A New Tool for Mapping Water Yield in Cold Alpine Regions
Abstract
:1. Introduction
2. Methodology
2.1. Seasonal Water Yield Model
2.2. Model Revision
2.2.1. Considering the Effect of Frozen Ground on Water Yield
2.2.2. Considering the Effect of Snow Cover on Water Yield
2.2.3. Model Calibration, Validation, and Evaluation
- Determine if the model performance improves after the model revision.
- Conduct sensitivity analysis (α, β, and γ) to identify the optimal parameter combination.
- Since α, β, and γ only affect baseflow and not quickflow, we compared the monthly quickflow values of SWY1, SWY2, SWY3, and SWY4 with those obtained from the Eckhardt filter method to select the best SWY for modeling quickflow at the preliminary stage (we calculated daily quickflow based on the Eckhardt filter method, then summed them into monthly).
- We employed the method of Hamel et al. to analyze the sensitivity of parameters in YAR, YER, and LAR [27]. We started by using the default value for α (1/12) and γ (1) and changed β from 0 to 1 with the increments of 0.2 to analyze parameter sensitivity. Similarly, we set 1 for β and γ and adjusted α equal to 1/12, 1/6, and 1/3. We also repeated the previous analyses for γ by varying γ from 0 to 1 in increments of 0.2.
- Using the various parameter combinations obtained from the best SWY for modeling quickflow, as determined in the first step, we compared the annual water yield values. First, we summed the 12 quickflow outputs of SWY to obtain the annual quickflow, and then added the annual quickflow and baseflow to calculate the annual water yield. We subsequently compared this to the observed streamflow data to determine the optimal parameter combination.
- Using the optimal parameter combination obtained from the third step, we applied it to SWY1, SWY2, SWY3, and SWY4. We then compared the annual baseflow values obtained from these models with those from the Eckhardt filter method. To accomplish this, we initially computed the daily baseflow using the observed daily runoff data with the Eckhardt filter method. Subsequently, we summed the daily baseflow of the Eckhardt filter method to obtain the annual baseflow. This allowed us to investigate whether the best SWY for modeling baseflow was also the optimal choice for simulating quickflow.
3. Case Study
3.1. Study Area
3.2. Datasets
3.2.1. Meteorological Data
3.2.2. Hydrological Data
3.2.3. Land Use/Land Cover (LULC) Data
3.2.4. Soil Data
- (1)
- Hydrologic Soil Group raster (used as the soil group before revision) and Saturate Hydraulic Conductivity rasters (used to revise the soil group) from FutureWater (https://www.futurewater.eu/2015/07/soil-hydraulic-properties/) (accessed on 4 May 2021).
- (2)
- China meteorological assimilation datasets for the SWAT model-soil temperature version 1.0 (http://data.tpdc.ac.cn/) (accessed on 5 November 2020) [69].
- (3)
3.3. Parameters
4. Results
4.1. Sensitivity Analyses
4.2. Model Calibration, Validation, and Evaluation
4.3. Effects of Frozen Ground and Snow Cover
5. Discussion
5.1. Incorporating Frozen Ground and Snow Cover Improved Model Performance
5.2. Limitations of the Modeling Approach
6. Conclusions
- (1)
- The performance of the SWY was best in the scenario that accounted for the effects of both frozen ground and snow cover, while the scenario that did not consider these effects had the worst performance. Furthermore, the model performance improved when considering the effects of frozen ground or snow cover on water yield.
- (2)
- Snow cover affects water yield through processes of melting and sublimation, while frozen ground acts as an aquitard, reducing infiltration and thus affecting the distribution of both spatial and temporal quickflow and baseflow.
- (3)
- Without considering the effect of snow cover on water yield, the annual average baseflow and water yield of the TRHR would be overestimated by 13 mm (47.58 × 108 m3/yr) and 14 mm (51.24 × 108 m3/yr), respectively. Similarly, if the effect of frozen ground on water yield were not considered, there would be an annual overestimation of about 6 mm of quickflow as baseflow.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Brauman, K.A. Hydrologic ecosystem services: Linking ecohydrologic processes to human well-being in water research and watershed management. WIREs Water 2015, 2, 345–358. [Google Scholar] [CrossRef]
- Dennedy-Frank, P.J.; Muenich, R.L.; Chaubey, I.; Ziv, G. Comparing two tools for ecosystem service assessments regarding water resources decisions. J. Environ. Manag. 2016, 177, 331–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vigerstol, K.L.; Aukema, J.E. A comparison of tools for modeling freshwater ecosystem services. J. Environ. Manag. 2011, 92, 2403–2409. [Google Scholar] [CrossRef]
- Fan, M.; Shibata, H. Spatial and Temporal Analysis of Hydrological Provision Ecosystem Services for Watershed Conservation Planning of Water Resources. Water Resour. Manag. 2014, 28, 3619–3636. [Google Scholar] [CrossRef]
- Benra, F.; De Frutos, A.; Gaglio, M.; Álvarez-Garretón, C.; Felipe-Lucia, M.; Bonn, A. Mapping water ecosystem services: Evaluating InVEST model predictions in data scarce regions. Environ. Model. Softw. 2021, 138, 104982. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Liu, G.; Zhang, J.; Fang, Z. Factors driving water yield ecosystem services in the Yellow River Economic Belt, China: Spatial heterogeneity and spatial spillover perspectives. J. Environ. Manag. 2022, 317, 115477. [Google Scholar] [CrossRef]
- Ward, R.C.; Robinson, M. Principles of Hydrology; McGraw Hill Book Company: London, UK, 1990; pp. 139–183. [Google Scholar]
- Apurv, T.; Cai, X. Impact of Droughts on Water Supply in U.S. Watersheds: The Role of Renewable Surface and Groundwater Resources. Earth’s Futur. 2020, 8, e2020EF001648. [Google Scholar] [CrossRef]
- Scordo, F.; Lavender, T.M.; Seitz, C.; Perillo, V.L.; Rusak, J.A.; Piccolo, M.C.; Perillo, G.M.E. Modeling Water Yield: Assessing the Role of Site and Region-Specific Attributes in Determining Model Performance of the InVEST Seasonal Water Yield Model. Water 2018, 10, 1496. [Google Scholar] [CrossRef] [Green Version]
- Cong, W.; Sun, X.; Guo, H.; Shan, R. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecol. Indic. 2020, 112, 106089. [Google Scholar] [CrossRef]
- Francesconi, W.; Srinivasan, R.; Pérez-Miñana, E.; Willcock, S.P.; Quintero, M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J. Hydrol. 2016, 535, 625–636. [Google Scholar] [CrossRef]
- Aznarez, C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pacheco, J.P.; Senent-Aparicio, J. Analysing the Impact of Climate Change on Hydrological Ecosystem Services in Laguna del Sauce (Uruguay) Using the SWAT Model and Remote Sensing Data. Remote Sens. 2021, 13, 2014. [Google Scholar] [CrossRef]
- Uniyal, B.; Kosatica, E.; Koellner, T. Spatial and temporal variability of climate change impacts on ecosystem services in small agricultural catchments using the Soil and Water Assessment Tool (SWAT). Sci. Total. Environ. 2023, 875, 162520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, J.; Zhou, Z.; Sun, Y. Application of ecosystem service flows model in water security assessment: A case study in Weihe River Basin, China. Ecol. Indic. 2021, 120, 106974. [Google Scholar] [CrossRef]
- Troin, M.; Caya, D. Evaluating the SWAT’s snow hydrology over a Northern Quebec watershed. Hydrol. Process. 2014, 28, 1858–1873. [Google Scholar] [CrossRef]
- Wu, Q.; Song, J.; Sun, H.; Huang, P.; Jing, K.; Xu, W.; Wang, H.; Liang, D. Spatiotemporal variations of water conservation function based on EOF analysis at multi time scales under different ecosystems of Heihe River Basin. J. Environ. Manag. 2023, 325, 116532. [Google Scholar] [CrossRef]
- Agnihotri, J.; Behrangi, A.; Tavakoly, A.; Geheran, M.; Farmani, M.A.; Niu, G. Higher Frozen Soil Permeability Represented in a Hydrological Model Improves Spring Streamflow Prediction from River Basin to Continental Scales. Water Resour. Res. 2023, 59, e2022WR033075. [Google Scholar] [CrossRef]
- Gädeke, A.; Krysanova, V.; Aryal, A.; Chang, J.; Grillakis, M.; Hanasaki, N.; Koutroulis, A.; Pokhrel, Y.; Satoh, Y.; Schaphoff, S.; et al. Performance evaluation of global hydrological models in six large Pan-Arctic watersheds. Clim. Chang. 2020, 163, 1329–1351. [Google Scholar] [CrossRef]
- Sapriza-Azuri, G.; Gamazo, P.; Razavi, S.; Wheater, H.S. On the appropriate definition of soil profile configuration and initial conditions for land surface–hydrology models in cold regions. Hydrol. Earth Syst. Sci. 2018, 22, 3295–3309. [Google Scholar] [CrossRef] [Green Version]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic Impacts of Thawing Permafrost—A Review. Vadose Zone J. 2016, 15, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Hiyama, T.; Park, H.; Kobayashi, K.; Lebedeva, L.; Gustafsson, D. Contribution of summer net precipitation to winter river discharge in permafrost zone of the Lena River basin. J. Hydrol. 2023, 616, 128797. [Google Scholar] [CrossRef]
- Park, H.; Dibike, Y.; Su, F.; Shi, J.X. Cold Region Hydrologic Models and Applications. In Arctic Hydrology, Permafrost and Ecosystems; Yang, D., Kane, D.L., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Z.; Li, L. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst. Serv. 2018, 30, 276–286. [Google Scholar] [CrossRef]
- Liu, J.; Qin, K.; Xie, G.; Xiao, Y.; Huang, M.; Gan, S. Is the ‘water tower’ reassuring? Viewing water security of Qinghai-Tibet Plateau from the perspective of ecosystem services ‘supply-flow-demand’. Environ. Res. Lett. 2022, 17, 094043. [Google Scholar] [CrossRef]
- Lü, D.; Lü, Y.; Gao, G.; Liu, S.; Wu, B.; Fu, B. Existent nature reserves not optimal for water service provision and conservation on the Qinghai-Tibet Plateau of China. Glob. Ecol. Conserv. 2021, 32, e01945. [Google Scholar] [CrossRef]
- Hamel, P.; Valencia, J.; Schmitt, R.; Shrestha, M.; Piman, T.; Sharp, R.P.; Francesconi, W.; Guswa, A.J. Modeling seasonal water yield for landscape management: Applications in Peru and Myanmar. J. Environ. Manag. 2020, 270, 110792. [Google Scholar] [CrossRef]
- Qin, H.; Chen, Y. Spatial non-stationarity of water conservation services and landscape patterns in Erhai Lake Basin, China. Ecol. Indic. 2023, 146, 109894. [Google Scholar] [CrossRef]
- Posner, S.; Verutes, G.; Koh, I.; Denu, D.; Ricketts, T. Global use of ecosystem service models. Ecosyst. Serv. 2016, 17, 131–141. [Google Scholar] [CrossRef]
- Dai, E.; Zhu, J.; Wang, X.; Xi, W. Multiple ecosystem services of monoculture and mixed plantations: A case study of the Huitong experimental forest of Southern China. Land Use Policy 2018, 79, 717–724. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Shi, Q. Global Spatio-Temporal Assessment of Changes in Multiple Ecosystem Services Under Four IPCC SRES Land-use Scenarios. Earth’s Futur. 2020, 8, e2020EF001668. [Google Scholar] [CrossRef]
- Measho, S.; Chen, B.; Pellikka, P.; Trisurat, Y.; Guo, L.; Sun, S.; Zhang, H. Land Use/Land Cover Changes and Associated Impacts on Water Yield Availability and Variations in the Mereb-Gash River Basin in the Horn of Africa. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005632. [Google Scholar] [CrossRef]
- Gao, J.; Jiang, Y.; Wang, H.; Zuo, L. Identification of Dominant Factors Affecting Soil Erosion and Water Yield within Ecological Red Line Areas. Remote Sens. 2020, 12, 399. [Google Scholar] [CrossRef] [Green Version]
- Daneshi, A.; Brouwer, R.; Najafinejad, A.; Panahi, M.; Zarandian, A.; Maghsood, F.F. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar] [CrossRef]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.9.0. User’s Guide; The Natural Capital Project, Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Gaglio, M.; Aschonitis, V.; Pieretti, L.; Santos, L.; Gissi, E.; Castaldelli, G.; Fano, E. Modelling past, present and future Ecosystem Services supply in a protected floodplain under land use and climate changes. Ecol. Model. 2019, 403, 23–34. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Yang, D.; Yang, Y.; Piao, S.; Li, X.; Cheng, G.; Fu, B. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 2020, 6, eaaz3513. [Google Scholar] [CrossRef]
- Han, Z.; Song, W.; Deng, X.; Xu, X. Grassland ecosystem responses to climate change and human activities within the Three-River Headwaters region of China. Sci. Rep. 2018, 8, 9079. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Guo, C.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Li, W.; Ma, L.; Huang, M.; Zeng, H.; et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total. Environ. 2020, 742, 140574. [Google Scholar] [CrossRef]
- Gao, Z.; Lin, Z.; Niu, F.; Luo, J. Soil water dynamics in the active layers under different land-cover types in the permafrost regions of the Qinghai–Tibet Plateau, China. Geoderma 2020, 364, 114176. [Google Scholar] [CrossRef]
- Thapa, S.; Zhang, F.; Zhang, H.; Zeng, C.; Wang, L.; Xu, C.-Y.; Thapa, A.; Nepal, S. Assessing the snow cover dynamics and its relationship with different hydro-climatic characteristics in Upper Ganges river basin and its sub-basins. Sci. Total. Environ. 2021, 793, 148648. [Google Scholar] [CrossRef]
- Pan, T.; Wu, S.-H.; Dai, E.-F.; Liu, Y.-J. Spatiotemporal variation of water source supply service in Three Rivers Source Area of China based on InVEST model. J. Appl. Ecol. 2013, 24, 183–189. (In Chinese) [Google Scholar]
- Wang, Y.; Ye, A.; Peng, D.; Miao, C.; Di, Z.; Gong, W. Spatiotemporal variations in water conservation function of the Tibetan Plateau under climate change based on InVEST model. J. Hydrol. Reg. Stud. 2022, 41, 101064. [Google Scholar] [CrossRef]
- Xue, J.; Li, Z.; Feng, Q.; Gui, J.; Zhang, B. Spatiotemporal variations of water conservation and its influencing factors in ecological barrier region, Qinghai-Tibet Plateau. J. Hydrol. Reg. Stud. 2022, 42, 101164. [Google Scholar] [CrossRef]
- Qiao, F.; Fu, G.; Xu, X.; An, L.; Lei, K.; Zhao, J.; Hao, C. Assessment of water conservation Function in the Three-River Headwaters Region. Res. Environ. Sci. 2018, 31, 1010–1018. (In Chinese) [Google Scholar]
- Woo, M. Permafrost Hydrology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; pp. 16–17. [Google Scholar]
- Luo, D.; Jin, H.; Bense, V.F.; Jin, X.; Li, X. Hydrothermal processes of near-surface warm permafrost in response to strong precipitation events in the Headwater Area of the Yellow River, Tibetan Plateau. Geoderma 2020, 376, 114531. [Google Scholar] [CrossRef]
- Burt, T.P.; Williams, P.J. Hydraulic conductivity in frozen soils. Earth Surf. Process. Landforms 1976, 1, 349–360. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Voss, C.I.; Wellman, T.P. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: Example from Yukon Flats Basin, Alaska, United States. Water Resour. Res. 2012, 48, 1–17. [Google Scholar] [CrossRef]
- Ming, F.; Chen, L.; Li, D.; Wei, X. Estimation of hydraulic conductivity of saturated frozen soil from the soil freezing characteristic curve. Sci. Total. Environ. 2020, 698, 134132. [Google Scholar] [CrossRef] [PubMed]
- NRCS-USDA. Chapter 7: Hydrologic Soil Groups. In National Engineering Handbook; USDA: Washington, DC, USA, 2009. [Google Scholar]
- Chen, R.-S.; Liu, J.-F.; Song, Y.-X. Precipitation type estimation and validation in China. J. Mt. Sci. 2014, 11, 917–925. [Google Scholar] [CrossRef]
- Shiyin, L.; Yong, Z.; Yingsong, Z.; Yongjian, D. Estimation of glacier runoff and future trends in the Yangtze River source region, China. J. Glaciol. 2009, 55, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wang, G.; Yang, Y.; Liu, J.; Han, C.; Song, Y.; Liu, Z.; Kang, E. Effects of Cryospheric Change on Alpine Hydrology: Combining a Model with Observations in the Upper Reaches of the Hei River, China. J. Geophys. Res. Atmos. 2018, 123, 3414–3442. [Google Scholar] [CrossRef]
- Hancock, S.; Baxter, R.; Evans, J.; Huntley, B. Evaluating global snow water equivalent products for testing land surface models. Remote Sens. Environ. 2013, 128, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Winstral, A.; Marks, D. Simulating wind fields and snow redistribution using terrain-based parameters to model snow accumulation and melt over a semi-arid mountain catchment. Hydrol. Process. 2002, 16, 3585–3603. [Google Scholar] [CrossRef]
- Eckhardt, K. How to construct recursive digital filters for baseflow separation. Hydrol. Process. 2005, 19, 507–515. [Google Scholar] [CrossRef]
- Eckhardt, K. A comparison of baseflow indices, which were calculated with seven different baseflow separation methods. J. Hydrol. 2008, 352, 168–173. [Google Scholar] [CrossRef]
- Ahiablame, L.; Chaubey, I.; Engel, B.; Cherkauer, K.; Merwade, V. Estimation of annual baseflow at ungauged sites in Indiana USA. J. Hydrol. 2013, 476, 13–27. [Google Scholar] [CrossRef]
- Ahiablame, L.; Sheshukov, A.Y.; Rahmani, V.; Moriasi, D. Annual baseflow variations as influenced by climate variability and agricultural land use change in the Missouri River Basin. J. Hydrol. 2017, 551, 188–202. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.S.; Nguyen, D.B.; Rajendra, P.S. Effect of land use change on runoff and sediment yield in Da River Basin of Hoa Binh province, Northwest Vietnam. J. Mt. Sci. 2015, 12, 1051–1064. [Google Scholar] [CrossRef]
- Luo, S.; Fang, X.; Lyu, S.; Ma, D.; Chang, Y.; Song, M.; Chen, H. Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014. Clim. Res. 2016, 67, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Wu, T.; Zhu, X.; Hu, G.; Zou, D.; Wu, X.; Li, R.; Xie, C.; Qiao, Y.; Pang, Q.; et al. Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models. J. Geophys. Res. Atmos. 2021, 126, e2020JD033402. [Google Scholar] [CrossRef]
- Shen, X.; An, R.; Feng, L.; Ye, N.; Zhu, L.; Li, M. Vegetation changes in the Three-River Headwaters Region of the Tibetan Plateau of China. Ecol. Indic. 2018, 93, 804–812. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Zhai, X.; Xia, J. Runoff variation and its response to climate change in the Three Rivers Source Region. J. Geogr. Sci. 2012, 22, 781–794. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, D05109. [Google Scholar]
- Meng, X.; Wang, H. China Meteorological Assimilation Datasets for the SWAT Model-Soil Temperature Version 1.0 (2009–2013); National Tibetan Plateau Data Center: Beijing, China, 2018. [Google Scholar] [CrossRef]
- NRCS-USDA. Chapter 9: Hydrologic Soil-Cover Complexes. In National Engineering Handbook; USDA: Washington, DC, USA, 2009. [Google Scholar]
- Wei, Y. The Boundaries of the Source Regions in Sanjiangyuan Region; National Tibetan Plateau Data Center: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Chen, R.; Ding, Y.; Kang, E. Some knowledge on and parameters of China’s alpine hydrology. Adv. Water Sci. 2014, 25, 307–317. (In Chinese) [Google Scholar]
- Guo, S.; Chen, R.; Li, H. Surface Sublimation/Evaporation and Condensation/Deposition and Their Links to Westerlies during 2020 on the August-One Glacier, the Semi-Arid Qilian Mountains of Northeast Tibetan Plateau. J. Geophys. Res. Atmos. 2022, 127, e2022JD036494. [Google Scholar] [CrossRef]
- Suzuki, K.; Liston, G.E.; Matsuo, K. Estimation of Continental-Basin-Scale Sublimation in the Lena River Basin, Siberia. Adv. Meteorol. 2015, 2015, 286206. [Google Scholar] [CrossRef]
- Gascoin, S. Snowmelt and Snow Sublimation in the Indus Basin. Water 2021, 13, 2621. [Google Scholar] [CrossRef]
- Suzuki, K.; Park, H.; Makarieva, O.; Kanamori, H.; Hori, M.; Matsuo, K.; Matsumura, S.; Nesterova, N.; Hiyama, T. Effect of Permafrost Thawing on Discharge of the Kolyma River, Northeastern Siberia. Remote Sens. 2021, 13, 4389. [Google Scholar] [CrossRef]
Data Inputs | Format | Source (before Processing into Model Inputs) |
---|---|---|
Monthly Precipitation (revised by the method shown in Figure 1b.) | Raster (1 km) | China Meteorological Data Service Center (http://data.cma.cn) (accessed on 1 January 2021). |
Monthly Reference Evapotranspiration (ET0) | Raster (1 km) | China Meteorological Data Service Center (http://data.cma.cn) (accessed on 1 January 2021). |
Annual LULC Maps | Raster (1 km) | Chinese Academy of Environmental Science Data Center (https://www.resdc.cn/) (accessed on 5 June 2021). |
Annual Soil Group (revised by the method shown in Figure 1a.) | Raster (1 km) | The soil temperature data was downloaded from the National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/) (accessed on 5 November 2020) [69]. Hydrologic Soil Group raster (used as the soil group before revision) and Saturate Hydraulic Conductivity rasters (used to revise the soil group) from FutureWater (https://www.futurewater.eu/2015/07/soil-hydraulic-properties/) (accessed on 4 May 2021). |
Biophysical Table (12 months in a CSV) | CSV | CN was downloaded from the United States Department of Agriculture [70]. Kc values were from FAO [68]. |
Rain Events (12 months in a CSV) | CSV | China Meteorological Data Service Center (http://data.cma.cn) (accessed on 1 January 2021). |
DEM | Raster (1 km) | Geospatial Data Cloud http://www.gscloud.cn/ (accessed on 5 November 2020). |
AOI (Area of Interest) | Vector | National Tibetan Plateau Data Center (http://data.tpdc.ac.cn/) (accessed on 5 November 2020) [71]. |
The Critical Temperature Threshold of Soil Freezing (Tf) 1 | - | −8 °C [72]. |
The Threshold Temperature For Differentiating Rain and Sleet (T1) 1 | 5 °C [54]. | |
The Threshold Temperature For Differentiating Snow and Sleet (T2) 1 | 2 °C [55]. | |
TFA (Threshold Flow Accumulation) 1 | - | 3000 |
α; β; γ 1 | - | Default (1/12; 1; 1) |
Parameters | YAR | YER | LAR | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | NSE | PBIAS | R2 | NSE | PBIAS | R2 | NSE | PBIAS | |
α = 1/6, β = 1, γ = 1 | 0.40 | −0.30 | 21.67 | 0.75 | 0.61 | 7.43 | 0.55 | −0.49 | 9.80 |
α = 1/4, β = 1, γ = 1 | 0.40 | 0.07 | 14.69 | 0.74 | 0.68 | 3.77 | 0.55 | −0.49 | 9.73 |
α = 1/3, β = 1, γ = 1 | 0.37 | 0.36 | −1.56 | 0.73 | 0.69 | −2.81 | 0.55 | −0.46 | 9.54 |
α = 1/12, β = 0, γ = 1 | 0.43 | −1.42 | −32.66 | 0.69 | −0.88 | −33.03 | 0.56 | −3.46 | −28.96 |
α = 1/12, β = 0.2, γ = 1 | 0.47 | 0.41 | −0.14 | 0.73 | 0.59 | −7.98 | 0.57 | 0.12 | −6.99 |
α = 1/12, β = 0.4, γ = 1 | 0.42 | 0.18 | 11.32 | 0.76 | 0.72 | 0.50 | 0.62 | 0.32 | 1.02 |
α = 1/12, β = 0.6, γ = 1 | 0.41 | −0.02 | 16.57 | 0.75 | 0.68 | 3.98 | 0.59 | 0.03 | 5.53 |
α = 1/12, β = 0.8, γ = 1 | 0.41 | −0.16 | 19.39 | 0.75 | 0.65 | 5.73 | 0.56 | −0.20 | 7.66 |
α = 1/12, β = 1, γ = 0 | 0.45 | −121.84 | −286.37 | 0.71 | −95.48 | −260.84 | 0.60 | −212.67 | −224.99 |
α = 1/12, β = 1, γ = 0.2 | 0.51 | −16.93 | −107.33 | 0.77 | −18.76 | −113.03 | 0.61 | −44.49 | −101.77 |
α = 1/12, β = 1, γ = 0.4 | 0.34 | −3.53 | −47.22 | 0.77 | −5.27 | −62.10 | 0.60 | −12.06 | −50.84 |
α = 1/12, β = 1, γ = 0.6 | 0.32 | −1.06 | −23.75 | 0.73 | −12.09 | −48.07 | 0.60 | −2.92 | −22.50 |
α = 1/12, β = 1, γ = 0.8 | 0.42 | 0.21 | 0.67 | 0.70 | 0.32 | −12.51 | 0.57 | −0.49 | −4.75 |
α = 1/12, β = 1, γ = 1 | 0.40 | −0.27 | 21.16 | 0.74 | −0.44 | 7.44 | 0.56 | −0.33 | 8.62 |
YAR | YER | LAR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | NSE | PBIAS | R2 | NSE | PBIAS | R2 | NSE | PBIAS | ||
QF | SWY1 | 0.56 | 0.54 | 17.62 | 0.53 | 0.47 | 23.45 | - | - | - |
SWY2 | 0.71 | 0.69 | −5.91 | 0.65 | 0.55 | −2.55 | - | - | - | |
SWY3 | 0.65 | 0.62 | 21.57 | 0.62 | 0.53 | 23.34 | - | - | - | |
SWY4 | 0.77 | 0.76 | 1.25 | 0.72 | 0.65 | 1.34 | - | - | ||
BF | SWY1 | 0.52 | −0.02 | −14.08 | 0.62 | 0.18 | −17.39 | - | - | |
SWY2 | 0.56 | 0.26 | −8.62 | 0.74 | 0.45 | −12.41 | - | - | - | |
SWY3 | 0.58 | 0.50 | −1.30 | 0.77 | 0.70 | −5.66 | - | - | - | |
SWY4 | 0.61 | 0.55 | 3.73 | 0.82 | 0.80 | −1.00 | - | - | - | |
WY | SWY1 | 0.41 | −0.02 | −10.94 | 0.70 | 0.53 | −8.80 | 0.57 | −0.15 | −8.30 |
SWY2 | 0.41 | −0.02 | −10.94 | 0.70 | 0.53 | −8.80 | 0.57 | −0.15 | −8.30 | |
SWY3 | 0.47 | 0.41 | 0.54 | 0.76 | 0.72 | 1.04 | 0.62 | 0.32 | 1.02 | |
SWY4 | 0.47 | 0.41 | 0.54 | 0.76 | 0.72 | 1.04 | 0.62 | 0.32 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Chen, R.; Yang, Y.; Liu, G.; Wang, X. A New Tool for Mapping Water Yield in Cold Alpine Regions. Water 2023, 15, 2920. https://doi.org/10.3390/w15162920
Zhao L, Chen R, Yang Y, Liu G, Wang X. A New Tool for Mapping Water Yield in Cold Alpine Regions. Water. 2023; 15(16):2920. https://doi.org/10.3390/w15162920
Chicago/Turabian StyleZhao, Linlin, Rensheng Chen, Yong Yang, Guohua Liu, and Xiqiang Wang. 2023. "A New Tool for Mapping Water Yield in Cold Alpine Regions" Water 15, no. 16: 2920. https://doi.org/10.3390/w15162920
APA StyleZhao, L., Chen, R., Yang, Y., Liu, G., & Wang, X. (2023). A New Tool for Mapping Water Yield in Cold Alpine Regions. Water, 15(16), 2920. https://doi.org/10.3390/w15162920