologique dans un milieu bioclimatique de transition: Cas du Zbassin fluvial de la Sanaga. Afr. Sci. 2015, 11, N°5. [Google Scholar]
- Sheeder, S.A.; Ross, J.D.; Carlson, T.N. Dual urban and rural hydrograph signals in three small watersheds. J. Am. Water Res. Assoc. 2002, 38, 1027–1040. [Google Scholar] [CrossRef]
- Walsh, C.J.; Kunapo, J. The importance of upland flow paths in determining urban effects on stream ecosystems. J. N. Am. Benthol. Soc. 2009, 28, 977–990. [Google Scholar] [CrossRef]
- Mpakam, H.G.; Ombolo, A.; Samba, A.P.; Bineli, A.E. The Impact of Climate Variabilities on the Water Resources of Nyong River (Cameroon) during Few Anterior Decades. Int. J. Geosci. 2016, 7, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Amoussou, E.; Dorigo, W.; Mahé, G. Flood risk under future climate: Linking extreme value models and flood generating precesses. J. Hydrol. 2014, 519, 549–558. [Google Scholar] [CrossRef]
Periods | Interannual | Years of Rupture | Mean | Cv (%) | |||
---|---|---|---|---|---|---|---|
Mean | Cv (%) | Before | After | Before | After | ||
Precipitation (mm) | |||||||
Olama | |||||||
Annual | 1675 | 8 | 1975–76 | 1769 | 1651 | 4 | 8 |
Spring | 676 | 11 | 1974–75 | 731 | 664 | 9 | 10 |
Summer | 224 | 21 | - | - | - | - | - |
Autumn | 677 | 8 | - | - | - | - | - |
Winter | 98 | 37 | 1975–76 | 124 | 92 | 31 | 36 |
Mbalmayo | |||||||
Annual | 1641 | 8 | 1975–76 | 1701 | 1605 | 8 | 9 |
Spring | 662 | 10 | 1972–73 | 692 | 647 | 13 | 10 |
Summer | 225 | 24 | 1964–65 | 181 | 237 | 32 | 20 |
Autumn | 668 | 9 | 1975–76 | 690 | 655 | 8 | 9 |
Winter | 87 | 41 | 1975–76 | 107 | 74 | 35 | 38 |
Pont So’o | |||||||
Annual | 1800 | 9 | - | - | - | - | - |
Spring | 743 | 10 | - | - | - | - | - |
Summer | 185 | 27 | - | - | - | - | - |
Autumn | 724 | 11 | - | - | - | - | - |
Winter | 148 | 28 | - | - | - | - | - |
Nsimalen | |||||||
Annual | 1767 | 8 | 1975–76 | 1857 | 1739 | 6 | 8 |
Spring | 714 | 11 | - | - | - | - | - |
Summer | 241 | 51 | 1979–80 | 208 | 267 | 48 | 46 |
Autumn | 710 | 19 | 1974–74 | 755 | 698 | 21 | 18 |
Winter | 97 | 55 | 1975–76 | 126 | 87 | 47 | 53 |
Discharges (m3/s) | |||||||
Olama | |||||||
Annual | 204.5 | 21 | 1971–72 | 243 | 197 | 21 | 19 |
Spring | 142.6 | 29 | 1971–72 | 191 | 133 | 24 | 26 |
Summer | 158 | 42 | - | - | - | - | - |
Autumn | 375 | 24 | - | - | - | - | - |
Winter | 148 | 25 | - | - | - | - | - |
Mbalmayo | |||||||
Annual | 139 | 20 | 1973–74 | 151 | 131.6 | 19 | 18 |
Spring | 88 | 31 | 1973–74 | 105 | 76 | 28 | 27 |
Summer | 111 | 31 | - | - | - | - | - |
Autumn | 243 | 23 | - | - | - | - | - |
Winter | 123 | 20 | - | - | - | - | - |
Pont So’o | |||||||
Annual | 34.9 | 31 | - | - | - | - | - |
Spring | 28.7 | 37 | - | - | - | - | - |
Summer | 24 | 55 | - | - | - | - | - |
Autumn | 66.2 | 31 | - | - | - | - | - |
Winter | 19.2 | 31 | - | - | - | - | - |
Nsimalen | |||||||
Annual | 7.5 | 28 | 1985–86 | 5.8 | 9 | 29 | 13 |
Spring | 8.1 | 32 | 1985–86 | 5.7 | 9.6 | 21 | 18 |
Summer | 6 | 42 | 1985–86 | 4.3 | 7 | 63 | 23 |
Autumn | 11 | 24 | 1985–86 | 9.7 | 12.4 | 27 | 16 |
Winter | 5 | 26 | 1985–86 | 4 | 5.6 | 26 | 18 |
Variables | Annual | Spring | Summer | Autumn | Winter | |||||
---|---|---|---|---|---|---|---|---|---|---|
p-Value | Evolution | p-Value | Evolution | p-Value | Evolution | p-Value | Evolution | p-Value | Evolution | |
Olama | ||||||||||
Rainfall | 0.1698 | − | 0.351 | − | 0.2155 | − | 0.633 | − | 0.7998 | − |
Discharges | 0.05106 | − | 0.009002 | − | 0.5657 | − | 0.06542 | − | 0.7125 | − |
Ke | 0.7044 | − | 0.006281 | − | 0.4878 | − | 0.0703 | − | 0.9914 | − |
Mbalmayo | ||||||||||
Rainfall | 0.03547 | − | 0.03877 | − | 0.32 | − | 0.08 | − | 0.147 | − |
Discharges | 0.3782 | − | 0.008722 | − | 0.4246 | − | 0.8688 | − | 0.8418 | − |
Ke | 0.6645 | + | 0.01127 | − | 0.1909 | − | 0.4488 | + | 0.3018 | − |
Nsimalen | ||||||||||
Rainfall | 0.06932 | − | 0.2008 | − | 0.191 | + | 0.2891 | − | 0.882 | − |
Discharges | 0.001171 | + | 0.000278 | + | 0.004695 | + | 0.258117 | + | 0.1514 | + |
Ke | 0.000015 | + | 0.000336 | + | 0.001934 | + | 0.06517 | + | 0.000413 | + |
So’o | ||||||||||
Rainfall | 0.1235 | − | 0.02006 | − | 0.2639 | − | 0.6077 | − | 0.6946 | − |
Discharges | 0.06909 | − | 0.3301 | − | 0.005244 | − | 0.1192 | − | 0.2691 | − |
Ke | 0.381 | − | 0.1834 | − | 0.23 | − | 0.3468 | − | 0.9225 | − |
Variables | Decades | Olama | Mbalmayo | Pont So’o | Nsimalen | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annual | Spring | Summer | Autumn | Winter | Annual | Spring | Summer | Autumn | Winter | Annual | Spring | Summer | Autumn | Winter | Annual | Spring | Summer | Autumn | Winter | ||
Precipitation | 1950 | - | - | - | - | - | 2.5 | 7.3 | −21.5 | 4 | 14.1 | - | - | - | - | - | - | - | - | - | - |
1960 | 6.5 | 9.2 | 3.1 | 3.6 | 16.5 | 3.8 | 2.5 | −2.2 | 4 | 27.3 | - | - | - | - | - | 8 | 4.8 | −5 | 10.5 | 38.4 | |
1970 | 1.1 | 1.4 | −3.7 | 0.4 | 15.9 | 0.9 | 0.1 | 2.8 | −0.2 | 8.9 | - | - | - | - | - | −3 | 3.5 | −24.7 | −7.7 | 20.8 | |
1980 | −2 | −3.2 | 7 | −1.1 | −19.3 | −2.7 | −3.9 | 11.8 | −3.4 | −27.0 | - | - | - | - | - | 4.7 | 2.9 | 30.2 | 4.7 | −30.6 | |
1990 | −2.3 | −5.4 | 5.8 | −0.5 | −11.3 | −2.7 | −6.5 | 11.4 | −1.6 | −19.4 | - | - | - | - | - | −9.7 | −19.4 | 19.3 | −5.6 | −19.5 | |
2000 | 2.4 | 1.9 | −2.5 | 3.6 | 10.1 | 1 | 0.1 | 2 | 1.2 | 1.9 | 3.5 | 1.5 | 1.2 | 5.6 | 6.7 | 5.7 | 8.4 | 18.1 | 0.4 | −1.2 | |
2010 | −2.7 | 1.1 | −9 | −4.1 | −2.9 | −3.0 | 0.4 | −6 | −4.8 | −9.1 | −4 | −1.7 | −1.3 | −6.3 | −7.3 | −12.6 | −11.2 | −15.1 | −9 | −41.2 | |
Discharges | 1950 | - | - | - | - | - | −5 | 9 | −0.5 | −14.4 | −4.3 | - | - | - | - | - | |||||
1960 | 15.1 | 37.9 | 34.2 | 3.3 | 16.1 | 17.6 | 25.9 | 20.4 | 12.7 | 15.9 | - | - | - | - | - | −18.7 | −29.8 | −35.7 | −10.4 | −11.7 | |
1970 | −1.7 | 3.8 | −18.2 | 2.5 | −9.9 | −4.2 | −1 | −14.2 | 0.5 | −12.1 | - | - | - | - | - | −30.4 | −33.5 | −38.8 | −18.2 | −29.3 | |
1980 | 5.6 | 0.4 | 3.5 | 10.7 | 6.2 | 1.5 | −4.5 | −9.3 | 8.4 | −1.5 | - | - | - | - | - | 26.7 | 9.3 | 48.3 | 28.2 | 24.5 | |
1990 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
2000 | −5.3 | −8.6 | 3.7 | −5.5 | −12.3 | −7.4 | −15.6 | −1 | −4.4 | −10.9 | 9.8 | 25.1 | 20.3 | 7.6 | 5.6 | 23.6 | 28.5 | 24.8 | 12.4 | 17.3 | |
2010 | −8.4 | −14.6 | −14.9 | −11.3 | 3.3 | −2.8 | −12.3 | −2.1 | −5.6 | 9.8 | −12.2 | −4.3 | −25.9 | −9.3 | −6.9 | 14.8 | 21.8 | 7.2 | 9.7 | 0.3 | |
Ke | 1950 | - | - | - | - | - | −9.9 | 8.3 | 46.1 | −31.2 | −13.0 | - | - | - | - | - | - | - | - | - | - |
1960 | −15.5 | 28.3 | 20.2 | −8.6 | −27.9 | 7.2 | 24 | 12.7 | 5.2 | 6 | - | - | - | - | - | −55.7 | −29.4 | −40.8 | −18.2 | −61.8 | |
1970 | −17.8 | 2.1 | −11.2 | 7.7 | −28.4 | −7.2 | −3.2 | −18.8 | 16.5 | −11.2 | - | - | - | - | - | −65.4 | −35.7 | −7 | −1 | −76.9 | |
1980 | 83 | 6.3 | −15.6 | 24.2 | 119.2 | 14 | 6.9 | −32.3 | 32.3 | 17 | - | - | - | - | - | −2.1 | −10.2 | −25.6 | 0.3 | −0.2 | |
1990 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | |
2000 | −28.3 | −9.9 | 3.7 | −16 | −38.3 | −13.8 | −16.1 | −11.2 | −10.5 | −13.9 | 4.3 | 12.2 | 11.5 | 2.1 | 0.1 | −4.4 | 24.6 | 17.3 | 6.8 | −8.9 | |
2010 | −14.9 | −14 | 7.2 | −12.9 | −18.9 | 9.9 | −14.0 | 7.6 | −8.4 | 18 | −5.2 | −15.2 | −14.2 | −2.4 | −0.2 | 137.2 | 43.7 | 41.2 | 10.7 | 161.2 |
Indices | Annual | Spring | Summer | Autumn | Winter |
---|---|---|---|---|---|
DMI | −0.23 | −0.09 | 0.09 | −0.23 | −0.02 |
MEI | −0.03 | −0.11 | −0.16 | −0.1 | 0.11 |
NAO | −0.04 | 0.05 | 0.2 | −0.02 | −0.24 |
NATL | −0.17 | −0.56 | −0.09 | −0.11 | 0.53 |
SATL | 0 | −0.08 | 0.14 | −0.12 | 0.36 |
SOI | 0.21 | −0.04 | 0.1 | 0.16 | 0.55 |
NATL&Rainfall (Spring) | NATL&Rainfall (Winter) | SOI&Rainfall (Winter) | ||||||
---|---|---|---|---|---|---|---|---|
NY | NYOS | % | NY | NYSS | % | NY | NYSS | % |
35 | 26 | 74 | 35 | 24 | 69 | 68 | 38 | 56 |
IHA Statistics | Means (m3/s) | Cv (%) | Change | |||
---|---|---|---|---|---|---|
Before Rupture | After Rupture | Before Rupture | After Rupture | m3/s | % | |
Olama | ||||||
Minimum flows | ||||||
1-day minimum | 47.1 | 37.9 | 65.9 | 141.6 | −9.2 | −19.6 |
3-day minimum | 52.5 | 38.6 | 52.3 | 140.7 | −13.9 | −26.5 |
7-day minimum | 57.3 | 40.1 | 51.9 | 136.4 | −17.2 | −29.9 |
30-day minimum | 69 | 47.6 | 46.9 | 113.6 | −21.4 | −31 |
90-day minimum | 101.3 | 70.4 | 33.2 | 72.9 | −30.9 | −30.5 |
Maximum flows | ||||||
1-day maximum | 622.1 | 571.2 | 22.2 | 22.8 | −50.9 | −8.2 |
3-day maximum | 618.1 | 565.9 | 22.8 | 23.1 | −52.2 | −8.4 |
7-day maximum | 609 | 557 | 23.6 | 23.1 | −52 | −8.5 |
30-day maximum | 543.7 | 504.4 | 24.5 | 23.4 | −39.3 | −7.2 |
90-day maximum | 424.4 | 385.5 | 22.8 | 22.9 | −38.9 | −9.2 |
Average Julian dates | ||||||
of minimum | 62 | 67 | ||||
of maximum | 310 | 307 | ||||
Mbalmayo | ||||||
Minimum flows | ||||||
1-day minimum | 25.5 | 17.9 | 0.30 | 0.41 | −7.6 | −29.7 |
3-day minimum | 26.2 | 18.2 | 0.30 | 0.41 | −8 | −30.6 |
7-day minimum | 27.8 | 19.4 | 0.30 | 0.38 | −8.4 | −30.5 |
30-day minimum | 41.5 | 26.5 | 0.28 | 0.36 | −15 | −36.3 |
90-day minimum | 82.9 | 58.6 | 0.31 | 0.29 | −24.4 | −29.4 |
Maximum flows | ||||||
1-day maximum | 366.9 | 366.6 | 0.26 | 0.23 | −0.3 | −0.08 |
3-day maximum | 363.6 | 365.6 | 0.26 | 0.23 | 2 | 0.6 |
7-day maximum | 361.2 | 362.5 | 0.26 | 0.23 | 1.3 | 0.4 |
30-day maximum | 340.8 | 338.2 | 0.26 | 0.25 | −2.6 | −0.8 |
90-day maximum | 274 | 271.7 | 0.25 | 0.25 | −2.3 | −0.8 |
Average Julian dates | ||||||
of minimum | 61 | 67 | ||||
of maximum | 318 | 309 | ||||
Nsimalen | ||||||
Minimum flows | ||||||
1-day minimum | 1.5 | 2.6 | 0.33 | 0.34 | +1.1 | +73.3 |
3-day minimum | 1.6 | 2.9 | 0.27 | 0.31 | +1.3 | +81.2 |
7-day minimum | 1.7 | 3.1 | 0.25 | 0.29 | +1.4 | +82.3 |
30-day minimum | 2.3 | 3.9 | 0.27 | 0.28 | +1.6 | +69.5 |
90-day minimum | 3.5 | 5.5 | 0.27 | 0.22 | +2 | +57.1 |
Maximum flows | ||||||
1-day maximum | 16.4 | 23.1 | 0.31 | 0.19 | +6.7 | +40.8 |
3-day maximum | 15.3 | 20.3 | 0.31 | 0.13 | +5 | +32.6 |
7-day maximum | 14.1 | 18.5 | 0.32 | 0.12 | +4.4 | +31.2 |
30-day maximum | 11.7 | 15.8 | 0.35 | 0.14 | +4.1 | +35 |
90-day maximum | 8.8 | 12.9 | 0.34 | 0.19 | +4.1 | +46.5 |
Average Julian dates | ||||||
of minimum | 88 | 71 | ||||
of maximum | 302 | 180 |
Land Use Modes | Area Occupied in the Basin (km2) | Evolution between 1973 and 2018 | |||
---|---|---|---|---|---|
1973 | 2000 | 2018 | km2 | % | |
Nyong at Mbalmayo | |||||
Built and road | 77.6 | 177 | 250.5 | +172.9 | +222.8 |
Bare soil, cultivated area, savannah and young fallow land | 272.1 | 658.7 | 1405 | +1132.9 | +416.3 |
Water | 143.9 | 11 | 8.6 | −135.3 | −1573.2 |
Secondary forest and old fallow land | 1671.2 | 3062 | 4391 | +2719.8 | +162.7 |
Undegraded and slightly degraded forest | 10340.2 | 8917 | 7100.9 | −3239.3 | −31.3 |
Swampy forest | 1833 | 1510 | 1182 | −651 | −35.5 |
Mefou at Nsimalen | |||||
Built and road | 21.6 | 117.6 | 167.8 | +146.2 | +676.9 |
Bare soil, cultivated area, savannah and young fallow land | 24.5 | 37.8 | 98.1 | +73.6 | +300.4 |
Water | 1.1 | 1 | 0.9 | −0.2 | −22.2 |
Secondary forest and old fallow land | 168.8 | 116.8 | 86.2 | −82.6 | −48.9 |
Undegraded and slightly degraded forest | 150.4 | 130,4 | 61.7 | −88.7 | −59 |
Swampy forest | 61.6 | 24.6 | 13.3 | −48.3 | −363.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebodé, V.B.; Braun, J.J.; Nnomo, B.N.; Mahé, G.; Nkiaka, E.; Riotte, J. Impact of Rainfall Variability and Land Use Change on River Discharge in South Cameroon. Water 2022, 14, 941. https://doi.org/10.3390/w14060941
Ebodé VB, Braun JJ, Nnomo BN, Mahé G, Nkiaka E, Riotte J. Impact of Rainfall Variability and Land Use Change on River Discharge in South Cameroon. Water. 2022; 14(6):941. https://doi.org/10.3390/w14060941
Chicago/Turabian StyleEbodé, Valentin Brice, Jean Jacques Braun, Bernadette Nka Nnomo, Gil Mahé, Elias Nkiaka, and Jean Riotte. 2022. "Impact of Rainfall Variability and Land Use Change on River Discharge in South Cameroon" Water 14, no. 6: 941. https://doi.org/10.3390/w14060941
APA StyleEbodé, V. B., Braun, J. J., Nnomo, B. N., Mahé, G., Nkiaka, E., & Riotte, J. (2022). Impact of Rainfall Variability and Land Use Change on River Discharge in South Cameroon. Water, 14(6), 941. https://doi.org/10.3390/w14060941