A Review on the Prevalence of Arcobacter in Aquatic Environments
Abstract
:1. Introduction
1.1. Pathogenicity of Arcobacter
1.2. Antimicrobial Resistance of Arcobacter
2. Methods for Detecting Arcobacter
2.1. Methods for Isolating and Cultivating Arcobacter
2.2. Molecular-Based Detection Methods of Arcobacter
3. The Specific Detection of Arcobacter in Animal Feces and Products
4. Specific Detection of Arcobacter in Water Samples
5. Microbial Community Analyses of Arcobacter in Various Samples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vandamme, P.; Falsen, E.; Rossau, R.; Hoste, B.; Segers, P.; Tytgat, R.; De Ley, J. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: Emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 1991, 41, 88–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, W.; Neill, S.; O’Brien, J. Isolation of spirillum/vibrio-like organisms from bovine fetuses. Vet. Rec. 1977, 100, 451–452. [Google Scholar] [CrossRef] [PubMed]
- Collado, L.; Figueras, M.J. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin. Microbiol. Rev. 2011, 24, 174–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, S.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Insights in the pathogenesis and resistance of Arcobacter: A review. Crit. Rev. Microbiol. 2016, 42, 364–383. [Google Scholar] [CrossRef] [PubMed]
- Brückner, V.; Fiebiger, U.; Ignatius, R.; Friesen, J.; Eisenblätter, M.; Höck, M.; Alter, T.; Bereswill, S.; Gölz, G.; Heimesaat, M.M. Prevalence and antimicrobial susceptibility of Arcobacter species in human stool samples derived from out and inpatients and prospective German Arcobacter prevalence study arcopath. Gut Pathog. 2020, 12, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ashbolt, N.J. Microbial contamination of drinking water and human health from community water systems. Curr. Environ. Health Rep. 2015, 2, 95–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fong, T.-T.; Mansfield, L.S.; Wilson, D.L.; Schwab, D.J.; Molloy, S.L.; Rose, J.B. Massive Microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island, Ohio. Environ. Health Perspect. 2007, 115, 856–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalava, K.; Rintala, H.; Ollgren, J.; Maunula, L.; Gomez-Alvarez, V.; Revez, J.; Palander, M.; Antikainen, J.; Kauppinen, A.; Räsänen, P.; et al. Novel microbiological and spatial statistical methods to improve strength of epidemiological evidence in a community-wide waterborne outbreak. PLoS ONE 2014, 9, e104713. [Google Scholar] [CrossRef] [Green Version]
- Kopilović, B.; Ucakar, V.; Koren, N.; Krek, M.; Kraigher, A. Waterborne outbreak of acute gastroenteritis in a costal area in Slovenia in June and July 2008. Eur. Commun. Dis. Bull. 2008, 13, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Jung, Y.T.; Kim, S.; Yoon, J.H. Arcobacter acticola sp. nov., isolated from seawater on the east sea in South Korea. J. Microbiol. 2016, 54, 655–659. [Google Scholar] [CrossRef]
- Sasi Jyothsna, T.S.; Rahul, K.; Ramaprasad, E.V.V.; Sasikala, C.; Ramana, C.V. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int. J. Syst. Evol. Microbiol. 2013, 63, 4619–4625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.H.; Wang, N.; Yuan, X.X.; Chen, X.L.; Zhang, Y.Z.; Song, X.Y. Poseidonibacter antarcticus sp. nov., isolated from Antarctic intertidal sediment. Int. J. Syst. Evol. Microbiol. 2019, 69, 2717–2722. [Google Scholar] [CrossRef] [PubMed]
- On, S.L.W.; Miller, W.G.; Biggs, P.J.; Cornelius, A.J.; Vandamme, P. Aliarcobacter, Halarcobacter, Malaciobacter, Pseudarcobacter and Poseidonibacter are later synonyms of Arcobacter: Transfer of Poseidonibacter parvus, Poseidonibacter antarcticus, ‘Halarcobacter arenosus’, and ‘Aliarcobacter vitoriensis’ to Arcobacter as Arcobacter parvus comb. nov., Arcobacter antarcticus comb. nov., Arcobacter arenosus comb. nov. and Arcobacter vitoriensis comb. nov. Int. J. Syst. Evol. Microbiol. 2021, 71, 005133. [Google Scholar] [CrossRef]
- Levican, A.; Rubio-Arcos, S.; Martinez-Murcia, A.; Collado, L.; Figueras, M.J. Arcobacter ebronensis sp. nov. and Arcobacter aquimarinus sp. nov., two new species isolated from marine environment. Syst. Appl. Microbiol. 2015, 38, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Jeong, J.; Kim, J.H.; Sukhoom, A.; Kim, W. Halarcobacter arenosus sp. nov., isolated from marine sediment. Arch. Microbiol. 2021, 203, 817–822. [Google Scholar] [CrossRef]
- Levican, A.; Collado, L.; Aguilar, C.; Yustes, C.; Diéguez, A.L.; Romalde, J.L.; Figueras, M.J. Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. Syst. Appl. Microbiol. 2012, 35, 133–138. [Google Scholar] [CrossRef]
- Vandamme, P.; Vancanneyt, M.; Pot, B.; Mels, L.; Hoste, B.; Dewettinck, D.; Vlaes, L.; Van den Borre, C.; Higgins, R.; Hommez, J.; et al. Polyphasic taxonomic study of the emended genus Arcobacter with Arcobacter butzleri comb. nov. and Arcobacter skirrowii sp. nov., an aerotolerant bacterium isolated from veterinary specimens. Int. J. Syst. Bacteriol. 1992, 42, 344–356. [Google Scholar] [CrossRef] [Green Version]
- Perez-Cataluña, A.; Salas-Massó, N.; Figueras, M.J. Arcobacter lacus sp. nov. and Arcobacter caeni sp. nov., two novel species isolated from reclaimed water. Int. J. Syst. Evol. Microbiol. 2019, 69, 3326–3331. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cataluña, A.; Salas-Massó, N.; Figueras, M.J. Arcobacter canalis sp. nov., isolated from a water canal contaminated with urban sewage. Int. J. Syst. Evol. Microbiol. 2018, 68, 1258–1264. [Google Scholar] [CrossRef]
- Houf, K.; On, S.L.W.; Coenye, T.; Mast, J.; Van Hoof, J.; Vandamme, P. Arcobacter cibarius sp. nov., isolated from broiler carcasses. Int. J. Syst. Evol. Microbiol. 2005, 55, 713–717. [Google Scholar] [CrossRef] [Green Version]
- Levican, A.; Collado, L.; Figueras, M.J. Arcobacter cloacae sp. nov. and Arcobacter suis sp. nov., two new species isolated from food and sewage. Syst. Appl. Microbiol. 2013, 36, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Collado, L.; Levican, A.; Perez, J.; Figueras, M.J. Arcobacter defluvii sp. nov., isolated from sewage samples. Int. J. Syst. Evol. Microbiol. 2011, 61, 2155–2161. [Google Scholar] [CrossRef] [PubMed]
- Figueras, M.J.; Levican, A.; Collado, L.; Inza, M.I.; Yustes, C. Arcobacter ellisii sp. nov., isolated from mussels. Syst. Appl. Microbiol. 2011, 34, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Whiteduck-Léveillée, K.; Whiteduck-Léveillée, J.; Cloutier, M.; Tambong, J.T.; Xu, R.; Topp, E.; Arts, M.T.; Chao, J.; Adam, Z.; Lévesque, C.A.; et al. Identification, characterization and description of Arcobacter faecis sp. nov., isolated from a human waste septic tank. Syst. Appl. Microbiol. 2016, 39, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Donachie, S.P.; Bowman, J.P.; On, S.L.W.; Alam, M. Arcobacter halophilus sp. nov., the first obligate halophile in the genus Arcobacter. Int. J. Syst. Evol. Microbiol. 2005, 55, 1271–1277. [Google Scholar] [CrossRef]
- Whiteduck-Léveillée, J.; Lapen, D.R.; Whiteduck-Léveillée, K.; Tambong, J.T.; André Lévesque, C.; Cloutier, M.; Topp, E.; Villemur, R.; Chao, J.; Talbot, G.; et al. Arcobacterlanthieri sp. nov., isolated from pig and dairy cattle manure. Int. J. Syst. Evol. Microbiol. 2015, 65, 2709–2716. [Google Scholar] [CrossRef]
- Diéguez, A.L.; Balboa, S.; Magnesen, T.; Romalde, J.L. Arcobacter lekithochrous sp. nov., isolated from a molluscan hatchery. Int. J. Syst. Evol. Microbiol. 2017, 67, 1327–1332. [Google Scholar] [CrossRef]
- Kim, H.M.; Hwang, C.Y.; Cho, B.C. Arcobacter marinus sp. nov. Int. J. Syst. Evol. Microbiol. 2010, 60, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Figueras, M.J.; Collado, L.; Levican, A.; Perez, J.; Solsona, M.J.; Yustes, C. Arcobacter molluscorum sp. nov., a new species isolated from shellfish. Syst. Appl. Microbiol. 2011, 34, 105–109. [Google Scholar] [CrossRef]
- Collado, L.; Cleenwerck, I.; Van Trappen, S.; De Vos, P.; Figueras, M.J. Arcobacter mytili sp. nov., an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. Int. J. Syst. Evol. Microbiol. 2009, 59, 1391–1396. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yu, C.; Wang, X.; Yu, S.; Zhang, X.H. Arcobacter pacificus sp. nov., isolated from seawater of the south pacific Gyre. Int. J. Syst. Evol. Microbiol. 2016, 66, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Baek, M.G.; Shin, S.K.; Yi, H. Poseidonibacter parvus sp. nov., isolated from a squid. Int. J. Syst. Evol. Microbiol. 2021, 71, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Houf, K.; On, S.L.W.; Coenye, T.; Debruyne, L.; De Smet, S.; Vandamme, P. Arcobacter thereius sp. nov., isolated from pigs and ducks. Int. J. Syst. Evol. Microbiol. 2009, 59, 2599–2604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smet, S.; Vandamme, P.; De Zutter, L.; On, S.L.W.; Douidah, L.; Houf, K. Arcobacter trophiarum sp. nov., isolated from fattening pigs. Int. J. Syst. Evol. Microbiol. 2011, 61, 356–361. [Google Scholar] [CrossRef]
- Kerkhof, P.J.; On, S.L.W.; Houf, K. Arcobacter vandammei sp. nov., isolated from the rectal mucus of a healthy pig. Int. J. Syst. Evol. Microbiol. 2021, 71, 005113. [Google Scholar] [CrossRef]
- Alonso, R.; Girbau, C.; Martinez-Malaxetxebarria, I.; Pérez-Cataluña, A.; Salas-Massó, N.; Romalde, J.L.; Figueras, M.J.; Fernandez-Astorga, A. Aliarcobacter vitoriensis sp. nov., isolated from carrot and urban wastewater. Syst. Appl. Microbiol. 2020, 43, 126091. [Google Scholar] [CrossRef]
- Miller, W.G.; Parker, C.T.; Rubenfield, M.; Mendz, G.L.; Wösten, M.M.S.M.; Ussery, D.W.; Stolz, J.F.; Binnewies, T.T.; Hallin, P.F.; Wang, G.; et al. The complete genome sequence and analysis of the Epsilonproteobacterium Arcobacter butzleri. PLoS ONE 2007, 2, e1358. [Google Scholar] [CrossRef] [Green Version]
- Douidah, L.; De Zutter, L.; Baré, J.; De Vos, P.; Vandamme, P.; Vandenberg, O.; Van Den Abeele, A.M.; Houf, K. Occurrence of putative virulence genes in Arcobacter species isolated from humans and animals. J. Clin. Microbiol. 2012, 50, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Levican, A.; Alkeskas, A.; Günter, C.; Forsythe, S.J.; Figueras, M.J. Adherence to and invasion of human intestinal cells by Arcobacter species and their virulence genotypes. Appl. Environ. Microbiol. 2013, 79, 4951–4957. [Google Scholar] [CrossRef] [Green Version]
- Zambri, M.; Cloutier, M.; Adam, Z.; Lapen, D.R.; Wilkes, G.; Sunohara, M.; Topp, E.; Talbot, G.; Khan, I.U.H. Novel virulence, antibiotic resistance and toxin gene-specific PCR-based assays for rapid pathogenicity assessment of Arcobacter faecis and Arcobacter lanthieri. BMC Microbiol. 2019, 19, 11. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Genotypic and phenotypic features of Arcobacter butzleri pathogenicity. Microb. Pathog. 2014, 76, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.; Luís, Â.; Oleastro, M.; Pereira, L.; Domingues, F.C. A meta-analytic perspective on Arcobacter spp. antibiotic resistance. J. Glob. Antimicrob. Resist. 2019, 16, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Atabay, H.I.; Corry, J.E.L. The prevalence of campylobacters and arcobacters in broiler chickens. J. Appl. Microbiol. 1997, 83, 619–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, C.I.; Wesley, I.V.; Maruno, E.A. Detection of Arcobacter spp. in ground pork by modified plating methods. J. Food Prot. 1996, 59, 448–452. [Google Scholar] [CrossRef] [PubMed]
- De Boer, E.; Tilburg, J.J.H.C.; Woodward, D.L.; Lior, H.; Johnson, W.M. A selective medium for the isolation of Arcobacter from meats. Lett. Appl. Microbiol. 1996, 23, 64–66. [Google Scholar] [CrossRef]
- Johnson, L.G.; Murano, E.A. Comparison of three protocols for the isolation of Arcobacter from poultry. J. Food Prot. 1999, 62, 610–614. [Google Scholar] [CrossRef]
- Johnson, L.G.; Murano, E.A. Lack of a cytolethal distending toxin among Arcobacter isolates from various sources. J. Food Prot. 2002, 65, 1789–1795. [Google Scholar] [CrossRef]
- Engberg, J.; On, S.L.W.; Harrington, C.S.; Gerner-Smidt, P. Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for campylobacters. J. Clin. Microbiol. 2000, 38, 286–291. [Google Scholar] [CrossRef]
- Kristensen, J.M.; Nierychlo, M.; Albertsen, M.; Nielsen, P.H. Bacteria from the genus Arcobacter are abundant in effluent from wastewater treatment plants. Appl. Environ. Microbiol. 2020, 86, 1–13. [Google Scholar] [CrossRef]
- Ho, H.; Lipman, L.; Gaastra, W. Arcobacter, What is known and unknown about a potential foodborne zoonotic agent! Vet. Microbiol. 2006, 115, 1–13. [Google Scholar] [CrossRef]
- Shah, A.H.; Saleha, A.A.; Zunita, Z.; Cheah, Y.K.; Murugaiyah, M.; Korejo, N.A. Genetic characterization of Arcobacter isolates from various sources. Vet. Microbiol. 2012, 160, 355–361. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Juarez, O.; Restaino, L. A new method for detection of Arcobacter butzleri, Arcobacter cryaerophilus, and Arcobacter skirrowii using a novel chromogenic agar. J. Food Prot. 2021, 84, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Aydin, F.; Yağiz, A.; Abay, S.; Müştak, H.K.; Diker, K.S. Prevalence of Arcobacter and Campylobacter in beef meat samples and characterization of the recovered isolates. J. Verbrauch. Lebensm. 2020, 15, 15–25. [Google Scholar] [CrossRef]
- Houf, K.; De Zutter, L.; Van Hoof, J.; Vandamme, P. Assessment of the genetic diversity among arcobacters isolated from poultry products by using two PCR-based typing methods. Appl. Environ. Microbiol. 2002, 68, 2172–2178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- On, S.L.W.; Holmes, B.; Sackin, M.J. A Probability matrix for the identification of campylobacters, helicobacters and allied taxa. J. Appl. Bacteriol. 1996, 81, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Houf, K.; Devriese, L.A.; De Zutter, L.; Van Hoof, J.; Vandamme, P. Development of a new protocol for the isolation and quantification of Arcobacter species from poultry products. Int. J. Food Microbiol. 2001, 71, 189–196. [Google Scholar] [CrossRef]
- Bastyns, K.; Cartuyvels, D.; Chapelle, S.; Vandamme, P.; Goossens, H.; De Wachter, R. A Variable 23S rDNA region is a useful discriminating target for genus-specific and species-specific pcr amplification in Arcobacter species. Syst. Appl. Microbiol. 1995, 18, 353–356. [Google Scholar] [CrossRef]
- Harmon, K.M.; Wesley, I. V Identification of Arcobacter isolates by PCR. Lett. Appl. Microbiol. 1996, 23, 241–244. [Google Scholar] [CrossRef]
- Houf, K.; Tutenel, A.; De Zutter, L.; Van Hoof, J.; Vandamme, P. Development of a multiplex PCR assay for the simultaneous detection and identification of Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii. FEMS Microbiol. Lett. 2000, 193, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Pentimalli, D.; Pegels, N.; Garcia, T.; Martín, R.; González, I. Specific PCR detection of Arcobacter butzleri, Arcobacter cryaerophilus, Arcobacter skirrowii, and Arcobacter cibarius in chicken meat. J. Food Prot. 2009, 72, 1491–1495. [Google Scholar] [CrossRef]
- Chinivasagam, H.N.; Corney, B.G.; Wright, L.L.; Diallo, I.S.; Blackall, P.J. Detection of Arcobacter spp. in piggery effluent and effluent-irrigated soils in Southeast Queensland. J. Appl. Microbiol. 2007, 103, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Douidah, L.; De Zutter, L.; Vandamme, P.; Houf, K. Identification of five human and mammal associated Arcobacter species by a novel multiplex-PCR assay. J. Microbiol. Methods 2010, 80, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Traversa, A.; Gallina, S.; Martucci, F.; Boteva, C.; Baioni, E.; Maurella, C.; Chiavacci, L.; Benvenuto, E.; Ferrero, I.; Ferrero, E.; et al. Arcobacter spp. in raw milk from vending machines in piedmont and occurrence of virulence genes in isolates. Ital. J. Food Saf. 2019, 8, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Ghaju Shrestha, R.; Tanaka, Y.; Malla, B.; Tandukar, S.; Bhandari, D.; Inoue, D.; Sei, K.; Sherchand, J.B.; Haramoto, E. Development of a quantitative PCR assay for Arcobacter spp. and its application to environmental water samples. Microbes Environ. 2018, 33, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, I.; Garcia, T.; Antolín, A.; Hernández, P.E.; Martin, R. Development of a combined PCR-culture technique for the rapid detection of Arcobacter spp. in chicken meat. Lett. Appl. Microbiol. 2000, 30, 207–212. [Google Scholar] [CrossRef]
- González, I.; Fernández-Tomé, S.; García, T.; Martín, R. Genus-specific PCR assay for screening Arcobacter spp. in chicken meat. J. Sci. Food Agric. 2014, 94, 1218–1224. [Google Scholar] [CrossRef]
- Webb, A.L.; Taboada, E.N.; Selinger, L.B.; Boras, V.F.; Inglis, G.D. Efficacy of wastewater treatment on Arcobacter butzleri density and strain diversity. Water Res. 2016, 105, 291–296. [Google Scholar] [CrossRef]
- Moreno, Y.; Botella, S.; Alonso, J.L.; Ferrus, M.A.; Hernandez, M.; Hernandez, J. Specific detection of Arcobacter and Campylobacter strains in water and sewage by PCR and fluorescent in situ hybridization. Appl. Environ. Microbiol. 2003, 69, 1181–1186. [Google Scholar] [CrossRef] [Green Version]
- Snaidr, J.; Amann, R.; Huber, I.; Ludwig, W. Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl. Environ. Microbiol. 1997, 63, 2884–2896. [Google Scholar] [CrossRef] [Green Version]
- Kiehlbauch, J.A.; Plikaytis, B.D.; Swaminathan, B.; Cameron, D.N.; Wachsmuth, I.K. Erratum. Restriction fragment length polymorphisms in the ribosomal genes for species identification and subtyping of aerotolerant Campylobacter species. J. Clin. Microbiol. 1991, 29, 2362. [Google Scholar] [CrossRef] [Green Version]
- Tahihra, S.; Rashid, A.L.; Dakuna, I.; Louie, H.; Ng, D.; Vandamme, P.; Johnson, W.; Chan, V.L. Species based on the glyA gene. J. Clin. Microbiol. 2000, 38, 1488–1494. [Google Scholar]
- Abdelbaqi, K.; Buissonniere, A.; Prouzet-Mauleon, V.; Gresser, J.; Wesley, I.; Megraud, F.; Menard, A. Development of a real-time fluorescence resonance energy transfer PCR to detect Arcobacter species. J. Clin. Microbiol. 2007, 45, 3015–3021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brightwell, G.; Mowat, E.; Clemens, R.; Boerema, J.; Pulford, D.J.; On, S.L. Development of a multiplex and real time PCR assay for the specific detection of Arcobacter butzleri and Arcobacter cryaerophilus. J. Microbiol. Methods 2007, 68, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Alispahic, M.; Hummel, K.; Jandreski-Cvetkovic, D.; Nöbauer, K.; Razzazi-Fazeli, E.; Hess, M.; Hess, C. Species-specific identification and differentiation of Arcobacter, Helicobacter and Campylobacter by full-spectral matrix-associated laser desorption/ionization time of flight mass spectrometry analysis. J. Med. Microbiol. 2010, 59, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Harmon, K.M.; Wesley, I.V. Multiplex PCR for the identification of Arcobacter and differentiation of Arcobacter butzleri from other Arcobacters. Vet. Microbiol. 1997, 58, 215–227. [Google Scholar] [CrossRef]
- Cardarelli-Leite, P.; Blom, K.; Patton, C.M.; Nicholson, M.A.; Steigerwalt, A.G.; Hunter, S.B.; Brenner, D.J.; Barrett, T.J.; Swaminathan, B. Rapid identification of Campylobacter species by restriction fragment length polymorphism analysis of a PCR-amplified fragment of the gene coding for 16S rRNA. J. Clin. Microbiol. 1996, 34, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Hurtado, A.; Owen, R.J. A Molecular scheme based on 23S rRNA gene polymorphisms for rapid identification of Campylobacter and Arcobacter species. J. Clin. Microbiol. 1997, 35, 2401–2404. [Google Scholar] [CrossRef] [Green Version]
- Marshall, S.M.; Melito, P.L.; Woodward, D.L.; Johnson, W.M.; Rodgers, F.G.; Mulvey, M.R. Isolates by PCR-restriction fragment length polymorphism analysis of the 16S rRNA gene. Society 1999, 37, 4158–4160. [Google Scholar]
- Kabeya, H.; Kobayashi, Y.; Maruyama, S.; Mikami, T. One-step polymerase chain reaction-based typing of Arcobacter species. Int. J. Food Microbiol. 2002, 81, 163–168. [Google Scholar] [CrossRef]
- Kärenlampi, R.I.; Tolvanen, T.P.; Hänninen, M.L. Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J. Clin. Microbiol. 2004, 42, 5731–5738. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Moreno, Y.; González, R.; Hernández, J.; Ferrús, M.A. Development of a simple and rapid method based on polymerase chain reaction-based restriction fragment length polymorphism analysis to differentiate Helicobacter, Campylobacter, and Arcobacter species. Curr. Microbiol. 2006, 53, 416–421. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.F.; Harrington, C.S.; Kortegaard, H.E.; On, S.L.W. A PCR-DGGE method for detection and identification of Campylobacter, Helicobacter, Arcobacter and related Epsilobacteria and its application to saliva samples from humans and domestic pets. J. Appl. Microbiol. 2007, 103, 2601–2615. [Google Scholar] [CrossRef] [PubMed]
- Figueras, M.J.; Collado, L.; Guarro, J. A new 16S rDNA-RFLP method for the discrimination of the accepted species of Arcobacter. Diagn. Microbiol. Infect. Dis. 2008, 62, 11–15. [Google Scholar] [CrossRef]
- Webb, A.L.; Boras, V.F.; Kruczkiewicz, P.; Selinger, L.B.; Taboada, E.N.; Inglis, G.D. Comparative Detection and quantification of Arcobacter butzleri in stools from diarrheic and nondiarrheic people in Southwestern Alberta, Canada. J. Clin. Microbiol. 2016, 54, 1082–1088. [Google Scholar] [CrossRef] [Green Version]
- Banting, G.S.; Braithwaite, S.; Scott, C.; Kim, J.; Jeon, B.; Ashbolt, N.; Ruecker, N.; Tymensen, L.; Charest, J.; Pintar, K.; et al. Evaluation of various campylobacter-specific quantitative PCR (qPCR) assays for detection and enumeration of Campylobacteraceae in irrigation water and wastewater via a miniaturized most-probable-number-qPCR assay. Appl. Environ. Microbiol. 2016, 82, 4743–4756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collado, L.; Inza, I.; Guarro, J.; Figueras, M.J. Presence of Arcobacter spp. in environmental waters correlates with high levels of fecal pollution. Environ. Microbiol. 2008, 10, 1635–1640. [Google Scholar] [CrossRef]
- González, A.; Botella, S.; Montes, R.M.; Moreno, Y.; Ferrús, M.A. Direct detection and identification of Arcobacter species by multiplex PCR in chicken and wastewater samples from Spain. J. Food Prot. 2007, 70, 341–347. [Google Scholar] [CrossRef]
- Houf, K.; De Smet, S.; Baré, J.; Daminet, S. Dogs as carriers of the emerging pathogen Arcobacter. Vet. Microbiol. 2008, 130, 208–213. [Google Scholar] [CrossRef]
- Kabeya, H.; Maruyama, S.; Morita, Y.; Kubo, M.; Yamamoto, K.; Arai, S.; Izumi, T.; Kobayashi, Y.; Katsube, Y.; Mikami, T. Distribution of Arcobacter species among livestock in Japan. Vet. Microbiol. 2003, 93, 153–158. [Google Scholar] [CrossRef]
- Wesley, I.V.; Wells, S.J.; Harmon, K.M.; Green, A.; Schroeder-Tucker, L.; Glover, M.; Siddique, I. Fecal shedding of Campylobacter and Arcobacter spp. in dairy cattle. Appl. Environ. Microbiol. 2000, 66, 1994–2000. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Animal Waste, Water Quality and Human Health; WHO: Geneva, Switzerland, 2012; Volume 9789241564, ISBN 978-1-78040-123-2. [Google Scholar]
- Pérez-Cataluña, A.; Tapiol, J.; Benavent, C.; Sarvise, C.; Gómez, F.; Martínez, B.; Terron-Puig, M.; Recio, G.; Vilanova, A.; Pujol, I.; et al. Antimicrobial susceptibility, virulence potential and sequence types associated with Arcobacter strains recovered from human faeces. J. Med. Microbiol. 2017, 66, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Ramees, T.P.; Dhama, K.; Karthik, K.; Rathore, R.S.; Kumar, A.; Saminathan, M.; Tiwari, R.; Malik, Y.S.; Singh, R.K. Arcobacter: An emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control—A comprehensive review. Vet. Q. 2017, 37, 136–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uljanovas, D.; Gölz, G.; Brückner, V.; Grineviciene, A.; Tamuleviciene, E.; Alter, T.; Malakauskas, M. Prevalence, antimicrobial susceptibility and virulence gene profiles of Arcobacter species isolated from human stool samples, foods of animal origin, ready-to-eat salad mixes and environmental water. Gut Pathog. 2021, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Van Driessche, E.; Houf, K.; Van Hoof, J.; De Zutter, L.; Vandamme, P. Isolation of Arcobacter species from animal feces. FEMS Microbiol. Lett. 2003, 229, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Ongor, H.; Cetinkaya, B.; Acik, M.N.; Atabay, H.I. Investigation of arcobacters in meat and faecal samples of clinically healthy cattle in Turkey. Lett. Appl. Microbiol. 2004, 38, 339–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarruel-López, A.; Márquez-González, M.; Garay-Martínez, L.E.; Zepeda, H.; Castillo, A.; Mota De La Garza, L.; Murano, E.A.; Torres-Vitela, R. Isolation of Arcobacter spp. from retail meats and cytotoxic effects of isolates against vero cells. J. Food Prot. 2003, 66, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Scullion, R.; Harrington, C.S.; Madden, R.H. Prevalence of Arcobacter spp. in raw milk and retail raw meats in Northern Ireland. J. Food Prot. 2006, 69, 1986–1990. [Google Scholar] [CrossRef]
- Rivas, L.; Fegan, N.; Vanderlinde, P. Isolation and characterisation of Arcobacter butzleri from meat. Int. J. Food Microbiol. 2004, 91, 31–41. [Google Scholar] [CrossRef]
- Kabeya, H.; Maruyama, S.; Morita, Y.; Ohsuga, T.; Ozawa, S.; Kobayashi, Y.; Abe, M.; Katsube, Y.; Mikami, T. Prevalence of Arcobacter species in retail meats and antimicrobial susceptibility of the isolates in Japan. Int. J. Food Microbiol. 2004, 90, 303–308. [Google Scholar] [CrossRef]
- Ohlendorf, D.S.; Murano, E.A. Prevalence of Arcobacter spp. in raw ground pork from several geographical regions according to various isolation methods. J. Food Prot. 2002, 65, 1700–1705. [Google Scholar] [CrossRef]
- Zanetti, F.; Varoli, O.; Stampi, S.; De Luca, G. Prevalence of thermophilic Campylobacter and Arcobacter butzleri in food of animal origin. Int. J. Food Microbiol. 1996, 33, 315–321. [Google Scholar] [CrossRef]
- Harrab, B.; Schwarz, S.; Wenzel, S. Identification and characterization of Arcobacter isolates from broilers by biochemical tests, antimicrobial resistance patterns and plasmid analysis. J. Vet. Med. Ser. B 1998, 45, 87–94. [Google Scholar] [CrossRef]
- Morita, Y.; Maruyama, S.; Kabeya, H.; Boonmar, S.; Nimsuphan, B.; Nagai, A.; Kozawa, K.; Nakajima, T.; Mikami, T.; Kimura, H. Isolation and phylogenetic analysis of Arcobacter spp. in ground chicken meat and environmental water in Japan and Thailand. Microbiol. Immunol. 2004, 48, 527–533. [Google Scholar] [CrossRef] [PubMed]
- Manke, T.R.; Wesley, I.V.; Dickson, J.S.; Harmon, K.M. Prevalence and genetic variability of Arcobacter species in mechanically separated Turkey. J. Food Prot. 1998, 61, 1623–1628. [Google Scholar] [CrossRef] [Green Version]
- Ridsdale, J.A.; Atabay, H.I.; Corry, J.E.L. Prevalence of campylobacters and arcobacters in ducks at the Abattoir. J. Appl. Microbiol. 1998, 85, 567–573. [Google Scholar] [CrossRef]
- Marta, C.; Giovanni, N.; Angela, M.; Loredana, C.; Elisabetta, B.; Laura, D.; Mottola, A.; Di Pinto, A.; Gianfranco, S.; Antonio, P. Large genetic diversity of Arcobacter butzleri isolated from raw milk in southern Italy. Food Microbiol. 2020, 89, 103403. [Google Scholar] [CrossRef]
- Talay, F.; Molva, C.; Atabay, H.I. Isolation and identification of Arcobacter species from environmental and drinking water samples. Folia Microbiol. 2016, 61, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Ghaju Shrestha, R.; Tandukar, S.; Bhandari, D.; Sherchan, S.P.; Tanaka, Y.; Sherchand, J.B.; Haramoto, E. Prevalence of Arcobacter and other pathogenic bacteria in river water in Nepal. Water 2019, 11, 1416. [Google Scholar] [CrossRef] [Green Version]
- Merga, J.Y.; Royden, A.; Pandey, A.K.; Williams, N.J. Arcobacter spp. isolated from untreated domestic effluent. Lett. Appl. Microbiol. 2014, 59, 122–126. [Google Scholar] [CrossRef]
- Rodriguez-Manzano, J.; Alonso, J.L.; Ferrús, M.A.; Moreno, Y.; Amorós, I.; Calgua, B.; Hundesa, A.; Guerrero-Latorre, L.; Carratala, A.; Rusiñol, M.; et al. Standard and new faecal indicators and pathogens in sewage treatment plants, microbiological parameters for improving the control of reclaimed water. Water Sci. Technol. 2012, 66, 2517–2523. [Google Scholar] [CrossRef] [PubMed]
- Ghaju Shrestha, R.; Sherchan, S.P.; Kitajima, M.; Tanaka, Y.; Gerba, C.P.; Haramoto, E. Reduction of Arcobacter at two conventional wastewater treatment plants in Southern Arizona, USA. Pathogens 2019, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Levican, A.; Collado, L.; Figueras, M.J. The use of two culturing methods in parallel reveals a high prevalence and diversity of Arcobacter spp. in a wastewater treatment plant. BioMed Res. Int. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stampi, S.; De Luca, G.; Varoli, O.; Zanetti, F. Occurrence, removal and seasonal variation of thermophilic campylobacters and arcobacter in sewage sludge. Zent. Hyg. Umweltmed. 1999, 202, 19–27. [Google Scholar] [CrossRef]
- Mudadu, A.G.; Melillo, R.; Salza, S.; Mara, L.; Marongiu, L.; Piras, G.; Spanu, C.; Tedde, T.; Fadda, A.; Virgilio, S.; et al. Detection of Arcobacter spp. in environmental and food samples collected in industrial and artisanal sheep’s milk cheese-making plants. Food Control 2021, 126, 108100. [Google Scholar] [CrossRef]
- Ghaju Shrestha, R.; Tanaka, Y.; Sherchand, J.B.; Haramoto, E. Identification of 16s rRNA and virulence-associated genes of Arcobacter in water samples in the Kathmandu Valley, Nepal. Pathogens 2019, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Asano, T.; Cotruvo, J.A. Groundwater recharge with reclaimed municipal wastewater: Health and regulatory considerations. Water Res. 2004, 38, 1941–1951. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef] [Green Version]
- Rice, E.W.; Rodgers, M.R.; Wesley, I.V.; Johnson, C.H.; Tanner, S.A. Isolation of Arcobacter butzleri from ground water. Lett. Appl. Microbiol. 1999, 28, 31–35. [Google Scholar] [CrossRef]
- Moreno, Y.; Alonso, J.L.; Botella, S.; Ferrús, M.A.; Hernández, J. Survival and injury of Arcobacter after artificial inoculation into drinking water. Res. Microbiol. 2004, 155, 726–730. [Google Scholar] [CrossRef]
- Van Driessche, E.; Houf, K. Survival capacity in water of Arcobacter species under different temperature conditions. J. Appl. Microbiol. 2008, 105, 443–451. [Google Scholar] [CrossRef]
- Salipante, S.J.; Kawashima, T.; Rosenthal, C.; Hoogestraat, D.R.; Cummings, L.A.; Sengupta, D.J.; Harkins, T.T.; Cookson, B.T.; Hoffman, N.G. Performance comparison of illumina and ion torrent next-generation sequencing platforms for 16s rRNA-based bacterial community profiling. Appl. Environ. Microbiol. 2014, 80, 7583–7591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaju Shrestha, R.; Tanaka, Y.; Malla, B.; Bhandari, D.; Tandukar, S.; Inoue, D.; Sei, K.; Sherchand, J.B.; Haramoto, E. Next-generation sequencing identification of pathogenic bacterial genes and their relationship with fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal. Sci. Total Environ. 2017, 601–602, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Lu, P. Characterization of bacterial communities in sediments receiving various wastewater effluents with high-throughput sequencing analysis. Microb. Ecol. 2014, 67, 612–623. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, X.-X.; Wang, Z.; Huang, K.; Wang, Y.; Liang, W.; Tan, Y.; Liu, B.; Tang, J. Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing. PLoS ONE 2015, 10, e0125549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLellan, S.L.; Huse, S.M.; Mueller-Spitz, S.R.; Andreishcheva, E.N.; Sogin, M.L. Diversity and population structure of sewage-derived microorganisms in wastewater treatment plant influent. Environ. Microbiol. 2010, 12, 378–392. [Google Scholar] [CrossRef] [Green Version]
- McLellan, S.L.; Roguet, A. The unexpected habitat in sewer pipes for the propagation of microbial communities and their imprint on urban waters. Curr. Opin. Biotechnol. 2019, 57, 34–41. [Google Scholar] [CrossRef]
- Millar, J.A.; Raghavan, R. accumulation and expression of multiple antibiotic resistance genes in Arcobacter cryaerophilus that thrives in sewage. PeerJ 2017, 5, e3269. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Shao, M.F.; Ye, L. 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 2012, 6, 1137–1147. [Google Scholar] [CrossRef]
- Sigala, J.; Unc, A. Pyrosequencing estimates of the diversity of antibiotic resistant bacteria in a wastewater system. Water Sci. Technol. 2013, 67, 1534–1543. [Google Scholar] [CrossRef]
Species | Sources | Country | References |
---|---|---|---|
A. acticola | Seawater | Korea | [10] |
A. anaerophilus | Estuarine sediment | India | [11] |
A. antarcticus | Antartic intertidal sediment | Antartica | [12,13] |
A. aquimarinus | Seawater | Spain | [14] |
A. arenosus | Marine sediment | Korea | [13,15] |
A. bivalviorum | Shellfish | Spain | [16] |
A. butzleri | Feces (humans with diarrhea) | USA | [17] |
A. caeni | Reclaimed water | Spain | [18] |
A. canalis | Water canal | Spain | [19] |
A. cibarius | Broiler carcass | Belgium | [20] |
A. cloacae | Sewage | Spain | [21] |
A. cryaerophilus | Animal abortions | Ireland | [1] |
A. defluvii | Sewage | Chile | [22] |
A. ebronensis | Mussels | Spain | [14] |
A. ellisii | Mussels | Spain | [23] |
A. faecis | Septic tank | Canada | [24] |
A. halophilus | Hypersaline lagoon | USA | [25] |
A. lacus | Reclaimed water | Spain | [18] |
A. lanthieri | Pig and dairy cattle manure | Canada | [26] |
A. lekinthochrous | Pecten maximus larvae and tank seawater | Norway | [27] |
A. marinus | Dokdo island | Korea | [28] |
A. molluscorum | Shellfish | Spain | [29] |
A. mytili | Mussels | Spain | [30] |
A. nitrofigilis | Roots of Spartina alterniflora | USA | [1] |
A. pacificus | Seawater | China | [31] |
A. parvus | Squid | Korea | [13,32] |
A. skirrowii | Feces (humans with diarrhea) | USA | [17] |
A. suis | Pork meat | Spain | [21] |
A. thereius | Pigs and ducks | Belgium | [33] |
A. trophiarum | Pigs | Belgium | [34] |
A. vandammei | Porcine intestine | Belgium | [35] |
A. venerupis | Shellfish | Spain | [16] |
A. vitoriensis | Wastewater | Spain | [13,36] |
Characteristics | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growth in/on: | |||||||||||||||||||||||||||||||||
Air at 37 °C | − | − | − | + | + | + | + | − | + | − | + | + | + | − | + | + | + | + | + | − | + | + | + | − | + | * | + | − | − | − | + | − | + |
CO2 at 37 °C | * | − | * | + | + | + | + | − | + | + | + | + | + | − | + | + | + | + | + | − | + | + | + | − | + | * | + | − | − | − | + | + | + |
CO2 at 42 °C | * | − | * | − | * | − | + | − | + | − | − | − | + | − | + | − | − | + | − | * | − | + | + | − | − | * | − | − | − | − | − | − | − |
4% (w/v) NaCl | − | + | + | − | + | + | − | − | + | − | − | − | − | − | − | − | + | − | − | − | + | + | + | + | + | + | + | − | − | − | − | − | − |
1% (w/v) Glycine | * | + | * | − | − | − | − | − | − | − | − | − | − | − | − | − | + | − | + | − | + | − | + | − | * | * | − | − | + | − | − | − | − |
MacConkey agar | * | * | + | − | * | + | − | + | v | + | + | − | − | − | + | + | − | + | + | − | + | + | + | − | − | + | − | + | − | + | * | + | + |
CCDA | * | * | − | + | * | + | + | + | − | − | + | + | + | − | + | + | − | + | + | − | − | − | − | − | * | * | + | − | − | + | * | + | + |
Enzyme activity: | |||||||||||||||||||||||||||||||||
Urease | − | − | − | − | − | − | − | − | − | − | − | − | + | + | − | − | − | − | − | − | − | − | − | + | − | * | − | − | − | − | − | + | * |
Catalase | + | − | * | + | − | + | + | + | + | − | + | + | + | − | + | + | − | + | + | + | − | + | + | + | + | * | + | + | + | + | + | + | + |
Esterase | − | * | * | * | * | + | + | * | * | + | * | + | − | * | + | + | + | * | + | − | + | + | + | + | − | − | + | * | − | + | * | * | + |
Hippurate hydrolysis | * | * | * | * | * | − | − | * | * | − | * | − | − | * | + | − | − | * | − | * | − | − | − | − | * | + | − | * | − | − | * | * | * |
Alkaline phosphatase | * | * | * | * | * | + | + | * | * | − | * | + | − | * | − | − | − | * | − | − | + | + | + | − | − | + | − | * | − | − | * | * | − |
Voges-Proskauer test | * | * | * | * | * | − | − | * | * | − | * | − | − | * | − | + | − | * | + | − | + | − | − | − | * | * | − | * | − | − | * | * | + |
Na-succinate assimilation | * | * | * | * | * | + | − | * | * | − | * | + | − | * | − | − | + | * | − | * | − | − | − | − | * | * | − | * | − | + | * | * | * |
Nitrate reduction | − | + | * | + | − | − | + | + | − | − | + | + | + | − | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | − | − | + | + |
Nitrite production | − | * | * | * | * | − | − | * | * | − | * | + | − | * | − | − | − | * | + | * | − | − | − | − | * | * | − | * | − | − | * | * | * |
TTC reduction | * | * | * | * | * | − | + | − | − | + | * | − | − | * | − | + | + | − | + | + | − | − | + | − | * | w | − | * | − | − | − | * | + |
Indoxyl acetate hydrolysis | * | + | * | + | * | + | + | + | − | + | + | + | + | + | + | + | + | + | + | * | + | − | − | + | + | + | + | + | + | + | + | + | * |
Resistance to cefoperazone (64 mg/L) | * | − | * | − | * | − | + | + | − | + | − | + | + | − | − | − | − | + | + | − | − | + | − | − | + | * | + | − | + | + | * | − | + |
Enrichment | Isolation | References | ||
---|---|---|---|---|
Formulation Antibiotics Used (mg/L) | Incubation Conditions | Plating Medium Antibiotics Used (mg/L) | Incubation Conditions | |
EMJH 5-Fluorouracil (100) | 30 °C, 48–72 h, mO2 | Blood agar No antibiotics | 30 °C, 48–72 h, mO2, and O2 | [2] |
ASB Cefoperazone (32) Piperacillin (75) Trimethoprim (20) Cycloheximide (100) | 24 °C, 48 h, O2 | ASM Cefoperazone (32), Piperacillin (75) Trimethoprim (20) Cycloheximide (100) | 24 °C, 48–72 h, O2 | [45] |
EMJH 5-Fluorouracil (200) | 30 °C, 9 days, O2 | CVA agar Cephalothin (20) Vancomycin (10) Amphotericin B (5) | 30 °C, up to 7 days, O2 | [44] |
CAT broth Cefoperazone (8) Amphotericin B (10) Teicoplanin (5) | 30 °C, 48 h, mO2 | Blood agar No antibiotics Membrane filtration | 30 °C, up to 7 days, O2 | [43] |
JM broth Cefoperazone (16), 5-Fluorouracil (200) | 30 °C, 48 h, O2 | JM agar Cefoperazone (32) | 30 °C, 48 h, O2 | [46] |
- | - | modified charcoal cefoperazone deoxycholate agar (mC- CDA) Cefoperazone (32) | 37°C, 48 h, mO2 | [48] |
Arcobacter broth Cefoperazone (16), Amphotericin B (10) 5-Fluorouracil (100) Novobiocin (32) Trimethoprim (64) | 28 °C, 48 h, mO2 | Arcobacter plating medium Cefoperazone (16), Amphotericin B (10) 5-Fluorouracil (100) Novobiocin (32) Trimethoprim (64) | 30 °C, 24–72 h, mO2 | [56] |
Nguyen-Restaino-Juárez (NRJ) broth Cefsulodin (6), vancomycin (4), and moxalactam (10) | 30 °C, 48 h, O2 | NRJ medium cefsulodin (10), vancomycin (1), novobiocin (1), and moxalactam (10) | 30 °C, 48 h, O2 | [52] |
Methods | Genes Targeted | Species Identified | References |
---|---|---|---|
RFLP, Southern blotting | 16S rRNA, 23S rRNA | A. butzleri | [70] |
PCR-hybridization | glyA | A. butzleri | [71] |
Real time PCR | gyrA | A. butzleri, A. cryaerophilus, A. cibarius, A. nitrofigilis | [72] |
Real time PCR Multiplex PCR | rpoBC, 23S rRNA rpoBC, 23S rRNA | A. butzleri, A. cryaerophilus A. butzleri, A. cryaerophilus | [73] |
MALDI-TOF MS | Proteins | A. butzleri, A. cryaerophilus, A. skirrowi, | [74] |
PCR | 23S rDNA | Arcobacter spp. | [57] |
Multiplex PCR | 16S rRNA, 23S rRNA | Arcobacter spp., A. butzleri | [75] |
PCR-RFLP | 16S rRNA | A.butzleri | [76] |
PCR-RFLP | 23S rRNA | A. butzleri, A. nitrofigilis | [77] |
In situ hybridization | 16S rRNA | Arcobacter spp. | [69] |
PCR-RFLP | 16S rRNA | A. butzleri, A. cryaerophilus, A. skirrowii | [78] |
PCR-culture | 16S rRNA | Arcobacter spp. | [65] |
Multiplex PCR | 16S rRNA, 23S rRNA | A. butzleri, A. cryaerophilus, A. skirrowii | [59] |
Multiplex PCR | 23S rRNA | A. butzleri, A. cryaerophilus, A. skirrowii | [79] |
PCR-RFLP | groEL | A. butzleri | [80] |
PCR-RFLP | 16S rRNA, 23S rRNA | A. butzleri | [81] |
PCR-DGGE | 16S rRNA | A. cryaerophilus, A. nitrofigilis | [82] |
PCR-RFLP | 16S rRNA | A. butzleri, A. cryaerophilus, A. skirrowii, A. cibarius, A. nitrofigilis, A. halophilus, A. cibarius, A. mytili | [83] |
PCR | gyrA, 16S rRNA | A. butzleri, A. cryaerophilus, A. skirrowii, A. cibarius | [60] |
Multiplex PCR | 23S rRNA, gyrA | A. butzleri, A. cryaerophilus, A. skirrowii, A. cibarius, A. thereius | [62] |
PCR | hsp60 | A. trophiarum | [34] |
PCR | 16S rRNA | Arcobacter spp. | [66] |
PCR | 16S rRNA | A. butzleri | [84] |
MPN-qPCR | hsp60 | Arcobacter spp. | [85] |
qPCR | 16S rRNA | Arcobacter spp. | [64] |
Sample Type | No. of Positive Samples/No. of Samples Tested (%) | Countries | Arcobacter spp. Identified | References | |
---|---|---|---|---|---|
Fecal samples | Human stool | 360/4636 (8) | Germany | A. butzleri, A. cryaerophilus, A. lanthieri | [5] |
892/1596 (60) | Canada | A. butzleri | [84] | ||
20/1200 (1.7) | Lithuania | A. butzleri | [94] | ||
Cattle feces | 20/51 (39) | Belgium | A. butzleri, A. cryaerophilus, A. skirrowii | [95] | |
12/332 (4) | Japan | A. butzleri, A. cryaerophilus | [89] | ||
14/200 (7) | Turkey | A. butzleri, A. cryaerophilus, A. skirrowii | [96] | ||
240/1682 (14) | USA | Arcobacter spp. | [90] | ||
Pig feces | 36/82 (44) | Belgium | A. butzleri, A. cryaerophilus | [95] | |
25/250 (10) | Japan | A. butzleri, A. cryaerophilus, A. skirrowii | [89] | ||
Sheep feces | 10/62 (16) | Belgium | A. butzleri, A. cryaerophilus | [95] | |
Horse feces | 2/13 (15) | Belgium | A. butzleri | [95] | |
Dog feces | 5/267 (2) | Belgium | A. butzleri, A. cryaerophilus | [88] | |
Cat feces | 0/61 (0) | Belgium | Not detected | [88] | |
Animal products | Beef meat | 6/100 (6) | Turkey | A. butzleri, A. cryaerophilus | [53] |
39/148 (26) | Malaysia | A. butzleri, A. cryaerophilus, A. skirrowii | [51] | ||
13/45 (29) | USA | A. butzleri, A. skirrowii | [97] | ||
37/108 (34) | Northern Ireland | A. butzleri, A. cryaerophilus, A. skirrowii | [98] | ||
7/32 (22) | Australia | A. butzleri | [99] | ||
2/90 (2) | Japan | A. butzleri | [100] | ||
5/97 (5) | Turkey | A. butzleri | [96] | ||
1/68 (1) | The Netherlands | Arcobacter spp. | [45] | ||
Pork meat | 7/100 (7) | Japan | A. butzleri, A. cryaerophilus | [100] | |
64/200 (32) | USA | Arcobacter spp. | [101] | ||
1/27 (4) | Italy | A. butzleri | [102] | ||
35/101 (35) | Northern Ireland | A. butzleri, A. cryaerophilus, A. skirrowii | [98] | ||
23/45 (51) | USA | A. butzleri, A. cryaerophilus, A. skirrowii | [97] | ||
Sheep meat | 2/13 (15) | Australia | A. butzleri | [99] | |
Chicken livers and carcasses | 29/32 (91) | Spain | A. butzleri, A. cryaerophilus, A. skirrowii | [87] | |
89/170 (52) | Germany | A. butzleri | [103] | ||
Chicken meat | 30/51 (59) | Japan and Thailand | A. butzleri | [104] | |
36/42 (86) | Spain | A. butzleri, A. cryaerophilus | [60] | ||
53/220 (24) | The Netherlands | Arcobacter spp. | [45] | ||
23/100 (23) | Japan | A. butzleri, A. cryaerophilus, A. skirrowii | [100] | ||
6/15 (40) | USA | A. butzleri, A. skirrowii | [97] | ||
16/22 (73) | Australia | A. butzleri | [99] | ||
58/94 (62) | Northern Ireland | A. butzleri, A. cryaerophilus, A. skirrowii | [98] | ||
119/331 (36) | Lithuania | A. butzleri, A. cryaerophilus | [94] | ||
Turkey meat | 303/395 (77) | USA | A. butzleri, Arcobacter spp. | [105] | |
Duck carcass | 8/10 (80) | UK | A. butzleri, A. cryaerophilus, A. skirrowii | [106] | |
Buccal cavity of dogs | 2/267 (0.8) | Belgium | A. cryaerophilus | [88] | |
Buccal cavity of cats | 0/61 (0) | Belgium | Not detected | [88] | |
Chicken cloacal swabs | 34/234 (15) | Japan | A. butzleri, A. cryaerophilus, A. skirrowii | [89] | |
Cow’s rectal swabs | 8/120 (7) | Malaysia | A. butzleri, A. skirrowii | [51] | |
Cow milk | 64/484 (13) | Italy | A. butzleri | [107] | |
6/105 (6) | Malaysia | A. butzleri, A. cryaerophilus, A. skirrowii | [51] | ||
8/37 (22) | Italy | A. butzleri | [63] | ||
26/104 (25) | Lithuania | A. butzleri | [94] | ||
Water samples | Surface water | 13/25 (52) | Czech Republic | A. butzleri | [108] |
10/10 (100) | Spain | Arcobacter spp. | [68] | ||
4/17 (24) | Japan | A. butzleri | [104] | ||
14/18 (78) | Nepal | Arcobacter spp. | [109] | ||
36/128 (28) | Lithuania | A. butzleri, A. cryaerophilus | [94] | ||
Wastewater (Influent and effluent water) | 9/9 (100) | UK | A. butzleri, A. cryaerophilus | [110] | |
44/44 (100) | Spain | Arcobacter spp. | [111] | ||
30/30 (100) | Spain | Arcobacter spp. | [68] | ||
43/48 (90) | US | Arcobacter spp. | [112] | ||
29/30 (97) | Chile | A. butzleri, A. cloacae, A. cryaerophilus, A. defluvii, A. ellisii, A. nitrofigilis, A. skirrowii, A. thereius | [113] | ||
61/88 (69) | Italy | A. butzleri | [114] | ||
5/50 (10) | Italy | Arcobacter spp. | [115] | ||
Canal | 7/7 (100) | Japan | A. butzleri | [104] | |
Treated drinking water | 2/18 (11) | Malaysia | A. butzleri, A. skirrowii | [51] | |
Sewage | 24/66 (36) | Czech Republic | A. butzleri | [108] | |
Spring water | 4/16 (25) | Czech Republic | A. butzleri, Arcobacter spp. | [108] | |
Drinking water | 0/8 (0) | Czech Republic | Not detected | [108] | |
Groundwater | 13/47 (26) | Nepal | Arcobacter spp. | [64] | |
99/286 (35) | Nepal | Arcobacter spp. | [116] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaju Shrestha, R.; Tanaka, Y.; Haramoto, E. A Review on the Prevalence of Arcobacter in Aquatic Environments. Water 2022, 14, 1266. https://doi.org/10.3390/w14081266
Ghaju Shrestha R, Tanaka Y, Haramoto E. A Review on the Prevalence of Arcobacter in Aquatic Environments. Water. 2022; 14(8):1266. https://doi.org/10.3390/w14081266
Chicago/Turabian StyleGhaju Shrestha, Rajani, Yasuhiro Tanaka, and Eiji Haramoto. 2022. "A Review on the Prevalence of Arcobacter in Aquatic Environments" Water 14, no. 8: 1266. https://doi.org/10.3390/w14081266
APA StyleGhaju Shrestha, R., Tanaka, Y., & Haramoto, E. (2022). A Review on the Prevalence of Arcobacter in Aquatic Environments. Water, 14(8), 1266. https://doi.org/10.3390/w14081266