Potential of the Coupled WRF/WRF-Hydro Modeling System for Flood Forecasting in the Ouémé River (West Africa)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Observation Datasets
2.2. Experimental Design of the Weather Research and Forecasting (WRF) and Coupled WRF/WRF-Hydro Model
2.3. Calibration of WRF-Hydro in Offline Mode
2.4. Evaluation of Model Uncertainty with the Stochastic Kinetic Energy Backscatter Scheme
3. Results and Discussion
3.1. Evaluation of WRF-Only Precipitation
3.2. Calibration and Evaluation of WRF-Hydro Offline
3.3. Evaluation of the Coupled Model WRF-H
3.3.1. Precipitation Simulations
3.3.2. Discharge Simulations
3.4. Evaluation of the Soil Water Content
3.5. Evaluation of Uncertainty of WRF-H
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Hounkpè, J.; Diekkrüger, B.; Badou, D.F.; Afouda, A.A. Non-Stationary Flood Frequency Analysis in the Ouémé River Basin, Benin Republic. Hydrology 2015, 2, 210–229. [Google Scholar] [CrossRef] [Green Version]
- Ryu, Y.; Lim, Y.-J.; Ji, H.-S.; Park, H.-H.; Chang, E.-C.; Kim, B.-J. Applying a coupled hydrometeorological simulation system to flash flood forecasting over the Korean Peninsula. Asia Pacific J. Atmos. Sci. 2017, 53, 421–430. [Google Scholar] [CrossRef]
- UNHCR. 2010. Le Monde Afrique. Available online: https://www.lemonde.fr/afrique/article/2010/10/22/680-000-personnes-touchees-par-les-inondations-au-benin_1429957_3212.html (accessed on 13 December 2018).
- Nka, B.N.; Oudin, L.; Karambiri, H.; Paturel, J.E.; Ribstein, P. Trends in West African floods: A comparative analysis with rainfall and vegetation indices. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 5083–5121. [Google Scholar] [CrossRef]
- Mohammed, K. Comparative Study of Performance for Real-Time Flash Flood Forecasting in the Upper Meghna Basin. Master’s Thesis, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2017. [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Anderson, M.G.; Burt, T.P. Modelling strategies. In Hydrological Forecasting; Anderson, M.G., Burt, T.P., Eds.; John Wiley & Sons: Suffolk, UK, 1985; pp. 1–13. [Google Scholar]
- Wilby, R.L. Contemporary hydrology: Towards holistic environmental science. In Hydrological Modeling in Practice; Watts, G., Ed.; John Wiley & Sons: Chichester, UK, 1997. [Google Scholar]
- Kodja, D.J.; Quenum, G.M.L.D.; Mahe, G.; Paturel, J.-E.; Boko, M. Indicators of Hydroclimatic Extreme Hazards to Flooding in the Ouémé Watershed in Bénin Investigation on Climate Extreme Events in Africa View Project 4th FRIEND/IAHS International Conference on the Hydrology of African Large River Basins View Project. Available online: https://www.researchgate.net/publication/344340892 (accessed on 21 June 2021).
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: 1; 2019; pp. 4171–4186, EM-DAT. Available online: https://www.emdat.be/ (accessed on 10 October 2021).
- Agudelo-Otálora, L.M.; Moscoso-Barrera, W.D.; Paipa-Galeano, L.A.; Mesa-Sciarrotta, C. Comparison of physical models and artificial intelligence for prediction of flood levels. Tecnol. Cienc. Del Agua 2018, 9, 209–235. [Google Scholar] [CrossRef]
- Mosavi, A.; Ozturk, P.; Chau, K.-W. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536. [Google Scholar] [CrossRef] [Green Version]
- Kratzert, F.; Klotz, D.; Shalev, G.; Klambauer, G.; Hochreiter, S.; Nearing, G. Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets. Hydrol. Earth Syst. Sci. 2019, 23, 5089–5110. [Google Scholar] [CrossRef] [Green Version]
- Givati, A.; Gochis, D.; Rummler, T.; Kunstmann, H. Comparing One-Way and Two-Way Coupled Hydrometeorological Forecasting Systems for Flood Forecasting in the Mediterranean Region. Hydrology 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Givati, A.; Lynn, B.; Liu, Y.; Rimmer, A. Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River. J. Appl. Meteorol. Clim. 2011, 51, 285–299. [Google Scholar] [CrossRef]
- Fiori, E.; Comellas, A.; Molini, L.; Rebora, N.; Siccardi, F.; Gochis, D.; Tanelli, S.; Parodi, A. Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case. Atmos. Res. 2013, 138, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Kerandi, N.M.; Laux, P.; Arnault, J.; Kunstmann, H. Performance of the WRF model to simulate the seasonal and interannual variability of hydrometeorological variables in East Africa: A case study for the Tana River basin in Kenya. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2016, 130, 401–418. [Google Scholar] [CrossRef] [Green Version]
- Igri, P.M.; Tanessong, R.S.; Vondou, D.A.; Panda, J.; Garba, A.; Mkankam, F.K.; Kamga, A. Assessing the performance of WRF model in predicting high-impact weather conditions over Central and Western Africa: An ensemble-based approach. Nat. Hazards 2018, 93, 1565–1587. [Google Scholar] [CrossRef]
- Liu, J.; Bray, M.; Han, D. Sensitivity of the Weather Research and Forecasting (WRF) model to downscaling ratios and storm types in rainfall simulation. Hydrol. Process. 2011, 26, 3012–3031. [Google Scholar] [CrossRef]
- Uribe, I.M.; Lugo-Morin, D.R. Performance of the WRF model with different physical parameterizations in the precipitation simulation of the state of Puebla. Atmósfera 2020, 33, 357–383. [Google Scholar] [CrossRef]
- Bouilloud, L.; Chancibault, K.; Vincendon, B.; Ducrocq, V.; Habets, F.; Saulnier, G.-M.; Anquetin, S.; Martin, E.; Noilhan, J. Coupling the ISBA Land Surface Model and the TOPMODEL Hydrological Model for Mediterranean Flash-Flood Forecasting: Description, Calibration, and Validation. J. Hydrometeorol. 2010, 11, 315–333. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Seuffert, G.; Gross, P.; Simmer, C.; Wood, E.F. The Influence of Hydrologic Modeling on the Predicted Local Weather: Two-Way Coupling of a Mesoscale Weather Prediction Model and a Land Surface Hydrologic Model. J. Hydrometeorol. 2002, 3, 505–523. [Google Scholar] [CrossRef]
- Jasper, K.; Gurtz, J.; Lang, H. Advanced flood forecasting in Alpine watersheds by coupling meteorological observations and forecasts with a distributed hydrological model. J. Hydrol. 2002, 267, 40–52. [Google Scholar] [CrossRef]
- Marty, R.; Zin, I.; Obled, C. Sensitivity of hydrological ensemble forecasts to different sources and temporal resolutions of probabilistic quantitative precipitation forecasts: Flash flood case studies in the Cévennes-Vivarais region (Southern France). Hydrol. Process. 2012, 27, 33–44. [Google Scholar] [CrossRef]
- Moreno, H.A.; Vivoni, E.R.; Gochis, D.J. Limits to Flood Forecasting in the Colorado Front Range for Two Summer Convection Periods Using Radar Nowcasting and a Distributed Hydrologic Model. J. Hydrometeorol. 2013, 14, 1075–1097. [Google Scholar] [CrossRef]
- Zabel, F.; Mauser, W. 2-way coupling the hydrological land surface model PROMET with the regional climate model MM5. Hydrol. Earth Syst. Sci. 2013, 17, 1705–1714. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S.; Fersch, B.; Yuan, F.; Yu, Z.; Kunstmann, H. Fully coupled atmospheric-hydrological modeling at regional and long-term scales: Development, application, and analysis of WRF-HMS. Water Resour. Res. 2016, 52, 3187–3211. [Google Scholar] [CrossRef] [Green Version]
- Senatore, A.; Mendicino, G.; Gochis, D.J.; Yu, W.; Yates, D.N.; Kunstmann, H. Fully coupled atmosphere-hydrology simulations for the central Mediterranean: Impact of enhanced hydrological parameterization for short and long time scales. J. Adv. Model. Earth Syst. 2015, 7, 1693–1715. [Google Scholar] [CrossRef]
- Errico, R.M.; Langland, R.; Baumhefner, D.P. The workshop in atmospheric predictability. Bull. Am. Meteorol. Soc. 2002, 83, 1341–1343. [Google Scholar]
- Zhang, Z.; Arnault, J.; Laux, P.; Ma, N.; Wei, J.; Shang, S.; Kunstmann, H. Convection-permitting fully coupled WRF-Hydro ensemble simulations in high mountain environment: Impact of boundary layer- and lateral flow parameterizations on land–atmosphere interactions. Clim. Dyn. 2021, 1–22. [Google Scholar] [CrossRef]
- Berner, J.; Shutts, G.J.; Leutbecher, M.; Palmer, T. A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System. J. Atmos. Sci. 2009, 66, 603–626. [Google Scholar] [CrossRef]
- Le Barbé, L.; Alé, G.; Texier, H. Les Ressources en Eaux Superficielles de la République du Bénin; Monographies Hydrologiques; ORSTOM: Paris, France, 1993; 540p, ISBN 2-7099-1168-X. ISSN 0335-6906. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2; Tech. Note NCAR/TN-4681STR; National Center For Atmospheric Research: Boulder, CO, USA, 2005; 101p. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 2008, 227, 3465–3485. [Google Scholar] [CrossRef]
- Gochis, D.; Mc Creight, J.; Yu, W.; Dugger, A.; Sampson, K.; Yates, D.; Wood, A.; Clark, M.; Rasmussen, R. Multi-Scale Water Cycle Predictions Using the Community WRF-Hydro Modeling System; NCAR: Boulder, CO, USA, 2015; Available online: http://www.ral.ucar.edu/projects/wrf_hydro/ (accessed on 1 March 2022).
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather. Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Pleim, J.E. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Pleim, J.E. A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part II: Application and Evaluation in a Mesoscale Meteorological Model. J. Appl. Meteorol. Clim. 2007, 46, 1396–1409. [Google Scholar] [CrossRef] [Green Version]
- Kerandi, N.; Arnault, J.; Laux, P.; Wagner, S.; Kitheka, J.; Kunstmann, H. Joint atmospheric-terrestrial water balances for East Africa: A WRF-Hydro case study for the upper Tana River basin. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2017, 131, 1337–1355. [Google Scholar] [CrossRef] [Green Version]
- Arnault, J.; Wagner, S.; Rummler, T.; Fersch, B.; Bliefernicht, J.; Andresen, S.; Kunstmann, H. Role of Runoff–Infiltration Partitioning and Resolved Overland Flow on Land–Atmosphere Feedbacks: A Case Study with the WRF-Hydro Coupled Modeling System for West Africa. J. Hydrometeorol. 2016, 17, 1489–1516. [Google Scholar] [CrossRef]
- Yucel, I.; Onen, A.; Yilmaz, K.K.; Gochis, D. Calibration and evaluation of a flood forecasting system: Utility of numerical weather prediction model, data assimilation and satellite-based rainfall. J. Hydrol. 2015, 523, 49–66. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Arnold, J.G.; van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Berner, J.; Fossell, K.R.; Ha, S.Y.; Hacker, J.P.; Snyder, C. Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. Mon. Weather. Rev. 2015, 143, 1295–1320. [Google Scholar] [CrossRef]
- Shutts, G. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Q. J. R. Meteorol. Soc. 2005, 131, 3079–3102. [Google Scholar] [CrossRef] [Green Version]
- Leutbecher, M.; Lock, S.; Ollinaho, P.; Lang, S.; Balsamo, G.; Bechtold, P.; Bonavita, M.; Christensen, H.M.; Diamantakis, M.; Dutra, E.; et al. Stochastic representations of model uncertainties at ECMWF: State of the art and future vision. Q. J. R. Meteorol. Soc. 2017, 143, 2315–2339. [Google Scholar] [CrossRef]
- Judt, F.; Chen, S.S. Predictability and Dynamics of Tropical Cyclone Rapid Intensification Deduced from High-Resolution Stochastic Ensembles. Mon. Weather Rev. 2016, 144, 4395–4420. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New Global Hydrography Derived From Spaceborne Elevation Data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Naabil, E.; Lamptey, B.; Arnault, J.; Olufayo, A.; Kunstmann, H. Water resources management using the WRF-Hydro modelling system: Case-study of the Tono dam in West Africa. J. Hydrol. Reg. Stud. 2017, 12, 196–209. [Google Scholar] [CrossRef]
- Zhang, Z.; Arnault, J.; Wagner, S.; Laux, P.; Kunstmann, H. Impact of Lateral Terrestrial Water Flow on Land-Atmosphere Interactions in the Heihe River Basin in China: Fully Coupled Modeling and Precipitation Recycling Analysis. J. Geophys. Res. Atmos. 2019, 124, 8401–8423. [Google Scholar] [CrossRef]
- Klein, C.; Heinzeller, D.; Bliefernicht, J.; Kunstmann, H. Variability of West African monsoon patterns generated by a WRF multi-physics ensemble. Clim. Dyn. 2015, 45, 2733–2755. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.A.; Gruber, A.; De Jeu, R.A.M.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.M.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- Wagner, W.; Dorigo, W.; de Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 7, 315–321. [Google Scholar] [CrossRef]
- Arnault, J.; Fersch, B.; Rummler, T.; Zhang, Z.; Quenum, G.M.; Wei, J.; Graf, M.; Laux, P.; Kunstmann, H. Lateral terrestrial water flow contribution to summer precipitation at continental scale–A comparison between Europe and West Africa with WRF-Hydro-tag ensembles. Hydrol. Processes 2021, 35, e14183. [Google Scholar] [CrossRef]
- Romine, G.S.; Schwartz, C.S.; Berner, J.; Fossell, K.R.; Snyder, C.; Anderson, J.L.; Weisman, M.L. Representing Forecast Error in a Convection-Permitting Ensemble System. Mon. Weather Rev. 2014, 142, 4519–4541. [Google Scholar] [CrossRef] [Green Version]
- Duda, J.D.; Wang, X.; Kong, F.; Xue, M.; Berner, J. Impact of a Stochastic Kinetic Energy Backscatter Scheme on Warm Season Convection-Allowing Ensemble Forecasts. Mon. Weather Rev. 2016, 144, 1887–1908. [Google Scholar] [CrossRef]
- Baisya, H.; Pattnaik, S.; Rajesh, P.V. Land surface-precipitation feedback analysis for a landfalling monsoon depression in the Indian region. J. Adv. Model. Earth Syst. 2017, 9, 712–726. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Liu, J.; Li, C.; Liu, Y.; Yu, F.; Yu, E. An Evaluation Study of the Fully Coupled WRF/WRF-Hydro Modeling System for Simulation of Storm Events with Different Rainfall Evenness in Space and Time. Water 2020, 12, 1209. [Google Scholar] [CrossRef]
Subject | Option | Reference |
---|---|---|
Driving data | European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis | ECMWF |
Horizontal resolution | 5 km | |
Horizontal grid | 400 × 400 | |
Integration time step | 30 s | |
Projection resolution | Mercator | |
Vertical discretization | 50 layers | |
Output interval | 24 h for WRF, 30 days for WRF/WRF-Hydro | |
Simulation period | 1st January 2008–31st December 2010 | |
Pression top | 10 hPa | |
Microphysics scheme | Single Moment Microphysics class 5 (WSM5) | [43] |
Longwave radiation | Rapid Radiative Transfer Model (RRTM) | [44] |
Shortwave radiation | Dudhia | [45] |
Planetary boundary lager | Asymmetric Convection Model (ACM2) | [46,47] |
Land use | Moderate Resolution Imaging Spectroradiometer (MODIS) | [42] |
Land surface scheme | Noah Land Surface Model (LSM) | [25] |
REFKDT | |||||||||
Range | 0.1 | 0.5 | 0.8 | 1.0 | 1.5 | 2.0 | 3.0 | 3.5 | 4.5 |
NSE | 0.29 | 0.33 | 0.38 | 0.46 | 0.52 | 0.34 | 0.20 | 0.17 | 0.11 |
Corr | 0.64 | 0.67 | 0.63 | 0.63 | 0.58 | 0.60 | 0.61 | 0.64 | 0.60 |
KGE | 0.38 | 0.39 | 0.41 | 0.47 | 0.49 | 0.32 | 0.09 | 0.07 | 0.07 |
RETDEPRTFAC | |||||||||
Range | 0.0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 | 7.0 | 8.0 |
NSE | 0.50 | 0.52 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 |
Corr | 0.58 | 0.58 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 0.58 | 0.58 |
KGE | 0.48 | 0.49 | 0.49 | 0.49 | 0.48 | 0.46 | 0.47 | 0.46 | 0.46 |
SLOPE | |||||||||
Range | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 |
NSE | 0.52 | 0.61 | 0.60 | 0.50 | 0.37 | 0.20 | 0.12 | −0.03 | −0.23 |
Corr | 0.58 | 0.62 | 0.65 | 0.65 | 0.66 | 0.61 | 0.63 | 0.55 | 0.61 |
KGE | 0.49 | 0.56 | 0.52 | 0.39 | 0.33 | 0.24 | 0.19 | 0.11 | 0.04 |
OVROUGHRTFAC | |||||||||
Range | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
NSE | 0.60 | 0.60 | 0.60 | 0.61 | 0.63 | 0.62 | 0.62 | 0.61 | 0.61 |
Corr | 0.67 | 0.65 | 0.61 | 0.60 | 0.66 | 0.66 | 0.64 | 0.64 | 0.62 |
KGE | 0.56 | 0.56 | 0.57 | 0.60 | 0.60 | 0.60 | 0.59 | 0.56 | 0.56 |
MannN | |||||||||
Range | 0.2 | 0.4 | 0.6 | 0.8 | 1.0 | 1.4 | 1.6 | 1.8 | 2.0 |
NSE | 0.42 | 0.44 | 0.50 | 0.56 | 0.61 | 0.62 | 0.66 | 0.62 | 0.60 |
Corr | 0.66 | 0.63 | 0.73 | 0.68 | 0.70 | 0.72 | 0.67 | 0.69 | 0.67 |
KGE | 0.36 | 0.37 | 0.41 | 0.48 | 0.50 | 0.57 | 0.63 | 0.60 | 0.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quenum, G.M.L.D.; Arnault, J.; Klutse, N.A.B.; Zhang, Z.; Kunstmann, H.; Oguntunde, P.G. Potential of the Coupled WRF/WRF-Hydro Modeling System for Flood Forecasting in the Ouémé River (West Africa). Water 2022, 14, 1192. https://doi.org/10.3390/w14081192
Quenum GMLD, Arnault J, Klutse NAB, Zhang Z, Kunstmann H, Oguntunde PG. Potential of the Coupled WRF/WRF-Hydro Modeling System for Flood Forecasting in the Ouémé River (West Africa). Water. 2022; 14(8):1192. https://doi.org/10.3390/w14081192
Chicago/Turabian StyleQuenum, Gandomè Mayeul Leger Davy, Joël Arnault, Nana Ama Browne Klutse, Zhenyu Zhang, Harald Kunstmann, and Philip G. Oguntunde. 2022. "Potential of the Coupled WRF/WRF-Hydro Modeling System for Flood Forecasting in the Ouémé River (West Africa)" Water 14, no. 8: 1192. https://doi.org/10.3390/w14081192
APA StyleQuenum, G. M. L. D., Arnault, J., Klutse, N. A. B., Zhang, Z., Kunstmann, H., & Oguntunde, P. G. (2022). Potential of the Coupled WRF/WRF-Hydro Modeling System for Flood Forecasting in the Ouémé River (West Africa). Water, 14(8), 1192. https://doi.org/10.3390/w14081192