Photocatalytic Degradation of the Antibiotic Sulfamethazine Using Decatungstate Anions in an Aqueous Solution: Mechanistic Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sodium Decatungstate
2.3. Photoreactor
2.4. Procedure
2.5. Analysis
2.6. Computational Details
3. Results
3.1. Characterization
3.2. Kinetics of SMZ Degradation
3.3. Effect of pH
3.4. Pollutant Concentration Effect
3.5. Decatungstate Mass Effect
3.6. Effect of Oxygen Concentration
3.7. Inhibition of Radical’s Activity
3.8. Mineralization
3.9. LC-MS Studies for Product Analysis
3.10. Mechanism of Photocatalytic Degradation of SMZ
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fatta-Kassinos, D.; Hapeshi, E.; Achilleos, A.; Meric, S.; Gros, M.; Petrovic, M.; Barcelo, D. Existence of Pharmaceutical Compounds in Tertiary Treated Urban Wastewater That Is Utilized for Reuse Applications. Water Resour. Manag. 2011, 25, 1183–1193. [Google Scholar] [CrossRef]
- El-Dairi, M.; House, R.J. Veterinary Drugs in the Environment and Their Toxicity to Plants. In Handbook of Pediatric Retinal OCT and the Eye-Brain Connection; Elsevier: Amsterdam, The Netherlands, 2020; pp. 285–287. [Google Scholar] [CrossRef]
- Girard, P. Toxiques et Poisons Dans Le Passé Pharmaceutique de La Savoie. Rev. D’histoire Pharm. 1983, 71, 287–297. [Google Scholar] [CrossRef]
- An, T.; Yang, H.; Song, W.; Li, G.; Luo, H.; Cooper, W.J. Mechanistic Considerations for the Advanced Oxidation Treatment of Fluoroquinolone Pharmaceutical Compounds Using TiO2 Heterogeneous Catalysis. J. Phys. Chem. A 2010, 114, 2569–2575. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.B. Photocatalytic Oxidation of Paracetamol: Dominant Reactants, Intermediates, and Reaction Mechanisms. Environ. Sci. Technol. 2009, 43, 460–465. [Google Scholar]
- Xu, W.; Zhang, G.; Zou, S.; Li, X.; Liu, Y. Determination of Selected Antibiotics in the Victoria Harbour and the Pearl River, South China Using High-Performance Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry. Environ. Pollut. 2007, 145, 672–679. [Google Scholar] [CrossRef]
- Connor, E.E. Sulfonamide Antibiotics. Prim. Care Update OB/GYNS 1998, 5, 32–35. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Díaz-Cruz, M.S.; Barceló, D. Occurrence of Sulfonamide Residues along the Ebro River Basin. Removal in Wastewater Treatment Plants and Environmental Impact Assessment. Environ. Int. 2011, 37, 462–473. [Google Scholar] [CrossRef]
- Göbel, A.; McArdell, C.S.; Suter, M.J.F.; Giger, W. Trace Determination of Macrolide and Sulfonamide Antimicrobials, a Human Sulfonamide Metabolite, and Trimethoprim in Wastewater Using Liquid Chromatography Coupled to Electrospray Tandem Mass Spectrometry. Anal. Chem. 2004, 76, 4756–4764. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Díaz-Cruz, M.S.; Barceló, D. Kinetic Studies and Characterization of Photolytic Products of Sulfamethazine, Sulfapyridine and Their Acetylated Metabolites in Water under Simulated Solar Irradiation. Water Res. 2012, 46, 711–722. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Frömel, T.; Müller, J.; Peschka, M.; Knepper, T.; Díaz-Cruz, S.; Barceló, D. Biodegradation Studies of N4-Acetylsulfapyridine and N4-Acetylsulfamethazine in Environmental Water by Applying Mass Spectrometry Techniques. Anal. Bioanal. Chem. 2012, 402, 2885–2896. [Google Scholar] [CrossRef]
- Padmaja, K.; Cherukuri, J.; Anji Reddy, M. A Comparative Study of the Efficiency of Chemical Coagulation and Electrocoagulation Methods in the Treatment of Pharmaceutical Effluent. J. Water Process. Eng. 2020, 34, 101153. [Google Scholar] [CrossRef]
- Naboulsi, A.; Naboulsi, I.; Bouzid, T.; Grich, A.; Regti, A.; El Himri, M.; El Haddad, M. Tetracycline Removal by a Natural Biosorbent: Optimization by Response Surface Methods Employing DOE/FFD Design of the Experiment. Int. J. Environ. Anal. Chem. 2023, 103, 1–22. [Google Scholar] [CrossRef]
- Joss, A.; Keller, E.; Alder, A.C.; Go, A.; Mcardell, C.S.; Ternes, T.; Siegrist, H. Removal of Pharmaceuticals and Fragrances in Biological Wastewater Treatment. Water Res. 2005, 39, 3139–3152. [Google Scholar] [CrossRef]
- Ataklti, A.; Alemu, K.; Abebe, B. Study of the Self-Association of Amoxicillin, Thiamine and the Hetero-Association with Biologically Active Compound Chlorgenic Acid. Afr. J. Pharm. Pharmacol. 2016, 10, 393–402. [Google Scholar] [CrossRef]
- Rai, B.; Shrivastav, A. Removal of Emerging Contaminants in Water Treatment by Nanofiltration and Reverse Osmosis. In Development in Wastewater Treatment Research and Processes: Removal of Emerging Contaminants from Wastewater through Bio-Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 605–628. [Google Scholar] [CrossRef]
- Lekbira, E.M.; El Mouchtari, E.; Belghiti, M.; Belkodia, K.; Edaala, M.A.; Briche, S.; Tahiri, A.A.; Rafqah, S. Development of a New Composite LDH/TiO2-3D for Degradation of Sulfaguanidine under UV and Visible Light: Experimental Design, Kinetic and Mechanisms. J. Environ. Chem. Eng. 2023, 111038. [Google Scholar] [CrossRef]
- Belghiti, M.; El Mersly, L.; El Mouchtari, E.M.; Rafqah, S.; Ouzaouit, K.; Faqir, H.; Benzakour, I.; Oueriagli, A.; Outzourhit, A. Synthesis and Characterization of Y2O3 Partially Coated ZnO for Highly Efficient Photocatalytic Degradation of Sulfamethazine. J. Mol. Struct. 2022, 1251, 132036. [Google Scholar] [CrossRef]
- El Mouchtari, E.M.; El Mersly, L.; Belkodia, K.; Piram, A.; Lebarillier, S.; Briche, S.; Rafqah, S.; Wong-Wah-Chung, P. Sol-Gel Synthesis of New TiO2 Ball/Activated Carbon Photocatalyst and Its Application for Degradation of Three Hormones: 17α-EthinylEstradiol, Estrone, and β-Estradiol. Toxics 2023, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- El Mouchtari, E.M.; El Mersly, L.; Jhabli, O.; Anane, H.; Piram, A.; Briche, S.; Wong-Wah-Chung, P.; Rafqah, S. Hydrothermal Synthesis of 3D Cauliflower Anatase TiO2 and Bio Sourced Activated Carbon: Adsorption and Photocatalytic Activity in Real Water Matrices. Int. J. Environ. Anal. Chem. 2022, 102, 1–16. [Google Scholar] [CrossRef]
- Umar, A.; Kumar, R.; Kumar, G.; Algarni, H.; Kim, S.H. Effect on Annealing Temperature on the Properties and Photocatalytic Efficiencies of ZnO Nanoparticles. J. Alloys Compd. 2015, 648, 46–52. [Google Scholar] [CrossRef]
- Sood, S.; Kumar, S.; Umar, P.A.; Kaur, A.; Mehta, S.K.; Sushil, P.; Kansal, K. TiO2 Quantum Dots for the Photocatalytic Degradation of Indigo Carmine Dye. J. Alloys Compd. 2015, 650, 193–198. [Google Scholar] [CrossRef]
- Tanielian, C. Decatungstate Photocatalysis. Coord. Chem. Rev. 1998, 178–180, 1165–1181. [Google Scholar] [CrossRef]
- Suzuki, K.; Mizuno, N.; Yamaguchi, K. Polyoxometalate Photocatalysis for Liquid-Phase Selective Organic Functional Group Transformations. ACS Catal. 2018, 8, 10809–10825. [Google Scholar] [CrossRef]
- Choina, J.; Kosslick, H.; Fischer, C.; Flechsig, G.U.; Frunza, L.; Schulz, A. Photocatalytic Decomposition of Pharmaceutical Ibuprofen Pollutions in Water over Titania Catalyst. Appl Catal B 2013, 129, 589–598. [Google Scholar] [CrossRef]
- Li, C.; Gu, C.; Yamaguchi, K.; Suzuki, K. Highly Efficient Degradation of Polyesters and Polyethers by Decatungstate Photocatalysis. Nanoscale 2023, 15, 15038–15042. [Google Scholar] [CrossRef]
- Stiriba, S.E.; Aflak, N.; El Mouchtari, E.M.; Ben El Ayouchia, H.; Rafqah, S.; Anane, H.; Julve, M. Merging Decatungstate Photocatalysis and Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction for the Formation of 1,2,3-Triazoles in Water†. Appl. Organomet. Chem. 2023, 37, e7175. [Google Scholar] [CrossRef]
- Mylonas, A.; Papaconstantinou, E. Photocatalytic Degradation of Chlorophenols to CO2 and HCl with Polyoxotungstates in Aqueous Solution. J. Mol. Catal. 1994, 92, 261–267. [Google Scholar] [CrossRef]
- Mylonas, A.; Papaconstantinou, E. On the Mechanism of Photocatalytic Degradation of Chlorinated Phenols to CO2 and HCl by Polyoxometalates. J. Photochem. Photobiol. A Chem. 1996, 94, 77–82. [Google Scholar] [CrossRef]
- Texier, I.; Giannotti, C.; Malato, S.; Richter, C.; Delaire, J. Solar Photodegradation of Pesticides in Water by Sodium Decatungstate. Catal. Today 1999, 54, 297–307. [Google Scholar] [CrossRef]
- Tanielian, C.; Lykakis, I.N.; Seghrouchni, R.; Cougnon, F.; Orfanopoulos, M. Mechanism of Decatungstate Photocatalyzed Oxygenation of Aromatic Alcohols: Part I. Continuous Photolysis and Laser Flash Photolysis Studies. J. Mol. Catal. A Chem. 2007, 262, 170–175. [Google Scholar] [CrossRef]
- Loaiza-Ambuludi, S.; Panizza, M.; Oturan, N.; Oturan, M.A. Removal of the Anti-Inflammatory Drug Ibuprofen from Water Using Homogeneous Photocatalysis. Catal Today 2014, 224, 29–33. [Google Scholar] [CrossRef]
- Sudan Amoksisilin, A.; Ampisillin, V.E.; Giderimi, A. Amoxicillin and Ampicillin Removal from Wastewater by Fenton and Photo-Fenton Processes Fenton Ve Foto-Fenton Prosesleri Kullanarak. Ph.D. Thesis, Hacettepe University, Ankara, Turkey, 2015. [Google Scholar]
- Fukahori, S.; Fujiwara, T. Photocatalytic Decomposition Behavior and Reaction Pathway of Sulfamethazine Antibiotic Using TiO2. J. Environ. Manag. 2015, 157, 103–110. [Google Scholar] [CrossRef]
- Cheng, P.; Wang, Y.; Sarakha, M.; Mailhot, G. Enhancement of the Photocatalytic Activity of Decatungstate, W10O324−, for the Oxidation of Sulfasalazine/Sulfapyridine in the Presence of Hydrogen Peroxide. J. Photochem. Photobiol. A Chem. 2021, 404, 112890. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Tomasi, J.; Persico, M. Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent. Chem. Rev. 1994, 94, 2027–2094. [Google Scholar] [CrossRef]
- Ayers, P.W.; Parr, R.G. Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited. J. Am. Chem. Soc. 2000, 122, 2010–2018. [Google Scholar] [CrossRef]
- Briche, S.; El Mouchtari, E.M.; Boutamart, M.; Jhabli, O.; EL Mersly, L.; Belkodia, K.; Edaala, M.A.; Wong-Wah-Chung, P.; Abida, O.; Rafqah, S. Synthesis and Characterization of New Hybrid Decatungstate Anions (CTAB)4W10O32: Toward Heterogeneous Photocatalysis. Int. J. Environ. Anal. Chem. 2023, 1–18. [Google Scholar] [CrossRef]
- Renneke, R.F.; Pasquali, M.; Hill, C.L. Polyoxometalate Systems for the Catalytic Selective Production of Nonthermodynamic Alkenes from Alkanes. Nature of Excited-State Deactivation Processes and Control of Subsequent Thermal Processes in Polyoxometalate Photoredox Chemistry. J. Am. Chem. Soc. 1990, 112, 6585–6594. [Google Scholar] [CrossRef]
- Errington, R.J.; Kerlogue, M.D.; Richards, D.G. Non-Aqueous Routes to a New Polyoxotungstate. J. Chem. Soc. Chem. Commun. 1993, 7, 649–651. [Google Scholar] [CrossRef]
- Rafqah, S.; Chung, P.W.W.; Forano, C.; Sarakha, M. Photocatalytic Degradation of Metsulfuron Methyl in Aqueous Solution by Decatungstate Anions. J. Photochem. Photobiol. A Chem. 2008, 199, 297–302. [Google Scholar] [CrossRef]
- Wang, C.; Ni, H.; Dai, J.; Liu, T.; Wu, Z.; Chen, X.; Dong, Z.; Qian, J.; Wu, Z. Comparison of Highly Active Type-I and Type-II Heterojunction Photocatalytic Composites Synthesized by Electrospinning for Humic Acid Degradation. Chem. Phys. Lett. 2022, 803, 139815. [Google Scholar] [CrossRef]
- Mourid, E.H.; el Mouchtari, E.M.; el Mersly, L.; Benaziz, L.; Rafqah, S.; Lakraimi, M. Development of a New Recyclable Nanocomoposite LDH-TiO2 for the Degradation of Antibiotic Sulfamethoxazole under UVA Radiation: An Approach towards Sunlight. J. Photochem. Photobiol. A Chem. 2020, 396, 112530. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; de Pedro, C.; Paxeus, N. Effluent from Drug Manufactures Contains Extremely High Levels of Pharmaceuticals. J. Hazard Mater. 2007, 148, 751–755. [Google Scholar] [CrossRef]
- Carter, L.J.; Garman, C.D.; Ryan, J.; Dowle, A.; Bergström, E.; Thomas-Oates, J.; Boxall, A.B.A. Fate and Uptake of Pharmaceuticals in Soil-Earthworm Systems. Environ. Sci. Technol. 2014, 48, 5955–5963. [Google Scholar] [CrossRef]
- Sim, W.J.; Lee, J.W.; Oh, J.E. Occurrence and Fate of Pharmaceuticals in Wastewater Treatment Plants and Rivers in Korea. Environ. Pollut. 2010, 158, 1938–1947. [Google Scholar] [CrossRef] [PubMed]
- El Mouchtari, E.M.; Daou, C.; Rafqah, S.; Najjar, F.; Anane, H.; Piram, A.; Hamade, A.; Briche, S.; Wong-Wah-Chung, P. TiO2 and Activated Carbon of Argania Spinosa Tree Nutshells Composites for the Adsorption Photocatalysis Removal of Pharmaceuticals from Aqueous Solution. J. Photochem. Photobiol. A Chem. 2020, 388, 112183. [Google Scholar] [CrossRef]
- Thakur, R.S.; Chaudhary, R.; Singh, C. Fundamentals and Applications of the Photocatalytic Treatment for the Removal of Industrial Organic Pollutants and Effects of Operational Parameters: A Review. J. Renew. Sustain. Energy 2010, 2, 042701. [Google Scholar] [CrossRef]
- Akpan, U.G.; Hameed, B.H. Parameters Affecting the Photocatalytic Degradation of Dyes Using TiO2-Based Photocatalysts: A Review. J. Hazard Mater. 2009, 170, 520–529. [Google Scholar] [CrossRef]
- Pasti, L.; Sarti, E.; Martucci, A.; Marchetti, N.; Stevanin, C.; Molinari, A. An Advanced Oxidation Process by Photoexcited Heterogeneous Sodium Decatungstate for the Degradation of Drugs Present in Aqueous Environment. Appl. Catal. B 2018, 239, 345–351. [Google Scholar] [CrossRef]
- Gao, X.; Lu, J.; Ji, Y.; Chen, J.; Yin, X.; Zhou, Q. Nitrite-Mediated Photodegradation of Sulfonamides and Formation of Nitrated Products. Chemosphere 2021, 282, 130968. [Google Scholar] [CrossRef]
- Oliveira, C.A.; Penteado, E.D.; Tomita, I.N.; Santos-Neto, Á.J.; Zaiat, M.; da Silva, B.F.; Lima Gomes, P.C.F. Removal Kinetics of Sulfamethazine and Its Transformation Products Formed during Treatment Using a Horizontal Flow-Anaerobic Immobilized Biomass Bioreactor. J. Hazard Mater. 2019, 365, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Kaniou, S.; Pitarakis, K.; Barlagianni, I.; Poulios, I. Photocatalytic Oxidation of Sulfamethazine. Chemosphere 2005, 60, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Briche, S.; Derqaoui, M.; Belaiche, M.; El Mouchtari, E.M.; Wong-Wah-Chung, P.; Rafqah, S. Nanocomposite Material from TiO2 and Activated Carbon for the Removal of Pharmaceutical Product Sulfamethazine by Combined Adsorption/Photocatalysis in Aqueous Media. Environ. Sci. Pollut. Res. 2020, 27, 25523–25534. [Google Scholar] [CrossRef] [PubMed]
- El Mouchtari, E.M.; Bahsis, L.; El Mersly, L.; Anane, H.; Lebarillier, S.; Piram, A.; Briche, S.; Wong-Wah-Chung, P.; Rafqah, S. Insights in the Aqueous and Adsorbed Photocatalytic Degradation of Carbamazepine by a Biosourced Composite: Kinetics, Mechanisms and DFT Calculations. Int. J. Environ. Res. 2021, 15, 135–147. [Google Scholar] [CrossRef]
- Balasurya, S.; Okla, M.K.; Alaraidh, I.A.; Al-ghamdi, A.A.; Mohebaldin, A.; Abdel-Maksoud, M.A.; Abdelaziz, R.F.; Thomas, A.M.; Raju, L.L.; Khan, S.S. Sunlit Photocatalytic Degradation of Organic Pollutant by NiCr2O4/Bi2S3/Cr2S3 Tracheid Skeleton Nanocomposite: Mechanism, Pathway, Reactive Sites, Genotoxicity and Byproduct Toxicity Evaluation. J. Environ. Manag. 2022, 319, 115674. [Google Scholar] [CrossRef]
- Okla, M.K.; Harini, G.; Dawoud, T.M.; Akshhayya, C.; Mohebaldin, A.; AL-ghamdi, A.A.; Soufan, W.; Abdel-Maksoud, M.A.; AbdElgawad, H.; Raju, L.L.; et al. Fabrication of MnFe2O4 Spheres Modified CeO2 Nano-Flakes for Sustainable Photodegradation of MB Dye and Antimicrobial Activity: A Brief Computational Investigation on Reactive Sites and Degradation Pathway. Colloids Surf. A Physicochem. Eng. Asp. 2022, 641, 128566. [Google Scholar] [CrossRef]
- Dabić, D.; Hanževački, M.; Škorić, I.; Žegura, B.; Ivanković, K.; Biošić, M.; Tolić, K.; Babić, S. Photodegradation, Toxicity and Density Functional Theory Study of Pharmaceutical Metoclopramide and Its Photoproducts. Sci. Total Environ. 2022, 807, 150694. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.; Gao, X.; Che, H.; Ao, Y.; Wang, P. Understanding the Mechanism of Interfacial Interaction Enhancing Photodegradation Rate of Pollutants at Molecular Level: Intermolecular π-π Interactions Favor Electrons Delivery. J. Hazard Mater. 2022, 430, 128386. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Sun, Y.; Hou, Z.; Yu, H.; Li, M.; Li, Y.; Li, Y.; Gao, B.; Xu, S. Repeated Fluctuation of Cu2+ Concentration during Photocatalytic Purification of SMZ-Cu2+ Combined Pollution: Behavior, Mechanism and Application. J. Hazard Mater. 2023, 447, 130768. [Google Scholar] [CrossRef] [PubMed]
SMZ (mg/L) | 2.78 | 13.9 | 27.8 | 55.6 | 83.4 |
---|---|---|---|---|---|
t1/2 (min) | 30.2 | 66.1 | 101.2 | 267.6 | 471.5 |
k × 103 (min−1) | 23.9 | 10.5 | 6.8 | 2.6 | 1.7 |
PP | Photocatalyst | Photocatalyst Mass (g/L) | PP (mg/L) | % Degradation | Time (h) | References |
---|---|---|---|---|---|---|
Sulfamethoxazole | Na4W10O32 | 0.48 | 10 | 60 | 1 | [53] |
Propranolol | silica-NH3+/Na3W10O32− | 5 | 10 | 60–65 | 3 | [53] |
Sulfasalazine | Na4W10O32 | 0.097 | 19 | 16 | 2 | [32] |
Carbamazepine | (CTAB)4W10O32 | 0.6 | 2.5 | 88.64 | 7 | [41] |
Carbamazepine | Na4W10O32 | 0.6 | 2.5 | 45.64 | 7 | [41] |
Sulfamethazine | Na4W10O32 | 0.33 | 13.9 | 85 | 4 | This study |
Conditions | k × 103 (min−1) |
---|---|
Direct radiation | 1.4 |
With 2% of IPA | 1.9 |
Without IPA | 10.1 |
tr (min) | Products | m/z | Formula | ΔM | Chemical Structure |
---|---|---|---|---|---|
7.88 | SMZ | 279 | C12H15N4O2S | ||
6.25 | P1 | 295 | C12H15N4O3S | +16 | |
5.74 | P2 | 295 | C12H15N4O3S | +16 | |
4.57 | P3 | 311 | C12H15N4O4S | +32 | |
1.70 | P4 | 215 | C12H15N4 | −64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edaala, M.-A.; El Mersly, L.; Aloui Tahiri, A.; Wong-Wah-Chung, P.; El Blidi, L.; Alrashed, M.M.; Rafqah, S. Photocatalytic Degradation of the Antibiotic Sulfamethazine Using Decatungstate Anions in an Aqueous Solution: Mechanistic Approach. Water 2023, 15, 4058. https://doi.org/10.3390/w15234058
Edaala M-A, El Mersly L, Aloui Tahiri A, Wong-Wah-Chung P, El Blidi L, Alrashed MM, Rafqah S. Photocatalytic Degradation of the Antibiotic Sulfamethazine Using Decatungstate Anions in an Aqueous Solution: Mechanistic Approach. Water. 2023; 15(23):4058. https://doi.org/10.3390/w15234058
Chicago/Turabian StyleEdaala, Mohammed-Amine, Lekbira El Mersly, Abdelaziz Aloui Tahiri, Pascal Wong-Wah-Chung, Lahssen El Blidi, Maher M. Alrashed, and Salah Rafqah. 2023. "Photocatalytic Degradation of the Antibiotic Sulfamethazine Using Decatungstate Anions in an Aqueous Solution: Mechanistic Approach" Water 15, no. 23: 4058. https://doi.org/10.3390/w15234058
APA StyleEdaala, M. -A., El Mersly, L., Aloui Tahiri, A., Wong-Wah-Chung, P., El Blidi, L., Alrashed, M. M., & Rafqah, S. (2023). Photocatalytic Degradation of the Antibiotic Sulfamethazine Using Decatungstate Anions in an Aqueous Solution: Mechanistic Approach. Water, 15(23), 4058. https://doi.org/10.3390/w15234058