Measuring Evapotranspiration Suppression from the Wind Drift and Spray Water Losses for LESA and MESA Sprinklers in a Center Pivot Irrigation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Data Collection
2.2.1. Meteorological Measurements
2.2.2. UAS-Based Imagery
2.3. Data Analysis
2.3.1. Reference Evapotranspiration from Standardized ASCE-Penman-Monteith
2.3.2. UAS-METRIC Model Analysis
3. Results
3.1. Microclimate and ETo Changes
3.2. Changes in Estimated ETc Using UAS-METRIC Model
4. Discussion
5. Conclusions
- The MESA-irrigated treatments decreased the air temperature by 0.2–0.4 °C in the 1 h BI phase, 4.5–7 °C in the DI phase, 1.9–3.3 °C in the 1 h AI phase, and between 0.1 and 0.3 °C in the 2 h AI phases.
- The instantaneous ETo suppression (rate reduction) of the MESA treatment compared to the LESA was between 0.79 and 1.88 µm/min (8–18% suppressed ETo rate) in the DI phase, using measurements of 1.8 m AGL. At one-meter height, the instantaneous ETo rate of the MESA was suppressed by 1.17–1.66 µm/min (12–17%) compared to the LESA.
- ETo suppression (MESA-LESA) was, on average, equivalent to 0.5% of the applied water. Although the differences were statistically significant, the total reductions in ET due to the microclimate modifications from wind drifts and evaporation losses were small compared to the 17% average differences in irrigation application efficiencies between the MESA and LESA systems. Therefore, the irrigation application efficiency (IAE) differences between these two sprinkler technologies were still large even if the ET suppressions by wind drifts and evaporation losses were accounted for, and adjustments to the IAEs for ET suppressions were within margin of error for most measurements of the IAEs.
- The UAS-METRIC model showed that the estimated ETc of the spearmint under MESA was suppressed by 0.16 mm/day compared to the LESA.
- The UAS-METRIC estimated a total daily ETc from ROIs from the DI phase of both treatments of 4.55 mm/day and 4.12 mm/day from ROIs from the AI phase. This indicated that the canopy wetting under MESA was reflected in cooler canopy temperatures and thus higher estimated ETc values in the DI phase.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howell, T.A.; Hiler, E.A.; Van Bavel, C.H.M. Crop Response to Mist Irrigation. Trans. ASAE 1971, 14, 906–910. [Google Scholar] [CrossRef]
- Steiner, J.L.; Kanemasu, E.T.; Hasza, D. Microclimatic and crop responses to center pivot sprinkler and to surface irrigation. Irrig. Sci. 1983, 4, 201–214. [Google Scholar] [CrossRef]
- Schneider, A.D. Efficiency and uniformity of the lepaand spray sprinkler methods: A review. Trans. ASAE 2000, 43, 937–944. [Google Scholar] [CrossRef]
- Kang, Y.; Liu, H.-J.; Liu, S.-P. Effect of Sprinkler Irrigation on Field Microclimate. In Proceedings of the 2002 ASAE Annual Meeting, Chicago, IL, USA, 28–31 July 2002; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2002. [Google Scholar]
- Liu, H.-J.; Kang, Y. Regulating Field Microclimate using Sprinkler Misting under Hot-dry Windy Conditions. Biosyst. Eng. 2006, 95, 349–358. [Google Scholar] [CrossRef]
- Martínez-Cob, A.; Playán, E.; Zapata, N.; Cavero, J.; Medina, E.T.; Puig, M. Contribution of Evapotranspiration Reduction during Sprinkler Irrigation to Application Efficiency. J. Irrig. Drain. Eng. 2008, 134, 745–756. [Google Scholar] [CrossRef] [Green Version]
- Cavero, J.; Medina, E.T.; Puig, M.; Martínez-Cob, A. Sprinkler Irrigation Changes Maize Canopy Microclimate and Crop Water Status, Transpiration, and Temperature. Agron. J. 2009, 101, 854–864. [Google Scholar] [CrossRef]
- Urrego-Pereira, Y.; Cavero, J.; Medina, E.T.; Martínez-Cob, A. Microclimatic and physiological changes under a center pivot system irrigating maize. Agric. Water Manag. 2013, 119, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Uddin, M.J.; Murphy, S.R. Evaporation Losses and Evapotranspiration Dynamics in Overhead Sprinkler Irrigation. J. Irrig. Drain. Eng. 2020, 146, 04020023. [Google Scholar] [CrossRef]
- Sarwar, A.; Peters, R.T.; Mehanna, H.; Amini, M.Z.; Mohamed, A.Z. Evaluating water application efficiency of low and mid elevation spray application under changing weather conditions. Agric. Water Manag. 2019, 221, 84–91. [Google Scholar] [CrossRef]
- Thompson, A.L.; Martin, D.L.; Norman, J.M.; Tolk, J.A.; Howell, T.A.; Gilley, J.R.; Schneider, A.D. Testing of a water loss distribution model for moving sprinkler systems. Trans. ASAE 1997, 40, 81–88. [Google Scholar] [CrossRef]
- Sarwar, A.; Peters, R.T.; Shafeeque, M.; Mohamed, A.; Arshad, A.; Ullah, I.; Saddique, N.; Muzammil, M.; Aslam, R.A. Accurate measurement of wind drift and evaporation losses could improve water application efficiency of sprinkler irrigation systems − A comparison of measuring techniques. Agric. Water Manag. 2021, 258, 107209. [Google Scholar] [CrossRef]
- Al-Oqaili, F.; Good, S.P.; Peters, R.T.; Finkenbiner, C.; Sarwar, A. Using stable water isotopes to assess the influence of irrigation structural configurations on evaporation losses in semiarid agricultural systems. Agric. For. Meteorol. 2020, 291, 108083. [Google Scholar] [CrossRef]
- Abo-Ghobar, H.M. Losses from low-pressure center-pivot irrigation systems in a desert climate as affected by nozzle height. Agric. Water Manag. 1992, 21, 23–32. [Google Scholar] [CrossRef]
- Lamm, F.R.; Bordovsky, J.P.; Howell Sr., T.A. A Review of In-Canopy and Near-Canopy Sprinkler Irrigation Concepts. Trans. ASABE 2019, 62, 1355–1364. [Google Scholar] [CrossRef]
- Irmak, S.; Odhiambo, L.; Kranz, W.L.; Eisenhauer, D. Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency; Biological Systems Engineering Pap. Publ.: 2011. Available online: https://digitalcommons.unl.edu/biosysengfacpub/451 (accessed on 25 June 2023).
- Ranjan, R.; Khot, L.R.; Peters, R.T.; Salazar-Gutierrez, M.R.; Shi, G. In-field crop physiology sensing aided real-time apple fruit surface temperature monitoring for sunburn prediction. Comput. Electron. Agric. 2020, 175, 105558. [Google Scholar] [CrossRef]
- Ortíz, J.N.; Tarjuelo, J.M.; de Juan, J.A. Characterisation of evaporation and drift losses with centre pivots. Agric. Water Manag. 2009, 96, 1541–1546. [Google Scholar] [CrossRef]
- Molaei, B.; Peters, R.T.; Mohamed, A.Z.; Sarwar, A. Large scale evaluation of a LEPA/LESA system compared with MESA on spearmint and peppermint. Ind. Crops Prod. 2021, 159, 113048. [Google Scholar] [CrossRef]
- Chandel, A.K.; Molaei, B.; Khot, L.R.; Peters, R.T.; Stöckle, C.O. High Resolution Geospatial Evapotranspiration Mapping of Irrigated Field Crops Using Multispectral and Thermal Infrared Imagery with METRIC Energy Balance Model. Drones 2020, 4, 52. [Google Scholar] [CrossRef]
- Allen, R.G.; Walter, I.A.; Elliott, R.L.; Howell, T.A.; Itenfisu, D.; Jensen, M.E. The ASCE Standardized Reference Evapotranspiration Equation; American Society of Civil Engineers: Reston, VA, USA, 2005; ISBN 978-0-7844-0805-6. [Google Scholar]
- ANSI/ASAE S436.1; Test Procedure for Determining the Uniformity of Water Distribution of Center Pivot and Lateral Move Irrigation Machines Equipped with Spray or Sprinkler Nozzles. ASAE: St. Joseph, MI, USA, 2007; p. 8.
- Molaei, B.; Peters, R.T.; Khot, L.R.; Stöckle, C.O. Assessing Suitability of Auto-Selection of Hot and Cold Anchor Pixels of the UAS-METRIC Model for Developing Crop Water Use Maps. Remote Sens. 2022, 14, 4454. [Google Scholar] [CrossRef]
Date, Treatments | Phase | RH_MESA (%) | RH_LESA (%) | % RH Diff. (LESA-MESA) | Ta_MESA (°C) | Ta_LESA (°C) | % Ta Diff. (LESA-MESA) | VPD_MESA (kPa) | VPD_LESA (kPa) | VPD Diff. (LESA-MESA) |
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD 2 | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||||
10 August 2018, MESA_7, LESA_6 | BI | 0.48 a 3 ± 0.03 | 0.49 a ± 0.04 | +2.08 | 32.5 a ± 0.61 | 31.9 a ± 0.82 | −1.88 | 2.5 a ± 0.2 | 2.4 a ± 0.2 | −0.1 |
DI | 0.82 a ± 0.14 | 0.45 b ± 0.04 | −45.2 | 25.4 b ± 2.43 | 32.6 a ± 0.48 | +28.3 | 0.6 b ± 0.3 | 2.7 a ± 0.1 | +2.1 | |
AI | 0.71 a ± 0.03 | 0.48 b ± 0.03 | −32.3 | 32.8 a ± 0.62 | 29.9 b ± 0.65 | −8.84 | 1.2 b ± 0.2 | 2.6 a ± 0.3 | +1.4 | |
10 August 2018, MESA_7, LESA_8 | BI | 0.48 a ± 0.03 | 0.45 b ± 0.03 | −6.25 | 32.5 a ± 0.61 | 32.8 a ± 0.54 | +0.92 | 2.5 a ± 0.1 | 2.7 a ± 0.2 | +0.2 |
DI | 0.83 a ± 0.14 | 0.44 b ± 0.02 | −46.9 | 25.7 b ± 2.4 | 33.4 a ± 0.23 | +29.9 | 0.6 b ± 0.2 | 2.9 a ± 0.4 | +2.3 | |
AI | 0.71 a ± 0.03 | 0.46 b ± 0.02 | −35.2 | 29.9 b ± 0.62 | 33.2 a ± 0.46 | +11.1 | 1.2 b ± 0.3 | 2.7 a ± 0.2 | +1.5 | |
12 August 2018, MESA_7, LESA_8 | BI | 0.57 a ± 0.02 | 0.58 a ± 0.03 | +1.75 | 20.4 a ± 0.4 | 20.6 a ± 0.52 | +0.98 | 1.0 a ± 0.1 | 1.0 a ± 0.4 | +0 |
DI | 0.93 a ± 0.12 | 0.54 b ± 0.03 | −41.9 | 16.2 b ± 1.4 | 21.7 a ± 0.43 | +33.9 | 0.1 b ± 0.2 | 1.2 a ± 0.2 | +1.1 | |
AI | 0.95 a ± 0.04 | 0.52 b ± 0.03 | −45.3 | 17.3 b ± 2.1 | 22.3 a ± 0.52 | +28.9 | 0.1 b ± 0.3 | 1.3 a ± 0.3 | +1.2 |
Date | Phase | Mean (h) | Pivot Span Number | Net Applied Water (mm) | % SR (LESA-MESA) | % SAW (LESA-MESA) |
---|---|---|---|---|---|---|
10 August 2018 | BI | 0.53 | 7 and 6 | 8.7 | −5.4 | −0.13 |
DI | 0.33 | 8.0 | 0.14 | |||
AI | 0.63 | −1.6 | −0.05 | |||
10 August 2018 | BI | 0.53 | 7 and 8 | 8.7 | 9 | 0.25 |
DI | 0.33 | 18 | 0.37 | |||
AI | 0.62 | 8 | 0.26 | |||
12 August 2018 | BI | 1 | 7 and 8 | 12.9 | 2.2 | 0.05 |
DI | 0.41 | 10.9 | 0.10 | |||
AI | 0.81 | 4.8 | 0.09 |
Date | DOY 1 | Phase | RH_MESA (%) 2 | RH_LESA (%) | RH_Control (%) | % RH Diff. (LESA-MESA) | Ta_MESA (°C) | Ta_LESA (°C) | Ta_Control (°C) | % Ta Diff. (LESA-MESA) | VPD_MESA (kPa) | VPD_LESA (kPa) | VPD_Control (kPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |||||
8 August 2019 | 220 | 3 h BI | 69.1 a 3 ± 5.0 | 69.6 a ± 5.0 | 61.3 b ± 6.0 | 0.7 | 26.1 b ± 0.8 | 26.2 b ± 0.8 | 26.8 a ± 1.0 | 0.4 | 1.0 b ± 0.2 | 1.0 b ± 0.2 | 1.4 a ± 0.3 |
2 h BI | 57.9 a ± 6.0 | 58.7 a ± 6.0 | 46.8 b ± 4.0 | 1.4 | 28.9 b ± 0.06 | 28.8 b ± 0.06 | 30.1 a ± 0.04 | −0.34 | 1.7 b ± 0.3 | 1.6 b ± 0.3 | 2.3 a ± 0.3 | ||
1 h BI | 53.1 a ± 3.5 | 55.6 a ± 2.9 | 44.4 b ± 3.8 | 4.5 | 29.1 b ± 0.04 | 28.7 b ± 0.03 | 30.1 a ± 0.04 | −1.4 | 1.9 b ± 0.2 | 1.8 b ± 0.2 | 2.4 a ± 0.3 | ||
DI | 75.4 a ± 11 | 55.9 b ± 1.4 | 46.0 c ± 1.4 | −34.8 | 24.3 c ± 2.3 | 28.3 b ± 0.4 | 29.7 a ± 0.5 | 14.1 | 0.8 c ± 0.5 | 1.7 b ± 0.1 | 2.2 a ± 0.1 | ||
1 h AI | 67.7 a ± 8.0 | 55.7 b ± 1.1 | 44.6 c ± 2.0 | −21.5 | 26.9 c ± 1.2 | 28.8 b ± 0.4 | 30.6 a ± 0.4 | 6.6 | 1.2 c ± 0.4 | 1.8 b ± 0.1 | 2.4 a ± 0.1 | ||
2 h AI | 51.6 a ± 2.0 | 48.6 b ± 1.8 | 38.2 c ± 2.0 | −6.2 | 28.8 c ± 0.4 | 29.1 b ± 0.3 | 31.0 a ± 0.4 | 1 | 1.9 c ± 0.1 | 2.1 b ± 0.1 | 2.8 a ± 0.1 | ||
3 h AI | 55.1 a ± 3.3 | 55.6 a ± 3.5 | 43.4 b ± 0.4 | 1.1 | 28.2 b ± 0.03 | 27.9 b ± 0.03 | 30.3 a ± 0.6 | −1 | 1.7 b ± 0.2 | 1.7 b ± 0.2 | 2.4 a ± 0.2 | ||
14 August 2019 | 226 | 3 h BI | 59.3 a ± 2.8 | 59.7 a ± 2.8 | 45.9 b ± 1.6 | 0.7 | 25.2 c ± 0.49 | 24.9 b ± 0.5 | 26.1 a ± 0.5 | −1.2 | 1.3 b ± 0.1 | 1.3 b ± 0.1 | 1.8 a ± 0.1 |
2 h BI | 55.1 a ± 3.4 | 55.9 a ± 2.8 | 40.1 b ± 2.0 | 1.4 | 26.6 b ± 0.63 | 26.3 b ± 0.5 | 27.6 a ± 0.5 | −1.15 | 1.6 b ± 0.2 | 1.5 b ± 0.1 | 2.2 a ± 0.1 | ||
1 h BI | 49.1 a ± 2.6 | 50.2 a ± 2.5 | 34.9 b ± 1.7 | 2.2 | 27.8 b ± 0.54 | 27.6 b ± 0.3 | 29.0 a ± 0.5 | −0.7 | 1.9 b ± 0.1 | 1.8 b ± 0.1 | 2.6 a ± 0.1 | ||
DI | 72.3 a ± 4.0 | 50.7 b ± 2.2 | 32.8 c ± 0.8 | −42.6 | 23.4 c ± 2.68 | 27.9 b ± 0.3 | 30.0 a ± 0.3 | 16.1 | 0.9 c ± 0.6 | 1.9 b ± 0.1 | 2.9 a ± 0.1 | ||
1 h AI | 66.9 a ± 7.6 | 48.4 b ± 0.2 | 31.3 c ± 0.8 | −38.2 | 25.1 c ± 1.16 | 28.4 b ± 0.3 | 30.6 a ± 0.4 | 11.6 | 1.1 c ± 0.5 | 2.0 b ± 0.1 | 3.0 a ± 0.1 | ||
2 h AI | 48.7 a ± 1.6 | 48.6 a ± 2.2 | 29.4 b ± 0.8 | −0.2 | 28.7 b ± 0.34 | 28.8 b ± 0.4 | 31.5 a ± 0.3 | 0.3 | 2.0 b ± 0.1 | 2.0 b ± 0.1 | 3.3 a ± 0.1 | ||
3 h AI | 45.7 b ± 1.1 | 47.2 a ± 1.2 | 31.2 c ± 0.9 | 3.17 | 29.3 b ± 0.22 | 28.9 c ± 0.2 | 31.6 a ± 0.3 | −1.4 | 2.2 b ± 0.1 | 2.1 b ± 0.1 | 3.2 a ± 0.1 |
Date | DOY 1 | Phase | Phase Duration (Hour) | Net Applied Water (mm) | % SAW (LESA-MESA) | % SAW (Control-MESA) | % SAW (Control-LESA) | % SR (LESA-MESA) | % SR (Control-MESA) | % SR (Control-LESA) |
---|---|---|---|---|---|---|---|---|---|---|
8 August 2019 | 220 | 3 h BI | 1 | 19.5 | 0.05 | 0.13 | 0.08 | 2.34 | 5.85 | 3.26 |
2 h BI | 1 | 0.06 | 0.15 | 0.09 | 2.26 | 5.59 | 3.11 | |||
1 h BI | 1 | −0.03 | −0.01 | 0.03 | −1.47 | −0.25 | 1.20 | |||
DI | 0.6 | 0.27 | 0.28 | 0.01 | 16.9 | 20.89 | 0.45 | |||
1 h AI | 1 | 0.26 | 0.22 | −0.04 | 10.4 | 9.84 | −1.65 | |||
2 h AI | 1 | 0.05 | −0.06 | −0.11 | 2.19 | −2.82 | −5.20 | |||
3 h AI | 1 | −0.04 | −0.03 | 0.01 | −4.37 | −2.79 | 1.43 | |||
Overall | 0.62 | 0.68 | 0.06 | |||||||
14 August 2019 | 226 | 3 h BI | 1 | 19.7 | 0.01 | 0.21 | 0.21 | 0.02 | 11.0 | 11.0 |
2 h BI | 1 | 0.03 | 0.23 | 0.20 | 1.37 | 9.44 | 8.18 | |||
1 h BI | 1 | 0.44 | 0.55 | 0.12 | 17.53 | 21.3 | 4.58 | |||
DI | 0.66 | 0.20 | 0.33 | 0.13 | 11.89 | 18.2 | 7.11 | |||
1 h AI | 1 | 0.41 | 0.49 | 0.07 | 16.40 | 18.7 | 2.76 | |||
2 h AI | 1 | 0.29 | 0.33 | 0.04 | 11.71 | 13.3 | 1.77 | |||
3 h AI | 1 | 0.01 | 0.01 | 0.00 | 0.66 | 0.54 | −0.12 | |||
Overall | 1.38 | 2.15 | 0.77 |
Phase | Net Applied Water (mm) | ETc_(mm/day) | ETc Suppression of the Total Applied Water (%) (Equation (5)) | ETc Suppression Rate (%) (Equation (4)) | |
---|---|---|---|---|---|
Mean ± SD | |||||
Irrigation Systems, Means for All Phases 1 | LESA | 12.9 | 4.9 a ± 0.3 | 2.0 | 4.0 |
MESA | 4.7 b ± 0.3 | ||||
Phase of Irrigation, Means for Both 2 | BI | 4.7 b ± 0.2 | |||
DI | 4.9 a ± 0.2 | ||||
AI | 4.8 a ± 0.3 | ||||
BI | LESA | 4.8 a ± 0.1 | 2.0 | 4.0 | |
MESA | 4.6 b ± 0.2 | ||||
DI | LESA | 5.0 a ± 0.2 | 1.0 | 3.0 | |
MESA | 4.8 b ± 0.2 | ||||
AI | LESA | 5.0 a ± 0.5 | 2.0 | 4.0 | |
MESA | 4.7 b ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molaei, B.; Peters, R.T.; Chandel, A.K.; Khot, L.R.; Stockle, C.O.; Campbell, C.S. Measuring Evapotranspiration Suppression from the Wind Drift and Spray Water Losses for LESA and MESA Sprinklers in a Center Pivot Irrigation System. Water 2023, 15, 2444. https://doi.org/10.3390/w15132444
Molaei B, Peters RT, Chandel AK, Khot LR, Stockle CO, Campbell CS. Measuring Evapotranspiration Suppression from the Wind Drift and Spray Water Losses for LESA and MESA Sprinklers in a Center Pivot Irrigation System. Water. 2023; 15(13):2444. https://doi.org/10.3390/w15132444
Chicago/Turabian StyleMolaei, Behnaz, R. Troy Peters, Abhilash K. Chandel, Lav R. Khot, Claudio O. Stockle, and Colin S. Campbell. 2023. "Measuring Evapotranspiration Suppression from the Wind Drift and Spray Water Losses for LESA and MESA Sprinklers in a Center Pivot Irrigation System" Water 15, no. 13: 2444. https://doi.org/10.3390/w15132444
APA StyleMolaei, B., Peters, R. T., Chandel, A. K., Khot, L. R., Stockle, C. O., & Campbell, C. S. (2023). Measuring Evapotranspiration Suppression from the Wind Drift and Spray Water Losses for LESA and MESA Sprinklers in a Center Pivot Irrigation System. Water, 15(13), 2444. https://doi.org/10.3390/w15132444