Environmental Degradation of Oxo-Biodegradable Polyethylene Bags
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environments
2.2. Material
2.3. Methodology
- The macro and microscopic observations—the polymer samples were observed in a macro (naked eyes) and micro scale (microscopic observation). Macroscopic observations of the polymer surface were analyzed organoleptically using a FujiFilm S2500 HD camera, whereas microscopic observations of the polymer structure were analyzed with the metallographic microscope ALPHAPHOT-2YS2-H Nikon linked to the photo camera Delta Optical DLT-Cam PRO 6.3MP USB 3.0. The micrographs were collected under transmitted light. The images of the polymer samples before and after degradation were compared.
- The changes of weight—the dried polymer samples were weighed on an analytical electronic balance (RADWAG AS 160.X2, repeatability 0.1 mg). The weight of clean and dried polymer samples after incubation in the natural and laboratory was compared with the one before incubation. The final results of the determinations were the average of the five sample measurements.
- The changes of chemical structure—Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) was used to determine the characteristic groups of oxo-biodegradable polyethylene. FTIR spectra were recorded with an attenuated total reflection (ATR Smart Orbit Accessory, Thermo Fisher Scientific, Madison, WI, USA) mode on a Nicolet 380 FTIR spectrometer (Thermo Scientific, Madison, WI, USA) with a diamond cell. A resolution of 4 cm−1 and a scanning range from 600 to 4000 cm−1 were applied, and 48 scans were taken for each measurement.
- The changes of mechanical properties—the tensile strength (MPa) and elongation (%) was measured at room temperature using The Tensile Testing Machine MultiTest 1-xt made by Mecmesin, according to PN-EN ISO 527-1, 3: 2018-19 Standard [36,37]. The final results of the determinations were also the average of the five sample measurements.
3. Results and Discussion
3.1. The Characteristic Parameters of Environments
3.2. The Changes of Oxo-Biodegradable Polyethylene during Environmental Degradation
4. Conclusions
- Natural weathering is an oxidative degradation that produces hydroperoxy, hydroxy, carbonyl groups, and crosslinking. The effects of natural weathering are surface changes, brittleness, weight change, and loss of mechanical properties.
- The results of macroscopic and microscopic observations, changes in weight and mechanical properties indicate a slowly degrading process under natural weathering conditions (39 months), although the manufacturer declared faster degradation (up to 24 months). Natural weathering resulted in a reduction in weight to 81.6% after 39 months and complete assimilation of the samples after 45 months, while the 48-month incubation in the pond led to an increase in the weight of the samples (+19%).
- The enzymatic degradation of the samples in the natural pond was very slow—after 48 months the samples did not fragment, only swelled. The degradative effect of microorganisms was evident in the reduction of the strength parameters of the tested samples. In the pond after 48 months of incubation, the tensile strength decreased from 26.31 to 17.35 MPa and the elongation at break reduced from 304 to 31%.
- Due to the significant fragmentation of the samples, mechanical properties could be determined up to the 18th month of degradation in natural weathering: tensile strength decreased to 10.76 MPa and elongation at break to 1%.
- During the degradation, the initial improvement in mechanical properties and, only after a sufficiently long period of time, the deterioration in film properties indicated that degradation is due to the superimposed effects of various aging processes, such as branching and crosslinking (max. increasing Rm to 45.72 MPa) and chain cracking (leading to a decrease in Rm to 10.76 MPa).
- The microbial biofilm formed, on the one hand, accumulates microorganisms on the polymer surface and, on the other, restricts the access of radiation and oxygen to the oxo-biodegradable plastic, thus slowing down the degradation process.
- FTIR spectroscopy interpretation showed that the degradation process exists in natural environments (atmospheric weathering and freshwater), and the polyethylene with d2w additive appeared to be resistant to hydrolysis during the monitored time in the laboratory. The changes concern C–H groups (peaks 2914 and 2845 cm−1), CH2 groups (peaks 1461 cm−1 and 717 cm−1), and C–O groups (peaks 1040 and 1082 cm−1). The absorbance found at 3000–3600 cm−1 indicates the existence of O–H groups due to the formation of hydroperoxides and alcohols during oxidation reactions.
- After incubation under laboratory conditions, no visible degradation changes were observed in the polyethylene with the d2w additive samples. Because of the lack of microorganisms and solar radiation in the simulated laboratory test, only chemical hydrolysis can be anticipated.
- The degradation of the polyethylene with d2w additive in natural environments requires a longer incubation time compared to the degradation time declared by the manufacturer.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yaroslavov, A.A.; Arzhakov, M.S.; Khokhlov, A.R. Disposable Polymer Packaging: A Problem without a Solution? Her. Russ. Acad. Sci. 2022, 92, 600–608. [Google Scholar] [CrossRef]
- Sciscione, F.; Hailes, H.C.; Miodownik, M. The performance and environmental impact of pro-oxidant additive containing plastics in the open unmanaged environment—A review of the evidence. R. Soc. Open Sci. 2023, 10, 230089. [Google Scholar] [CrossRef]
- Lukanina, Y.K.; Kolesnikova, N.N.; Popov, A.A.; Khvatov, A.V. Metal-containing additives for polyethylene oxo-degradation. Russ. J. Phys. Chem. 2019, B 13, 369–373. [Google Scholar] [CrossRef]
- Markowicz, F. Research on the impact of oxobio- and biodegradable plastics on the environment. Ecol. Eng. Environ. Technol. 2018, 19, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Chiellini, E.; Corti, A.; D’Antone, S.; Baciu, R. Oxo-biodegradable carbon backbone polymers–oxidative degradation of polyethylene under accelerated test conditions. Polym. Degrad. Stab. 2006, 91, 2739–2747. [Google Scholar] [CrossRef]
- Abdelmoez, W.; Dahab, I.; Ragab, E.M.; Abdelsalam, O.A.; Mustafa, A. Bio- and oxo-degradable plastics: Insights on facts and challenges. Polym. Adv. Technol. 2021, 32, 1981–1996. [Google Scholar] [CrossRef]
- Sarkar, A.; Sharma, B.; Shekhar, S. Utilization of chemical additives to enhance biodegradability of plastics. In Biodegradability of Conventional Plastics; Thapliyal, P.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Kijeński, J. Polymeric materials in sustainable development—From the need to use to the need for wear Part I. There is no turning back from “plastics”. Polimery 2021, 64, 11–12. [Google Scholar] [CrossRef]
- Lendingham, B.; Hann, S.; Ettlinger, S.; Gibbs, A.; Hogg, D. Study to Provide Information Supplementing the Study on the Impact of the Use of ‘Oxo-Degradable’ Plastic on the Environment; Final Report for the European Commission DG Environment. Project conducted under Framework Contract No ENV.A.2/FRA/2015/0008 and 07.0201/2016/748104/ETU/ENV.B.3.; European Commission, Directorate-General for Environment: Brussels, Belgium, 2017; pp. 1–166. [Google Scholar] [CrossRef]
- Vazquez, Y.V.; Ressia, J.A.; Cerrada, M.L.; Barbosa, S.E.; Vallés, E.M. Prodegradant additives effect onto comercial polyolefin. J. Polym. Environ. 2019, 27, 464–471. [Google Scholar] [CrossRef]
- Thomas, N.; Clark, J.; McLauchlin, A.; Patrick, S. EV0422: Assessing the Environmental Impacts of Oxo-degradable Plastics across their Life Cycle; Loughborough University, DEFRA: London, UK, 2010. [Google Scholar]
- Ojeda, T.F.M.; Dalmolin, E.; Forte, M.M.C.; Jacques, R.J.S.; Bento, F.M.; Camargo, F.A.O. Abiotic and biotic degradation of oxo-biodegradable polyethylenes. Polym. Degrad. Stab. 2009, 94, 965–970. [Google Scholar] [CrossRef]
- Rizzarelli, P.; Rapisarda, M.; Ascione, L.; Degli Innocenti, F.; La Mantia, F.P. Influence of photo-oxidation on the performance and soil degradation of oxo- and biodegradable polymer-based items for agricultural applications. Polym. Degrad. Stab. 2021, 188, 109578. [Google Scholar] [CrossRef]
- Quecholac-Piña, X.; García-Rivera, M.A.; Espinosa-Valdemar, R.M.; Vázquez-Morillas, A.; Beltrán-Villavicencio, M.; Cisneros-Ramos, A. Biodegradation of compostable and oxodegradable plastic films by backyard composting and bioaugmentation. Environ. Sci. Pollut. Res. 2017, 24, 25725–25730. [Google Scholar] [CrossRef]
- Feuilloley, P.; César, G.; Benguigui, L.; Grohens, Y.; Pillin, I.; Bewa, H.; Lefaux, S.; Jmal, M. Degradation of polyethyleme designed for agricultural purposes. J. Polym. Environ. 2005, 13, 349–355. [Google Scholar] [CrossRef]
- Briassoulis, D.; Miltiadis, H.; Epifaneia, B.; Kyrikou, I. Analysis of long-term degradation behaviour of polyethylene analysis of long-term degradation behaviour of polyethylene under real cultivation and soil burial conditions. Environ. Sci. Pollut. Res. 2014, 4, 2584–2598. [Google Scholar] [CrossRef]
- Gauthier, E.; Nikolić, M.; Truss, R.; Laycock, B.; Halley, P. Effect of soil environment on the photodegradation of polyethylene films. J. Appl. Polym. Sci. 2015, 132, 42558. [Google Scholar] [CrossRef]
- Rutkowska, M.; Heimowska, A.; Krasowska, K.; Janik, H. Biodegradability of polyethylene starch blends in sea water. Pol. J. Environ. 2002, 11, 267–274. [Google Scholar]
- Odobel, C.; Dussud, C.; Philip, L.; Derippe, G.; Lauters, M.; Eyheraguibel, B.; Burgaud, G.; Ter Halle, A.; Meistertzheim, A.-L.; Bruzaud, S.; et al. Bacterial abundance, diversity and activity during long-term colonization of non-biodegradable and biodegradable plastics in seawater. Front. Microbiol. 2021, 12, 734782. [Google Scholar] [CrossRef]
- Rose, R.-S.; Richardson, K.H.; Latvanen, E.J.; Hanson, C.A.; Resmini, M.; Sanders, I.A. Microbial degradation of plastic in aqueous solutions demonstrated by CO2 evolution and quantification. Intern. J. Mol. Sci. 2020, 21, 1176. [Google Scholar] [CrossRef]
- Dussud, C.; Hudec, C.; George, M.; Fabre, P.; Higgs, P.; Bruzaud, S.; Delort, A.-M.; Eyheraguibel, B.; Meistertzheim, A.-L.; Jacquin, J.; et al. Colonization of non-biodegradable and biodegradable plastics by marine microorganisms. Front. Microbiol. 2018, 9, 1571. [Google Scholar] [CrossRef]
- O’Brien, T.; Thompson, R.C. Degradation of plastic carrier bags in the marine environment. Mar. Pollut. Bull. 2010, 60, 2279–2283. [Google Scholar] [CrossRef] [PubMed]
- Hill, G.; Moreira, C.; Huyn, F.; Trufasila, A.; Ly, F.; Lloyd, R.; Sawal, H.; Wallis, C. Correlation of a temperate UV-weathering cycle to outdoor exposure for the determination of the environmental instability of polyethylene films using HT-GPC analysis. Polymers 2021, 13, 591. [Google Scholar] [CrossRef]
- Moreira, C.; Lloyd, R.; Hill, G.; Huynh, F.; Trufasila, A.; Sawal, H.; Wallis, C. Temperate UV-accelerated weathering cycle combined with HT-GPC analysis and drop point testing for determining the environmental instability of polyethylene films. Polymers 2021, 13, 2373. [Google Scholar] [CrossRef]
- Adamcová, D.; Vaverková, M.D.; Mašíček, T.; Břoušková, E. Analysis of biodegrability of degradable/biodegradable plastic material in controlled composting environment. J. Ecol. Eng. 2016, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aldas, M.; Valle, V.; Aguilar, J.; Pavon, C.; Santos, R.; Luna, M. Ionizing radiation as adjuvant for the abiotic degradation of plastic bags containing pro-oxidant additives. J. Appl. Polym. Sci. 2021, 138, e49664. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; D’Antone, S. Oxo-biodegradable full carbon backbone polymers—Biodegradation behaviour of thermally oxidized polyethylene in an aqueous medium. Polym. Degrad. Stabil. 2007, 92, 1378–1383. [Google Scholar] [CrossRef]
- Mahey, S.; Kumar, R.; Sharma, M.; Kumar, V.; Bhardwaj, R. A critical review on toxicity of cobalt and its bioremediation strategies. SN Appl. Sci. 2020, 2, 1279. [Google Scholar] [CrossRef]
- Vázquez-Morillas, A.; Beltrán-Villavicencio, M.; Alvarez-Zeferino, J.C.; Osada-Vela´zquez, M.H.; Moreno, A.; Martinez, L.; Yañez, J.M. Biodegradation and ecotoxicity of polyethylene films containing pro-oxidant additive. J. Polym. Environ. 2016, 24, 221–229. [Google Scholar] [CrossRef]
- Markowicz, F.; Szymańska-Pulikowska, A. Analysis of the possibility of environmental pollution by composted biodegradable and oxo-biodegradable plastics. Geosciences 2019, 9, 460. [Google Scholar] [CrossRef]
- Available online: https://www.wspolrzedne.pl/ (accessed on 8 October 2023).
- Krasowska, K.; Heimowska, A.; Morawska, M. Environmental degradability of polycaprolactone under natural conditions. E3S Web Conf. 2016, 10, 00048. [Google Scholar] [CrossRef]
- Heimowska, A.; Morawska, M.; Bocho-Janiszewska, A. Biodegradation of poly(ε-caprolactone) in natural water environments. Pol. J. Chem. Tech. 2017, 19, 120–126. [Google Scholar] [CrossRef]
- Krasowska, K.; Heimowska, A. Degradability of Polylactide in Natural Aqueous Environments. Water 2023, 15, 198. [Google Scholar] [CrossRef]
- Krasowska, K.; Heimowska, A.; Rutkowska, M. Environmental degradability of polyurethanes. In Thermoplastic Elastomers Synthesis and Applications; Kumar Das, C., Ed.; IntechOpen: Rijeka, Croatia, 2015; Chapter 4; pp. 75–94. [Google Scholar] [CrossRef]
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 527-3:2018; Plastics—Determination of Tensile Properties—Part 3: Test Conditions for Films and Sheets. International Organization for Standardization: Geneva, Switzerland, 2018.
- Available online: https://salus-controls.pl/2022/02/16/sklad-powietrza-wdychanego-i-wydychanego-czym-oddychamy/ (accessed on 8 October 2023).
- Available online: https://zpe.gov.pl/pdf/PvRqsaEES (accessed on 8 October 2023).
- Lenz, R.W. Biodegradable polymers. In Advances in Polymer Science. Biopolymers I; Langer, R.S., Peppas, N.A., Eds.; Springer: Berlin, Germany, 1993; Volume 107, pp. 1–40. [Google Scholar]
- Chełmicki, W. Woda. In Zasoby, Degradacja, Ochrona, 1st ed.; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2022; Available online: https://www.naukowa.pl/Ksiazki/woda-zasoby-degradacja-ochrona--186189 (accessed on 12 September 2023).
- Cupak, A.; Krzanowski, S. Contents of oxygen demand in water of fish ponds fertilized with biologically treated municipal sewage. Infrastruct. Ecol. Rural. Areas 2009, 6, 121–130. [Google Scholar]
- Adamiak, W.; Grabas, K.; Kołwzan, B.; Pawełczyk, A. Podstawy Mikrobiologii w Ochronie Środowiska; Oficyna Wydawnicza Politechniki Wrocławskiej: Wroclaw, Poland, 2006. [Google Scholar]
- Sidoruk, M. Wpływ chowu pstrąga w stawach ziemnych na właściwości fizyczne i chemiczne wód powierzchniowych. Inżynieria Ekol. 2012, 31, 101–110. [Google Scholar]
- Eubeler, J.P. Biodegradation of Synthetic Polymers in the Aquatic Environment; University of Bremen: Bremen, Germany, 2010; Available online: http://elib.suub.uni-bremen.de/edocs/00101809-1.pdf (accessed on 9 October 2023).
- Shruti, V.; Kutralam-Muniasamy, G. Bioplastics: Missing link in the era of Microplastics. Sci. Total Environ. 2019, 697, 134139. [Google Scholar] [CrossRef]
- De Oliveira, T.A.; Barbosa, R.; Mesquita, A.B.; Ferreira, J.H.; de Carvalho, L.H.; Alves, T.S. Fungal degradation of reprocessed PP/PBAT/thermoplastic starch blends. J. Mater. Res. Technol. 2020, 9, 2338–2349. [Google Scholar] [CrossRef]
- Rummel, C.D.; Jahnke, A.; Gorokhova, E.; Kühnel, D.; Schmitt-Jansen, M. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environ. Sci. Tech. Let. 2017, 4, 258–267. [Google Scholar] [CrossRef]
- Olayo, M.G.; Colin, E.; Cruz, G.J.; Morales, J.; Olayo, R. Accelerated nitridation and oxidation by plasma on polyethylene. Eur. Phys. J. Appl. Phys. 2009, 48, 30501. [Google Scholar] [CrossRef]
- Markowicz, F.; Szymańska-Pulikowska, A. Assessment of the Decomposition of Oxo- and Biodegradable Packaging Using FTIR Spectroscopy. Materials 2021, 14, 6449. [Google Scholar] [CrossRef]
- Zaborowska, M.; Bernat, K.; Pszczółkowski, B.; Wojnowska-Baryła, I.; Kulikowska, D. Anaerobic Degradability of Commercially Available Bio-Based and Oxo-Degradable Packaging Materials in the Context of their End of Life in the Waste Management Strategy. Sustainability 2021, 13, 6818. [Google Scholar] [CrossRef]
- Osório Brandão, J.A.; Pont Morisso, F.; Francisquetti, E.L.; Campomanes Santana, R.M. Influence of the nature of pro-oxidants on the photooxidation of polyethylene blown films. Heliyon 2022, 8, e10217. [Google Scholar] [CrossRef] [PubMed]
- Vorobyova, E.V. Thermal oxidation resistance of polyethylene films containing copper and ascorbic acid. Russ. J. Appl. Chem. 2021, 94, 1232–1239. [Google Scholar] [CrossRef]
- Benitez, A.; Sánchez, J.; Arnal, M.; Müller, A.; Rodriguez Fernandez, O.; Morales, G. Abiotic degradation of LDPE and LLDPE formulated with a pro-oxidant additive. Polym. Degrad. Stab. 2013, 98, 490–501. [Google Scholar] [CrossRef]
- Kumanayaka, T.O.; Parthasarathy, R.; Jollands, M. Accelerating effect of montmorillonite on oxidative degradation of polyethylene nanocomposites. Polym. Degrad. Stabil. 2010, 95, 672–676. [Google Scholar] [CrossRef]
- Rouillon, C.; Bussiere, P.O.; Desnoux, E.; Collin, S.; Vial, C.; Therias, S.; Gardette, J.L. Is carbonyl index a quantitative probe to monitor polypropylene photodegradation? Polym. Degrad. Stabil. 2016, 128, 200–208. [Google Scholar] [CrossRef]
- Chiellini, E.; Corti, A.; Swift, G. Biodegradation of thermally oxidized, fragmented low density polyethylenes. Polym. Degrad. Stabil. 2003, 81, 341–351. [Google Scholar] [CrossRef]
- Abrusci, C.; Pablos, J.L.; Marín, I.; Espí, E.; Corrales, T.; Catalina, F. Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal- and photo-degraded low density polyethylene mulching films. Int. Biodeterior. Biodegr. 2013, 83, 25–32. [Google Scholar] [CrossRef]
- Reddy, M.M.; Deighton, M.; Gupta, R.K.; Bhattacharya, S.N.; Parthasarathy, R. Biodegradation of oxo-biodegradable polyethylene. J. Appl. Polym. Sci. 2009, 111, 1426–1432. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Rozmysłowicz, K.; Andrzejewska, E.; Dach, J.; Pilarski, K. Wpływ wstępnej degradacji środowiskowej oraz promieniowaniem UV/VIS na właściwości mechaniczne komercyjnych folii oksybiodegradowalnych. Rocz. Ochr. Srodowiska 2011, 13, 1605–1618. [Google Scholar]
- Bajer, K.; Kaczmarek, H. Metody badania biodegradacji materiałów polimerowych. Polimery 2007, 52, 13–18. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Jaafar, M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. [Google Scholar] [CrossRef]
- Walczak, M.; Swiontek-Brzezinska, M.; Sionkowska, A.; Michalska, M.; Jankiewicz, U.; Deja-Sikora, E. Biofilm formation on the surface of polylactide during its biodegradation in different environments. Colloids Surf. B Biointerfaces 2015, 136, 340–345. [Google Scholar] [CrossRef]
Environment | Location GPS | Type of Environment | Description |
---|---|---|---|
Natural weathering | 54° 35′ 0″ N 18° 23′ 34″ E | atmospheric air | The polymer samples placed on the pad in the garden were covered with a mosquito net, which allowed free airflow, precipitation, and solar radiation access. |
Natural pond | 54° 33′ 38″ N 18° 22′ 11″ E | freshwater | The polymer samples were placed in a particular perforated basket, which was suspended on a rope 2 m below the water surface in the pond. |
Laboratory water | 54° 31′ 35″ N 18° 30′ 41″ E | distilled water | The polymer samples were placed in an aquarium with distilled water without solar radiation in the laboratory. |
Months | Weathering Parameter’s | Pond Parameter’s | Laboratory Water Parameter’s | |||||||
---|---|---|---|---|---|---|---|---|---|---|
T [°C] | Humidity [%] | T [°C] | pH | TDS [ppm] | Oxygen Content [mgO2/dm3] | T [°C] | pH | TDS [ppm] | Oxygen Content [mgO2/dm3] | |
July | 25 | 40 | 20 | 8.7 | 183 | 6 | 26 | 7.8 | 42 | 8 |
October | 12 | 53 | 11 | 8.2 | 201 | 8 | 18 | 7.7 | 42 | 7 |
January | 5 | 30 | 4 | 8.5 | 192 | 10 | 17 | 8.0 | 38 | 7 |
April | 7 | 30 | 8 | 8.6 | 175 | 9 | 17 | 7.7 | 48 | 7 |
Natural Weathering | Pond | Laboratory Water |
---|---|---|
before degradation | before degradation | before degradation |
6 months | 6 months | 6 months |
12 months | 12 months | 12 months |
18 months | 18 months | 18 months |
24 months | 24 months | 24 months |
32 months | 32 months | 32 months |
36 months | 39 months | 39 months |
39 months | 45 months | 45 months |
48 months | 48 months |
Degradation Time [Months] | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 6 | 9 | 12 | 18 | 24 | 27 | 32 | 36 | 39 | 45 | 48 | |
Natural weathering | +0.3 | −0.8 | −0.7 | −1.4 | −2.0 | −8.4 | −20.7 | −26.2 | −62.0 | −81.6 | destroyed | |
Pond | +0.9 | +1.7 | +1.5 | +3.5 | +5.5 | +4.3 | +5.4 | +6.6 | +13.0 | +19.5 | +24.3 | +19.1 |
Laboratory water | −0.2 | −0.2 | −0.7 | −0.8 | −0.7 | −0.6 | +0.8 | +1.3 | −0.8 | −0.8 | −0.8 | −0.3 |
Degradation Time [Months] | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 6 | 9 | 12 | 18 | 24 | 27 | 32 | 36 | 39 | 45 | 48 | ||
Natural weathering | Fm [N] | 15.41 | 9.91 | 11.66 | 10.62 | 9.43 | 4.30 | fragmentation | ||||||
Rm [MPa] | 26.31 | 24.78 | 29.14 | 26.56 | 23.58 | 10.76 | fragmentation | |||||||
E [%] | 304 | 24 | 53 | 18 | 6 | 1 | fragmentation | |||||||
Pond | Fm [N] | 15.41 | 15.75 | 17.13 | 17.65 | 15.08 | 15.00 | 15.09 | 13.80 | 13.47 | 11.98 | 10.53 | 9.64 | 6.94 |
Rm [MPa] | 26.31 | 32.07 | 42.83 | 44.12 | 37.70 | 37.50 | 37.74 | 34.49 | 32.59 | 29.95 | 26.32 | 24.09 | 17.35 | |
E [%] | 304 | 305 | 261 | 326 | 282 | 255 | 242 | 243 | 264 | 167 | 40 | 35 | 31 | |
Laboratory water | Fm [N] | 15.41 | 13.20 | 13.46 | 16.18 | 16.61 | 18.29 | 17.44 | 17.29 | 17.19 | 15.59 | 14.76 | 14.96 | 15.60 |
Rm [MPa] | 26.31 | 33.01 | 33.66 | 40.46 | 41.51 | 45.72 | 43.59 | 43.22 | 42.98 | 38.97 | 36.90 | 37.40 | 39.00 | |
E [%] | 304 | 266 | 240 | 321 | 331 | 337 | 346 | 334 | 305 | 305 | 298 | 334 | 339 |
Natural Weathering | Pond | Laboratory Water |
---|---|---|
before degradation | before degradation | before degradation |
6 months | 6 months | 6 months |
12 months | 12 months | 12 months |
24 months | 24 months | 24 months |
36 months | 36 months | 36 months |
39 months | 45 months | 45 months |
48 months | 48 months |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heimowska, A. Environmental Degradation of Oxo-Biodegradable Polyethylene Bags. Water 2023, 15, 4059. https://doi.org/10.3390/w15234059
Heimowska A. Environmental Degradation of Oxo-Biodegradable Polyethylene Bags. Water. 2023; 15(23):4059. https://doi.org/10.3390/w15234059
Chicago/Turabian StyleHeimowska, Aleksandra. 2023. "Environmental Degradation of Oxo-Biodegradable Polyethylene Bags" Water 15, no. 23: 4059. https://doi.org/10.3390/w15234059
APA StyleHeimowska, A. (2023). Environmental Degradation of Oxo-Biodegradable Polyethylene Bags. Water, 15(23), 4059. https://doi.org/10.3390/w15234059