Comparison of Cropping System Models for Simulation of Soybean Evapotranspiration with Eddy Covariance Measurements in a Humid Subtropical Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments and Observations
2.2. ETC Measurements Using the Eddy Covariance System
2.3. Growing Season Weather Conditions
2.4. Parametrization of Cropping System Models
2.5. Model Performance Evaluation
3. Results
3.1. Phenological Stages and Grain Yield
3.2. LAI
3.3. Crop Evapotranspiration (ETC)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Disclaimer
Conflicts of Interest
Abbreviations
References
- Anapalli, S.S.; Krutz, J.L.; Pinnamaneni, S.R.; Reddy, K.N.; Fisher, D.K. Eddy covariance quantification of soybean (Glycine max L.) crop coefficients in a farmer’s field in a humid climate. Irrig. Sci. 2021, 39, 651–669. [Google Scholar] [CrossRef]
- National Cooperative Soil Survey (NCSS) Advanced Query, National Cooperative Soil Survey Soil Characterization Database. Available online: https://ncsslabdatamart.sc.egov.usda.gov/advquery.aspx (accessed on 25 August 2023).
- Payero, J.O.; Irmak, S. Daily energy fluxes, evapotranspiration and crop coefficient of soybean. Agric. Water Manag. 2013, 129, 31–43. [Google Scholar] [CrossRef]
- Kimball, B.A.; Boote, K.J.; Hatfield, J.L.; Ahuja, L.R.; Stockle, C.; Archontoulis, S.; Baron, C.; Basso, B.; Bertuzzi, P.; Constantin, J.; et al. Simulation of maize evapotranspiration: An inter-comparison among 29 maize models. Agric. Water Manag. 2019, 271, 264–284. [Google Scholar] [CrossRef]
- Tang, Q.; Feng, G.; Fisher, D.; Zhang, H.; Ouyang, Y.; Adeli, A.; Jenkins, J. Rain Water Deficit and Irrigation Demand of Major Row Crops in the Mississippi Delta. T Asabe 2018, 61, 927–935. [Google Scholar] [CrossRef]
- Runkle, B.R.K.; Rigby, J.R.; Reba, M.L.; Anapalli, S.S.; Bhattacharjee, J.; Krauss, K.W.; Liang, L.; Locke, M.A.; Novick, K.A.; Sui, R.X.; et al. Delta-Flux: An Eddy Covariance Network for a Climate-Smart Lower Mississippi Basin. Agric. Environ. Lett. 2017, 2, ael2017.01.0003. [Google Scholar] [CrossRef]
- Singer, J.W.; Heitman, J.L.; Hernandez-Ramirez, G.; Sauer, T.J.; Prueger, J.H.; Hatfield, J.L. Contrasting methods for estimating evapotranspiration in soybean. Agric. Water Manag. 2010, 98, 157–163. [Google Scholar] [CrossRef]
- Rana, G.; Katerji, N. Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: A review. Eur. J. Agron. 2000, 13, 125–153. [Google Scholar] [CrossRef]
- Farahani, H.J.; Howell, T.A.; Shuttleworth, W.J.; Bausch, W.C. Evapotranspiration: Progress in measurement and modeling in agriculture. Trans. Asabe 2007, 50, 1627–1638. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E. A Review of Global Terrestrial Evapotranspiration: Observation, Modeling, Climatology, and Climatic Variability. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Ghiat, I.; Mackey, H.R.; Al-Ansari, T. A Review of Evapotranspiration Measurement Models, Techniques and Methods for Open and Closed Agricultural Field Applications. Water 2021, 13, 2523. [Google Scholar] [CrossRef]
- Talib, A.; Desai, A.R.; Huang, J.Y.; Griffis, T.J.; Reed, D.E.; Chen, J.Q. Evaluation of prediction and forecasting models for evapotranspiration of agricultural lands in the Midwest U.S. J. Hydrol. 2021, 600, 126579. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, R.L.; Wan, Z.M.; Bi, Y.Y.; Zhou, C.H.; Tang, B.H.; Yan, G.J.; Zhang, X.Y. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [PubMed]
- Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Rajan, N.; Pinnamaneni, S.R. Modeling evapotranspiration for irrigation water management in a humid climate. Agric. Water Manag. 2019, 225, 105731. [Google Scholar] [CrossRef]
- Wu, Y.S.; Wang, E.L.; He, D.; Liu, X.; Archontoulis, S.V.; Huth, N.I.; Zhao, Z.G.; Gong, W.Z.; Yang, W.Y. Combine observational data and modelling to quantify cultivar differences of soybean. Eur. J. Agron. 2019, 111, 125940. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, L.N.; Yang, Q.; Wang, Z.K.; Cui, S.; Shen, Y.Y. Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using APSIM. Agric. Syst. 2018, 166, 111–123. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao 1998, 300, D05109. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81–92. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Battisti, R.; Sentelhas, P.C.; Boote, K.J. Sensitivity and requirement of improvements of four soybean crop simulation models for climate change studies in Southern Brazil. Int. J. Biometeorol. 2018, 62, 823–832. [Google Scholar] [CrossRef]
- da Silva, E.H.F.M.; Hoogenboom, G.; Boote, K.J.; Gonsalves, A.O.; Marin, F.R. Predicting soybean evapotranspiration and crop water productivity for a tropical environment using the CSM-CROPGRO-Soybean model. Agric. For. Meteorol. 2022, 323, 109075. [Google Scholar] [CrossRef]
- Anapalli, S.S.; Ahuja, L.R.; Gowda, P.H.; Ma, L.W.; Marek, G.; Evett, S.R.; Howell, T.A. Simulation of crop evapotranspiration and crop coefficients with data in weighing lysimeters. Agric. Water Manag. 2016, 177, 274–283. [Google Scholar] [CrossRef]
- Hodges, T.; French, V. Soyphen—Soybean Growth-Stages Modeled from Temperature, Daylength, and Water Availability. Agron. J. 1985, 77, 500–505. [Google Scholar] [CrossRef]
- Isaac, P.; Cleverly, J.; McHugh, I.; Van Gorsel, E.; Ewenz, C.; Beringer, J. OzFlux data: Network integration from collection to curation. Biogeosciences 2017, 14, 2903–2928. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T. Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol. Z. 2006, 15, 597–609. [Google Scholar] [CrossRef]
- Fratini, G.; McDermitt, D.K.; Papale, D. Eddy-covariance flux errors due to biases in gas concentration measurements: Origins, quantification and correction. Biogeosciences 2014, 11, 1037–1051. [Google Scholar] [CrossRef]
- De Roo, F.; Zhang, S.; Huq, S.; Mauder, M. A semi-empirical model of the energy balance closure in the surface layer. PLoS ONE 2018, 13, e0209022. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Change Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Shelia, V.; Boote, K.J.; Singh, U.; White, J.W.; Pavan, W.; Oliveira, F.A.A.; Moreno-Cadena, L.P.; Lizaso, J.I.; et al. Decision Support System for Agrotechnology Transfer (DSSAT) Version <4.8>; DSSAT Foundation: Gainesville, FL, USA, 2021. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Ahuja, L.; Ma, L. Parameterization of Agricultural System Models: Current Approaches and Future Needs. Agricultural System Models in Field Research and Technology Transfer; Lewis Publishers: Boca Raton, FL, USA, 2002. [Google Scholar]
- Ritchie, J.T. Model for predicting evaporation from a row crop with incomplete cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef]
- Boote, K.; Sau, F.; Hoogenboom, G.; Jones, J.W. Experience with water balance, evapotranspiration, and predictions of water stress effects in the CROPGRO model. Response Crops Ltd. Water Underst. Model. Water Stress Eff. Plant Growth Process. 2008, 1, 59–103. [Google Scholar]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from Sparse Crops—An Energy Combination Theory. Q. J. R. Meteor. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Bassu, S.; Brisson, N.; Durand, J.L.; Boote, K.; Lizaso, J.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Adam, M.; Baron, C.; et al. How do various maize crop models vary in their responses to climate change factors? Glob. Change Biol. 2014, 20, 2301–2320. [Google Scholar] [CrossRef] [PubMed]
- Archontoulis, S.V.; Miguez, F.E.; Moore, K.J. A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean. Environ. Model. Softw. 2014, 62, 465–477. [Google Scholar] [CrossRef]
- Anapalli, S.S.; Fisher, D.K.; Reddy, K.N.; Wagle, P.; Gowda, P.H.; Sui, R. Quantifying soybean evapotranspiration using an eddy covariance approach. Agric. Water Manage 2018, 209, 228–239. [Google Scholar] [CrossRef]
Parameters | Definition | Values |
---|---|---|
CSDL | Critical short-day length below which productive development progresses with no daylength effect (hr) | 13.09 |
PPSEN | The slope of the relative response of development to photoperiod with time (positive for short-day plants) (hr−1) | 0.294 |
EM-FL | Time between plant emergence and flower appearance (R1) (photothermal days) | 19.4 |
FL-SH | Time between first flower and first pod (R3) (photothermal days) | 7.0 |
FL-SD | Time between first flower and first seed (R5) (photothermal days) | 15.0 |
SD-PM | Time between first seed (R5) and physiological maturity (R7) (photothermal days) | 34.00 |
FL-LF | Time between first flower (R1) and end of leaf expansion (photothermal days) | 26.00 |
LFMAX | Maximum lead photosynthesis rate at 30 °C, 350 ppm CO2, and high light (mg CO2/m2s) | 1.030 |
SLVAR | Specific leaf area of cultivar under standard growth condition (cm2/g) | 375 |
SIZLF | Maximum size of full lead (three leaflets) (cm2) | 180.0 |
XFRT | Maximum fraction of daily growth that is partitioned to seed + shell | 1.00 |
WTPSD | Maximum weight per seed (g) | 0.19 |
SFDUR | Seed filling duration for pod cohort at standard growth conditions (photothermal days) | 23.0 |
SDPDV | Average seed per pod under standard growing conditions (#/pod) | 2.20 |
PODUR | Time required for cultivar to reach final pod load under optimal conditions (photothermal days) | 10.0 |
THRSH | Threshing percentage. The maximum ratio of (seed/(seed + shell)) at maturity. Causes seeds to stop growing as their dry weight increases until the shells are filled in a cohort. | 77.0 |
SDPRO | Fraction protein in seeds (g(protein)/g(seed)) | 0.405 |
SDLIP | Fraction oil in seeds (g(oil)/g(seed)) | 0.205 |
Soil Depth (cm) | Clay % | Silt % | OC % | Total N% | pH | CEC (cmol kg−1) | θwp (cm3 cm−3) | θfc (cm3 cm−3) | θS (cm3 cm−3) | BD (Mg m−3) | KS (cm hr−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
0–15 | 40.0 | 50.0 | 2.0 | 0.12 | 7.5 | 22.0 | 0.211 | 0.350 | 0.463 | 1.20 | 0.39 |
15–30 | 40.3 | 52.5 | 1.2 | 0.05 | 7.3 | 23.7 | 0.228 | 0.350 | 0.463 | 1.20 | 0.29 |
30–60 | 42.1 | 51.4 | 1.0 | 0.07 | 6.6 | 24.7 | 0.228 | 0.330 | 0.435 | 1.30 | 0.29 |
60–90 | 41.9 | 50.0 | 1.0 | 0.06 | 5.1 | 26.6 | 0.228 | 0.400 | 0.418 | 1.30 | 0.29 |
90–120 | 40.0 | 50.0 | 0.5 | 0.07 | 5.9 | 26.0 | 0.228 | 0.350 | 0.418 | 1.35 | 0.19 |
120–150 | 40.0 | 50.0 | 0.5 | 0.04 | 6.0 | 29.4 | 0.249 | 0.406 | 0.459 | 1.35 | 0.19 |
Parameters | Measured (M) | DSSAT | RZWQM | |||
---|---|---|---|---|---|---|
Day | DAP | S | Error | S | Error | |
2017 | ||||||
Emergence | 28 April | 7 | 7 | 0 | 8 | 1 |
First flower | 28 May | 37 | 42 | 5 | ||
First pod | 27 June | 67 | 56 | −11 | 62 | 2 |
First seed | 15 July | 85 | 72 | −13 | 85 | 0 |
Physiological maturity | 7 September | 139 | 134 | −5 | 142 | 3 |
Grain yield (kg ha−1) | 4771 | 4843 | 72 | 5057 | 286 | |
Average daily ETC (mm) | 4.71 | 4.38 | −0.33 | 4.66 | −0.05 | |
Cumulative ETC (mm) | 584 | 544 | −40 | 577 | −7 | |
2018 | ||||||
Emergence | 7 May | 9 | 6 | −3 | 8 | −1 |
First flower | 9 June | 42 | 35 | −7 | ||
First pod | 22 June | 55 | 49 | −6 | 56 | 1 |
First seed | 9 July | 72 | 65 | −7 | 76 | 4 |
Physiological maturity | 12 September | 137 | 125 | −12 | 136 | −1 |
Grain yield (kg ha−1) | 5783 | 4399 | −1384 | 5423 | −360 | |
Average daily ETC (mm) | 4.84 | 4.55 | −0.29 | 4.42 | −0.42 | |
Cumulative ETC | 532 | 501 | −31 | 486 | −46 | |
2019 | ||||||
Emergence | 8 May | 7 | 6 | −1 | 8 | 1 |
First flower | 13 June | 43 | 37 | −6 | ||
First pod | 22 June | 52 | 52 | 0 | 58 | 6 |
First seed | 11 July | 71 | 68 | −3 | 77 | 6 |
Physiological maturity | 14 September 2019 | 136 | 128 | −8 | 136 | 0 |
Grain yield (kg ha−1) | 4909 | 4986 | 77 | 5399 | 490 | |
Average daily ETC (mm) | 4.64 | 4.41 | −0.23 | 4.40 | −0.24 | |
Cumulative ETC | 566 | 550 | −16 | 537 | −29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatterjee, A.; Anapalli, S.S. Comparison of Cropping System Models for Simulation of Soybean Evapotranspiration with Eddy Covariance Measurements in a Humid Subtropical Environment. Water 2023, 15, 3078. https://doi.org/10.3390/w15173078
Chatterjee A, Anapalli SS. Comparison of Cropping System Models for Simulation of Soybean Evapotranspiration with Eddy Covariance Measurements in a Humid Subtropical Environment. Water. 2023; 15(17):3078. https://doi.org/10.3390/w15173078
Chicago/Turabian StyleChatterjee, Amitava, and Saseendran S. Anapalli. 2023. "Comparison of Cropping System Models for Simulation of Soybean Evapotranspiration with Eddy Covariance Measurements in a Humid Subtropical Environment" Water 15, no. 17: 3078. https://doi.org/10.3390/w15173078
APA StyleChatterjee, A., & Anapalli, S. S. (2023). Comparison of Cropping System Models for Simulation of Soybean Evapotranspiration with Eddy Covariance Measurements in a Humid Subtropical Environment. Water, 15(17), 3078. https://doi.org/10.3390/w15173078