Evaluating the Influence of Reverse Osmosis on Lakes Using Water Quality Indices: A Case Study in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. RO Membrane Specifications
2.4. Analytical Methods
2.5. Statistical Analysis
2.6. Water Quality Index (WQI)
- Step 1: For each parameter, an assigned weight (AWi) was set (1 to 5), where 1 was the least significant parameter and 5 was the highest (Table 3). This was based on the purpose of the model, the nature of the study area, and the combined opinions of experts from previous studies [32,33,34,35]. The WQI model is based primarily on the relative weights of water quality parameters, so there is no universally accepted WQI [36]. Available indices have many variations and limitations based on the number of water quality parameters used. All of the developed indices worldwide have variations and limitations based on the water quality variables involved in the model [34].
- Step 2: The following equation was used to calculate a relative weight (RWi) for each parameter:
- Step 3: The following equation was used to calculate a quality rating scale (Qi) for all of the parameters except for DO and pH:
- Step 4: Before calculating the WQI, the sub-indices (SIi) for each parameter were calculated using the following equation:
2.7. Comprehensive Pollution Index (CPI)
3. Results
3.1. Water Quality Parameters in the Influent and Effluent of the RO Unit
3.2. Water Quality Parameters in the Lakes
3.3. Water Quality Indices
3.3.1. Water Quality Index (WQI)
3.3.2. Comprehensive Pollution Index (CPI)
3.3.3. Pearson’s Correlation Matrix between Water Quality Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falkenmark, M. Water resilience and human life support-global outlook for the next half century. Int. J. Water Resour. Dev. 2020, 36, 377–396. [Google Scholar] [CrossRef]
- Jéquier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Molden, D. Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Strang, V. The Meaning of Water; Routledge: Oxfordshire, UK, 2020. [Google Scholar]
- Johnson, B.L.; Lichtveld, M.Y. Environmental Policy and Public Health; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Landrigan, P.J.; Fuller, R.; Acosta, N.J.; Adeyi, O.; Arnold, R.; Baldé, A.B.; Bertollini, R.; Bose-O’Reilly, S.; Boufford, J.I.; Breysse, P.N. The Lancet Commission on pollution and health. Lancet 2018, 391, 462–512. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 2010, 35, 109–136. [Google Scholar] [CrossRef]
- Danquah, L.; Abass, K.; Nikoi, A.A. Anthropogenic pollution of inland waters: The case of the Aboabo River in Kumasi, Ghana. J. Sustain. Dev. 2011, 4, 103. [Google Scholar] [CrossRef]
- Halder, J.N.; Islam, M.N. Water pollution and its impact on the human health. J. Environ. Hum. 2015, 2, 36–46. [Google Scholar] [CrossRef]
- Zhang, L. Different methods for the evaluation of surface water quality: The Case of the Liao River, Liaoning Province, China. Int. Rev. Spat. Plan. Sustain. Dev. 2017, 5, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Shindhal, T.; Rakholiya, P.; Varjani, S.; Pandey, A.; Ngo, H.H.; Guo, W.; Ng, H.Y.; Taherzadeh, M.J. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2021, 12, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Okereke, J.N.; Ogidi, O.I.; Obasi, K.O. Environmental and health impact of industrial wastewater effluents in Nigeria-A Review. Int. J. Adv. Res. Biol. Sci. 2016, 3, 55–67. [Google Scholar]
- Nahiun, K.M.; Sarker, B.; Keya, K.N.; Mahir, F.I.; Shahida, S.; Khan, R.A. A review on the methods of industrial waste water treatment. Sci. Rev. 2021, 7, 20–31. [Google Scholar] [CrossRef]
- Gaur, N.; Sarkar, A.; Dutta, D.; Gogoi, B.J.; Dubey, R.; Dwivedi, S.K. Evaluation of water quality index and geochemical characteristics of surfacewater from Tawang India. Sci. Rep. 2022, 12, 11698. [Google Scholar] [CrossRef] [PubMed]
- Mammeri, A.; Tiri, A.; Belkhiri, L.; Salhi, H.; Brella, D.; Lakouas, E.; Tahraoui, H.; Amrane, A.; Mouni, L. Assessment of Surface Water Quality Using Water Quality Index and Discriminant Analysis Method. Water 2023, 15, 680. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Jiang, Y.; Liu, Q.; Dong, M.; Xu, D.; Liu, Y.; Xu, X. Using a water quality index to assess the water quality of the upper and middle streams of the Luanhe River, northern China. Sci. Total Environ. 2019, 667, 142–151. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.; Singal, S.K. Use of principal component analysis for parameter selection for development of a novel water quality index: A case study of river Ganga India. Ecol. Indic. 2019, 96, 430–436. [Google Scholar] [CrossRef]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, J.P.; Jiang, H.H. Comparison of several methods of environment quality evaluation using complex indices. Environ. Monit. 1999, 15, 33–37. [Google Scholar]
- Abdulkareem, I.A.; Abbas, A.A.; Dawood, A.S. Modeling Pollution Index Using Artificial Neural Network and Multiple Linear Regression Coupled with Genetic Algorithm. J. Ecol. Eng. 2022, 23, 236–250. [Google Scholar] [CrossRef]
- Döndü, M.; Özdemir, N.; Demirak, A.; Doğan, H.M.; Dincer, N.G.; Keskin, F. Seasonal assessment of the impact of fresh waters feeding the Bay of Gökova with water quality index (WQI) and comprehensive pollution index (CPI). Environ. Forensics 2022, 25, 68–80. [Google Scholar] [CrossRef]
- Mishra, S.; Kumar, A.; Shukla, P. Study of water quality in Hindon River using pollution index and environmetrics, India. Desalination Water Treat. 2016, 57, 19121–19130. [Google Scholar] [CrossRef]
- Son, C.T.; Giang, N.T.H.; Thao, T.P.; Nui, N.H.; Lam, N.T.; Cong, V.H. Assessment of Cau River water quality assessment using a combination of water quality and pollution indices. J. Water Supply: Res. Technol.—AQUA 2020, 69, 160–172. [Google Scholar] [CrossRef]
- Trishitman, D.; Cassano, A.; Basile, A.; Rastogi, N.K. Reverse osmosis for industrial wastewater treatment. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier: Amsterdam, The Netherlands, 2020; pp. 207–228. [Google Scholar]
- Ibrahim, A.O.; Bashir, F.M.; Ojobo, H.; Dodo, Y.A.; Abdulmumin, I.; Christian, O.I. Opting for Enriching Saudi Arabia’s Tourism Attraction Sites towards the Realization of Vision 2030. Elem. Educ. Online 2021, 20, 4101–4114. [Google Scholar]
- AlMulla, A.A.; Jones, D.; Roberts, P. Substrate influences temperature sensitivity of dissolved organic carbon (DOC) and nitrogen (DON) mineralization in arid agricultural soils. Soil Syst. 2018, 2, 28. [Google Scholar] [CrossRef]
- Baird, R.; Rice, E.; Eaton, A. Standard Methods for the Examination of Water and Wastewaters; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- AMulla, A.A.; Saber, O.; Ezzeldin, M.F.; Berekaa, M.M.; El-Azab, W.I. Dual-Functional Nanostructures for Purification of Water in Severe Conditions from Heavy Metals and E. coli Bacteria. Water 2022, 14, 3010. [Google Scholar] [CrossRef]
- Kükrer, S.; Mutlu, E. Assessment of surface water quality using water quality index and multivariate statistical analyses in Saraydüzü Dam Lake, Turkey. Environ. Monit. Assess. 2019, 191, 71. [Google Scholar] [CrossRef] [PubMed]
- Maansi; Jindal, R.; Wats, M. Evaluation of surface water quality using water quality indices (WQIs) in Lake Sukhna, Chandigarh, India. Appl. Water Sci. 2022, 12, 2. [Google Scholar] [CrossRef]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index-do we dare. Water Sew. Work 1970, 117, 339–343. [Google Scholar]
- Soleimani, H.; Nasri, O.; Ojaghi, B.; Pasalari, H.; Hosseini, M.; Hashemzadeh, B.; Kavosi, A.; Masoumi, S.; Radfard, M.; Adibzadeh, A. Data on drinking water quality using water quality index (WQI) and assessment of groundwater quality for irrigation purposes in Qorveh&Dehgolan, Kurdistan, Iran. Data Brief 2018, 20, 375–386. [Google Scholar] [PubMed]
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water quality assessment in terms of water quality index. Am. J. Water Resour. 2013, 1, 34–38. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Chen, Y.; Cai, Y.; Deng, J. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018, 612, 914–922. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of river water quality indices—A review. Environ. Monit. Assess. 2016, 188, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Rastgar, M.; Shakeri, A.; Karkooti, A.; Asad, A.; Razavi, R.; Sadrzadeh, M. Removal of trace organic contaminants by melamine-tuned highly cross-linked polyamide TFC membranes. Chemosphere 2020, 238, 124691. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.-M.; Ma, H.-Y.; Hu, Y.-N.; Guo, Y.-F.; Zhu, L.-J.; Zeng, Z.-X.; Wang, G. Polyamide thin-film composite membrane on polyethylene porous membrane: Fabrication, characterization and application in water treatment. Mater. Lett. 2021, 287, 129270. [Google Scholar] [CrossRef]
- Priyanka, M.S.; Mohapatra, S.; Menon, N.G. Chapter 23—Hybrid membrane technology: An alternative to industrial wastewater treatment. In Membrane-Based Hybrid Processes for Wastewater Treatment; Shah, M.P., Rodriguez-Couto, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 481–501. ISBN 978-0-12-823804-2. [Google Scholar]
- Venzke, C.D.; Rodrigues, M.A.S.; Giacobbo, A.; Bacher, L.E.; Lemmertz, I.S.; Viegas, C.; Striving, J.; Pozzebon, S. Application of reverse osmosis to petrochemical industry wastewater treatment aimed at water reuse. Manag. Environ. Qual. Int. J. 2017, 28, 70–77. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Dong, Y.; Yang, P.; Wang, R. Pilot Study on the Deep Treatment of Sulfuric-Acid–Titanium-Dioxide Wastewater Using an Ultrafiltration/Reverse Osmosis Process. Processes 2023, 11, 1626. [Google Scholar] [CrossRef]
- Elhady, S.; Bassyouni, M.; Mansour, R.A.; Elzahar, M.H.; Abdel-Hamid, S.; Elhenawy, Y.; Saleh, M.Y. Oily wastewater treatment using polyamide thin film composite membrane technology. Membranes 2020, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Bunce, J.T.; Ndam, E.; Ofiteru, I.D.; Moore, A.; Graham, D.W. A review of phosphorus removal technologies and their applicability to small-scale domestic wastewater treatment systems. Front. Environ. Sci. 2018, 6, 8. [Google Scholar] [CrossRef]
- Li, S.; Jiang, F.; Lei, T.; Ren, Z.; Wang, S.; Yang, X. Phosphorus removal by in situ sprayed ferric chloride in Dianchi Lake: Efficiency, stability, and mechanism. Process Saf. Environ. Prot. 2019, 131, 320–328. [Google Scholar] [CrossRef]
- Fish, D.H.; Dietz, J.M. Use of Iron Oxides Produced from the Treatment of Coal Mine Drainage as Adsorbents to Remove Phosphorus from Secondary Wastewater Effluent; Final Report for OSM PA (AMD-04) Grant; Pennsylvania Department of Environmental Protection: Harrisburg, PA, USA, 2008. [Google Scholar]
- Zhao, S.; Huang, G.; Cheng, G.; Wang, Y.; Fu, H. Hardness, COD and turbidity removals from produced water by electrocoagulation pretreatment prior to reverse osmosis membranes. Desalination 2014, 344, 454–462. [Google Scholar] [CrossRef]
- Mishra, A.P.; Kumar, S.; Patra, R.; Kumar, A.; Sahu, H.; Chandra, N.; Pande, C.B.; Alshehri, F. Physicochemical Parameters of Water and Its Implications on Avifauna and Habitat Quality. Sustainability 2023, 15, 9494. [Google Scholar] [CrossRef]
- Tejada-Tovar, C.; Villabona-Ortíz, Á.; Gonzalez-Delgado, A.D.; Herrera, A.; Viera De la Voz, A. Efficient sulfate adsorption on modified adsorbents prepared from Zea mays stems. Appl. Sci. 2021, 11, 1596. [Google Scholar] [CrossRef]
- Sawadogo, B.; Konaté, Y.; Sossou, S.K.; Ado Saidou, N.F.; Nouhou Moussa, A.W.; Karambiri, H. Removal of Sulphate Ions from Borehole Water Using Nanofiltration and Reverse Osmosis. Water 2022, 14, 3422. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, Y.; Feng, Z.; Rui, X.; Zhang, T.; Zhang, Z. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers 2019, 11, 1252. [Google Scholar] [CrossRef] [PubMed]
- Panwattanakul, S.; Kasikun, K.; Musikavong, C.; Sinyoung, S. Reduction Of Chloride in Raw Water by Nanofiltration and Reverse Osmosis. In Proceedings of the IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1163, p. 012026. [Google Scholar]
- Simonič, M. Reverse osmosis treatment of wastewater for reuse as process Water—A case study. Membranes 2021, 11, 976. [Google Scholar] [CrossRef] [PubMed]
- USEPA Water: Monitoring & Assessment. Available online: https://archive.epa.gov/water/archive/web/html/vms59.html (accessed on 6 August 2023).
- Arimoro, F.O.; Ikomi, R.B.; Iwegbue, C.M. Water quality changes in relation to Diptera community patterns and diversity measured at an organic effluent impacted stream in the Niger Delta, Nigeria. Ecol. Indic. 2007, 7, 541–552. [Google Scholar] [CrossRef]
- Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Relationship between water content, NaCl content, pH and texture parameters in dry-cured muscles. Meat Sci. 2005, 70, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Momin, S. Statistical Analysis of Physico-Chemical Parameters. Int. Res. J. Adv. Sci. Hub 2020, 2, 118–122. [Google Scholar] [CrossRef]
- Mohammed, S.S. Effect of pH on the Turbidity Removal of Wastewater. Open Access Libr. J. 2015, 2, 1. [Google Scholar] [CrossRef]
- Khatoon, N.; Khan, A.H.; Rehman, M.; Pathak, V. Correlation study for the assessment of water quality and its parameters of Ganga River, Kanpur, Uttar Pradesh, India. IOSR J. Appl. Chem. 2013, 5, 80–90. [Google Scholar] [CrossRef]
- Roosta, H.R. Interaction between water alkalinity and nutrient solution pH on the vegetative growth, chlorophyll fluorescence and leaf magnesium, iron, manganese, and zinc concentrations in lettuce. J. Plant Nutr. 2011, 34, 717–731. [Google Scholar] [CrossRef]
Membrane Type | Cross-Linked Fully Aromatic Polyamide Composite |
---|---|
Membrane Diameter (inch) | 8 |
Membrane Area (m2) | 37 |
Salt Rejection (%) | 99.8 |
Flow Rate (m3/day) | 39.7 |
Maximum Feed Water Temperature | 45 °C |
Maximum Feed Water SDI (15 min) | 5 |
Feed Water pH Range | 2–11 |
Maximum Operating Pressure (psi) | 600 |
Parameter | Lake 1 | Lake 2 | RO 1 Intervention | SD 2 (NCEC) 3 | AWi 4 | RWi 5 | Indices (i) | |||
---|---|---|---|---|---|---|---|---|---|---|
2016 | 2021 | 2016 | 2021 | Before | After | |||||
pH | 9.22 | 8.13 | 8.7 | 7.51 | 7.74 | 6.93 | 8 | 5 | 0.128 | 1 |
TDS (mg/L) | 3356 | 2502 | 67,665 | 100,373 | 3161 | 148 | 5000 | 4 | 0.102 | 2 |
Conductivity (ms/cm) | 3.34 | 3.49 | 76.8 | 205.49 | 3.64 | 0.2 | 5 | 3 | 0.076 | 3 |
Turbidity (NTU) | 0.5 | 0.3 | 15 | 48.83 | 0.69 | 0.33 | 30 | 4 | 0.102 | 4 |
DO (mg/L) | 1.32 | 7.79 | 1.12 | 47.25 | 8.07 | 6.5 | 5 | 5 | 0.128 | 5 |
BOD (mg/L) | 516 | 9.39 | 660 | 8.83 | 7 | 7.7 | 10 | 5 | 0.128 | 6 |
COD (mg/L) | 30 | 53.07 | 197 | 2128 | 79.73 | 35.47 | 25 | 5 | 0.128 | 7 |
SO42− (mg/L) | 4100 | 1.28 | 4200 | 45 | 3.77 | 0.11 | 200 | 3 | 0.076 | 8 |
PO43− (mg/L) | 8.9 | 0.12 | 12.6 | 0.925 | 2.4 | 0.11 | 1 | 3 | 0.076 | 9 |
Fe (mg/L) | 0.03 | 0.01 | 0 | 0.241 | 0.13 | 1.63 | 0.5 | 1 | 0.025 | 10 |
Mn (mg/L) | 0.02 | 0.4 | 0 | 4.20 | 0.57 | 0.4 | 0.1 | 1 | 0.025 | 11 |
Free chlorine (mg/L) | 1758 | 0.03 | 56,813 | 0.29 | 0.28 | 0.04 | - | - | - | - |
Alkalinity (mg/L) | 340 | 153.75 | 320 | 2079 | 346.67 | 28.33 | - | - | - | - |
Hardness (mg/L) | 2540 | 921 | 14,500 | 17,908 | 910 | 70 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljassim, M.T.; AlMulla, A.A.; Berekaa, M.M.; Alsaif, A.S. Evaluating the Influence of Reverse Osmosis on Lakes Using Water Quality Indices: A Case Study in Saudi Arabia. Water 2024, 16, 1351. https://doi.org/10.3390/w16101351
Aljassim MT, AlMulla AA, Berekaa MM, Alsaif AS. Evaluating the Influence of Reverse Osmosis on Lakes Using Water Quality Indices: A Case Study in Saudi Arabia. Water. 2024; 16(10):1351. https://doi.org/10.3390/w16101351
Chicago/Turabian StyleAljassim, Mohammed T., Abdulaziz A. AlMulla, Mahmoud M. Berekaa, and Abdulmalik S. Alsaif. 2024. "Evaluating the Influence of Reverse Osmosis on Lakes Using Water Quality Indices: A Case Study in Saudi Arabia" Water 16, no. 10: 1351. https://doi.org/10.3390/w16101351
APA StyleAljassim, M. T., AlMulla, A. A., Berekaa, M. M., & Alsaif, A. S. (2024). Evaluating the Influence of Reverse Osmosis on Lakes Using Water Quality Indices: A Case Study in Saudi Arabia. Water, 16(10), 1351. https://doi.org/10.3390/w16101351