Unveiling the Dynamics of Cryptosporidium in Urban Surface Water: A Quantitative Microbial Risk Assessment and Insights into Climatic and Seasonal Influences
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Sample Processing
2.4. DNA Extraction
2.5. DNA Amplification
2.6. Gel Electrophoresis
2.7. Prevalence Ratio
2.8. Statistical Analysis
2.9. Assessment of Human Health Risks
2.10. Dose–Response Assessment
3. Results and Discussion
3.1. Land Use/Land Cover of the Watershed Area
3.2. Observed Physicochemical Water Quality
3.3. Cryptosporidium Prevalence
3.4. Potential Health Risks of Cryptosporidium
3.5. Transmission and Epidemiology
3.6. Influence of Climate, Seasonality, and Floods
3.7. Sources of Surface Water Pollution in Dhaka City
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hemphill, A.; Müller, N.; Müller, J. Comparative pathobiology of the intestinal protozoan parasites Giardia lamblia, Entamoeba histolytica, and Cryptosporidium parvum. Pathogens 2019, 8, 116. [Google Scholar] [CrossRef] [PubMed]
- Ćirković, V.; Klun, I.; Utaaker, K.S.; Uzelac, A.; Tysnes, K.R.; Robertson, L.J.; Djurković-Djaković, O. Surface waters as a potential source of Giardia and Cryptosporidium in Serbia. Exp. Parasitol. 2020, 209, 107824. [Google Scholar] [CrossRef]
- Amar, C.F.L.; Dear, P.H.; McLauchlin, J. Detection and genotyping by real-time PCR/RFLP analyses of Giardia duodenalis from human faeces. J. Med. Microbiol. 2003, 52, 681–683. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Shaik, J.S.; Grigg, M.E. Genomics and molecular epidemiology of Cryptosporidium species. Acta Trop. 2018, 184, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Beaudeau, P. A systematic review of the time series studies addressing the endemic risk of acute gastroenteritis according to drinking water operation conditions in urban areas of developed countries. Int. J. Environ. Res. Public Health 2018, 15, 867. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Surveillance Atlas of Infectious Diseases; European Centre for Disease Prevention and Control Stockholm: Solna, Sweden, 2016. [Google Scholar]
- Petterson, S.; Bradford-Hartke, Z.; Leask, S.; Jarvis, L.; Wall, K.; Byleveld, P. Application of QMRA to prioritise water supplies for Cryptosporidium risk in New South Wales, Australia. Sci. Total Environ. 2021, 784, 147107. [Google Scholar] [CrossRef] [PubMed]
- Fayer, R. Cryptosporidium: A waterborne zoonotic parasite. Vet. Parasitol. 2004, 126, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Fayer, R.; Trout, J.; Nerad, T. Effects of a Wide Range of Temperatures on Infectivity of Cryptosporidiurn parvum oocysts. J. Eukaryot. Microbiol. 1996, 43, 1431–1433. [Google Scholar] [CrossRef]
- Silva, K.J.S.; Sabogal-Paz, L.P. Giardia spp. cysts and Cryptosporidium spp. oocysts in drinking water treatment residues: Comparison of recovery methods for quantity assessment. Environ. Technol. 2021, 42, 3144–3153. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo, F.E.; Singh, G.; Reddy, P.; Bux, F.; Stenström, T.A. Efficiency of chlorine and UV in the inactivation of Cryptosporidium and Giardia in wastewater. PLoS ONE 2019, 14, e0216040. [Google Scholar] [CrossRef]
- Islam, S.M.D.; Azam, G. Seasonal variation of physicochemical and toxic properties in three major rivers; Shitalakhya, Buriganga and Turag around Dhaka city. Bangladesh. J. Bio. Environ. Sci 2015, 7, 120–131. [Google Scholar]
- Ahmed, M.K.; Baki, M.A.; Kundu, G.K.; Islam, M.S.; Islam, M.M.; Hossain, M.M. Human health risks from heavy metals in fish of Buriganga river, Bangladesh. Springerplus 2016, 5, 1697. [Google Scholar] [CrossRef] [PubMed]
- Pasha, A.B.M.K.; Nur, M.S.; Mozumder, S.; Parveen, M. Impact of River Water Quality on Public Health in Perspective of Asian Rivers: A Case Study of Buriganga River, Bangladesh. J. Environ. Earth Sci. 2023, 5, 1–16. [Google Scholar] [CrossRef]
- Ahammed, S.S.; Tasfina, S.; Rabbani, K.A.; Khaleque, M.A. An investigation into the water quality of Buriganga-a river running through Dhaka. Int. J. Sci. Technol. Res. 2016, 5, 36–41. [Google Scholar]
- Rahman, A.; Al Bakri, D. A study on selected water quality parameters along the River Buriganga, Bangladesh. Iran. J. Energy Environ. 2010, 1, 81–92. [Google Scholar]
- Alamgir, M.; Khan, N.; Shahid, S.; Yaseen, Z.M.; Dewan, A.; Hassan, Q.; Rasheed, B. Evaluating severity–area–frequency (SAF) of seasonal droughts in Bangladesh under climate change scenarios. Stoch. Environ. Res. Risk Assess. 2020, 34, 447–464. [Google Scholar] [CrossRef]
- Imran, H.M.; Hossain, A.; Islam, A.K.M.S.; Rahman, A.; Bhuiyan, A.E.; Paul, S.; Alam, A. Impact of land cover changes on land surface temperature and human thermal comfort in Dhaka city of Bangladesh. Earth Syst. Environ. 2021, 5, 667–693. [Google Scholar] [CrossRef]
- Uddin, A.S.M.S.; Khan, N.; Islam, A.R.M.T.; Kamruzzaman, M.; Shahid, S. Changes in urbanization and urban heat island effect in Dhaka city. Theor. Appl. Climatol. 2022, 147, 891–907. [Google Scholar] [CrossRef]
- USEPA. Method 1622: Cryptosporidiumin Water by Filtration, Immunomagnetic Separation, and Fluorescent Antibody. EPA-821-R-01-026, Washington. 2001. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/epa-1622.pdf (accessed on 21 February 2024).
- Elsafi, S.H.; Al-Maqati, T.N.; Hussein, M.I.; Adam, A.A.; Hassan, M.M.A.; Al Zahrani, E.M. Comparison of microscopy, rapid immunoassay, and molecular techniques for the detection of Giardia lamblia and Cryptosporidium parvum. Parasitol. Res. 2013, 112, 1641–1646. [Google Scholar] [CrossRef]
- Fregonesi, B.M.; Zagui, G.S.; Tonani, K.A.d.A.; Machado, C.S.; Gomes-Silva, G.; Padula, J.A.; Martone-Rocha, S.; Razzolini, M.T.P.; Plath, M.; Segura-Muñoz, S. Human health risk assessment for (re) emerging protozoan parasites in surface water used for public supply and recreational activities. Environ. Monit. Assess. 2022, 194, 407. [Google Scholar] [CrossRef]
- Xiao, G.; Qiu, Z.; Qi, J.; Chen, J.-A.; Liu, F.; Liu, W.; Luo, J.; Shu, W. Occurrence and potential health risk of Cryptosporidium and Giardia in the Three Gorges Reservoir, China. Water Res. 2013, 47, 2431–2445. [Google Scholar] [CrossRef] [PubMed]
- Schets, F.M.; Schijven, J.F.; de Roda Husman, A.M. Exposure assessment for swimmers in bathing waters and swimming pools. Water Res. 2011, 45, 2392–2400. [Google Scholar] [CrossRef] [PubMed]
- An, W.; Zhang, D.; Xiao, S.; Yu, J.; Yang, M. Quantitative health risk assessment of Cryptosporidium in rivers of southern China based on continuous monitoring. Environ. Sci. Technol. 2011, 45, 4951–4958. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Occurrence and Exposure Assessment for the Final Long Term 2 Enhanced Surface Water Treatment Rule; EPA 815-R-06-002; United States Environmental Protection Agency: Washington, DC, USA, 2005. [Google Scholar]
- Schijven, J.; de Roda Husman, A.M. A survey of diving behavior and accidental water ingestion among Dutch occupational and sport divers to assess the risk of infection with waterborne pathogenic microorganisms. Environ. Health Perspect. 2006, 114, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Cummins, E.; Kennedy, R.; Cormican, M. Quantitative risk assessment of Cryptosporidium in tap water in Ireland. Sci. Total Environ. 2010, 408, 740–753. [Google Scholar] [CrossRef]
- Bergion, V.; Sokolova, E.; Åström, J.; Lindhe, A.; Sörén, K.; Rosén, L. Hydrological modelling in a drinking water catchment area as a means of evaluating pathogen risk reduction. J. Hydrol. 2017, 544, 74–85. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://pure.iiasa.ac.at/id/eprint/18478/ (accessed on 21 February 2024).
- United States Environmental Protection Agency. Water Quality Assessment and TMDL Information; 2016. Available online: https://www.regulations.gov/document/EPA-HQ-OW-2015-0828-0171 (accessed on 21 February 2024).
- Duc, P.P.; Nguyen-Viet, H.; Hattendorf, J.; Zinsstag, J.; Cam, P.D.; Odermatt, P. Risk factors for Entamoeba histolytica infection in an agricultural community in Hanam province, Vietnam. Parasit. Vectors 2011, 4, 102. [Google Scholar]
- Sampson, A.; Owusu-Ansah, E.D.G.J.; Mills-Robertson, F.C.; Ayi, I.; Abaidoo, R.C.; Hald, T.; Permin, A. Probabilistic quantitative microbial risk assessment model of farmer exposure to Cryptosporidium spp. in irrigation water within Kumasi Metropolis-Ghana. Microb. Risk Anal. 2017, 6, 1–8. [Google Scholar] [CrossRef]
- Rahman, S.S.; Hossain, M.M. Gulshan Lake, Dhaka City, Bangladesh, an onset of continuous pollution and its environmental impact: A literature review. Sustain. Water Resour. Manag. 2019, 5, 767–777. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Rahman, M.H.; Hashem, M.A.; Islam, M.R. Design study of boat for Gulshan-Banani-Hatirjheel Lake in the capital city of Bangladesh. Procedia Eng. 2017, 194, 211–217. [Google Scholar] [CrossRef]
- Islam, M.M.M.; Islam, M.A. Quantifying public health risks from exposure to waterborne pathogens during river bathing as a basis for reduction of disease burden. J. Water Health 2020, 18, 292–305. [Google Scholar] [CrossRef] [PubMed]
- Diallo, M.B.C.; Anceno, A.J.; Tawatsupa, B.; Houpt, E.R.; Wangsuphachart, V.; Shipin, O.V. Infection risk assessment of diarrhea-related pathogens in a tropical canal network. Sci. Total Environ. 2008, 407, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; An, W.; Chen, Z.; Zhang, D.; Yu, J.; Yang, M. The burden of drinking water-associated cryptosporidiosis in China: The large contribution of the immunodeficient population identified by quantitative microbial risk assessment. water Res. 2012, 46, 4272–4280. [Google Scholar] [CrossRef] [PubMed]
- Chappell, C.L.; Tzipori, S.; Akiyoshi, D.E.; Okhuysen, P.C.; Tanriverdi, S.; Langer-Curry, R.; Widmer, G. Cryptosporidium hominis: Experimental challenge of healthy adults. Am. J. Trop. Med. Hyg. 2006, 75, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Gunasekera, S.; Zahedi, A.; O’dea, M.; King, B.; Monis, P.; Thierry, B.; Carr, J.M.; Ryan, U. Organoids and bioengineered intestinal models: Potential solutions to the Cryptosporidium culturing dilemma. Microorganisms 2020, 8, 715. [Google Scholar] [CrossRef] [PubMed]
- Hijjawi, N.; Estcourt, A.; Yang, R.; Monis, P.; Ryan, U. Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Vet. Parasitol. 2010, 169, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Gharpure, R.; Perez, A.; Miller, A.D.; Wikswo, M.E.; Silver, R.; Hlavsa, M.C. Cryptosporidiosis outbreaks—United states, 2009–2017. Am. J. Transplant. 2019, 19, 2650–2654. [Google Scholar] [CrossRef]
- Lal, A.; Fearnley, E.; Wilford, E. Local weather, flooding history and childhood diarrhoea caused by the parasite Cryptosporidium spp.: A systematic review and meta-analysis. Sci. Total Environ. 2019, 674, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Sterk, A.; Schijven, J.; de Roda Husman, A.M.; de Nijs, T. Effect of climate change on runoff of Campylobacter and Cryptosporidium from land to surface water. Water Res. 2016, 95, 90–102. [Google Scholar] [CrossRef]
- Lal, A.; Hales, S.; French, N.; Baker, M.G. Seasonality in human zoonotic enteric diseases: A systematic review. PLoS ONE 2012, 7, e31883. [Google Scholar] [CrossRef]
- Bradford, S.A.; Harvey, R.W. Future research needs involving pathogens in groundwater. Hydrogeol. J. 2017, 25, 931–938. [Google Scholar] [CrossRef]
- Forslund, A.; Markussen, B.; Toenner-Klank, L.; Bech, T.B.; Jacobsen, O.S.; Dalsgaard, A. Leaching of Cryptosporidium parvum oocysts, Escherichia coli, and a Salmonella enterica serovar Typhimurium bacteriophage through intact soil cores following surface application and injection of slurry. Appl. Environ. Microbiol. 2011, 77, 8129–8138. [Google Scholar] [CrossRef] [PubMed]
- King, B.J.; Monis, P.T. Critical processes affecting Cryptosporidium oocyst survival in the environment. Parasitology 2007, 134, 309–323. [Google Scholar] [CrossRef]
- Chen, Y. Flood hazard zone mapping incorporating geographic information system (GIS) and multi-criteria analysis (MCA) techniques. J. Hydrol. 2022, 612, 128268. [Google Scholar] [CrossRef]
- Parajuli, G.; Neupane, S.; Kunwar, S.; Adhikari, R.; Acharya, T.D. A GIS-Based Evacuation Route Planning in Flood-Susceptible Area of Siraha Municipality, Nepal. ISPRS Int. J. Geo-Information 2023, 12, 286. [Google Scholar] [CrossRef]
- Arrighi, C.; Masi, M.; Iannelli, R. Flood risk assessment of environmental pollution hotspots. Environ. Model. Softw. 2018, 100, 1–10. [Google Scholar] [CrossRef]
- Egbueri, J.C.; Enyigwe, M.T. Pollution and ecological risk assessment of potentially toxic elements in natural waters from the Ameka metallogenic district in southeastern Nigeria. Anal. Lett. 2020, 53, 2812–2839. [Google Scholar] [CrossRef]
- Hasan, M.K.; Shahriar, A.; Jim, K.U. Water pollution in Bangladesh and its impact on public health. Heliyon 2019, 5, e02145. [Google Scholar] [CrossRef] [PubMed]
- Cüce, H.; Kalıpcı, E.; Ustaoğlu, F.; Kaynar, İ.; Baser, V.; Türkmen, M. Multivariate statistical methods and GIS based evaluation of the health risk potential and water quality due to arsenic pollution in the Kızılırmak River. Int. J. Sediment Res. 2022, 37, 754–765. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, A.; Doza, B.; Muhib, I.; Zahid, A.; Shammi, M.; Tareq, S.M.; Kurasaki, M. Spatio-temporal assessment of groundwater quality and human health risk: A case study in Gopalganj, Bangladesh. Expo. Heal. 2018, 10, 167–188. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Chowdhury, N.S.; Clemett, A.E.V. Industrial Pollution and Its Threat to Mokesh Beel Wetland in Kaliakoir; MACH Technical Report; MACH: Dhaka, Bangladesh, 2006. [Google Scholar]
- Sultana, Z.; Ali, M.E.; Uddin, M.S.; Haque, M.M. Implementation of effluent treatment plants for waste water treatment. J. Environ. Prot. 2013, 4, 301–308. [Google Scholar] [CrossRef]
Water Quality Parameters | Crescent Lake | Dhanmondi Lake | Banani Lake | Gulshan Lake | Ramna Lake | BS (ECR 97) | WHO (1993) |
---|---|---|---|---|---|---|---|
pH | 8.3 | 7.6 | 7.4 | 7.8 | 6.638 | 6.5–8.5 | 6.5–8.5 |
Conductivity (mS) | 419 | 284 | 262 | 778 | 266 | - | - |
DO * (mg/L) | 5.4 | 5.6 | 3.6 | 3.5 | 4.4 | 4 | 4 |
Iron (<mg/L) | 0.3 | 0.2 | 0.5 | 0.5 | 0.3 | 0.3–1.0 | 0.3 |
Temperature (°C) | 24 | 24 | 25 | 25 | 26 | 20–30 | - |
Color (Pt-Co) | 30 | 23 | 35 | 34 | 27 | 15 | 15 |
Alkalinity (mg/L) | 157 | 117 | 261 | 255 | 96 | 200 | 200 |
CO2 ** (mg/L) | 10 | 12 | 30 | 23 | 24 | 15 | 15 |
Salinity | 0.2 | 0.1 | 0.2 | 0.3 | 0.1 | 0 | 0 |
Turbidity (JTU) | 16 | 12 | 18 | 19 | 13 | 10 | 5 |
BOD5 *** (mg/L) | 17 | 21 | 23 | 27 | 25 | 2 | - |
Probability of Infection per Day (Time) | Probability of Infection per Year | Probability of Illness per Year | |||||
---|---|---|---|---|---|---|---|
Sampling | Cryptosporidium Oocysts/10 L | Swimming | Diving | Swimming | Diving | Swimming | Diving |
January–February | 11.96 ± 9.61 | 1.2 ± 1.0 × 10−3 | 5.3 ± 4.3 × 10−4 | 2.4 ± 1.9 × 10−2 | 1.1 ± 8.4 × 10−3 | 1.2 ± 1.0 × 10−2 | 6.2 ± 4.9 × 10−3 |
June–July | 19.87 ± 11.56 | 2.0 ± 1.2 × 10−3 | 8.8 ± 5.1 × 10−4 | 3.9 ± 2.2 × 10−2 | 1.7 ± 1.0 × 10−2 | 2.0 ± 1.2 × 10−2 | 1.0 ± 0.6 × 10−2 |
Mean | 15.91 ± 8.69 | 1.6 ± 0.9 × 10−3 | 7.1 ± 3.9 × 10−4 | 3.1 ± 1.7 × 10−2 | 1.4 ± 0.8 × 10−2 | 1.6 ± 0.9 × 10−2 | 8.2 ± 4.5 × 10−3 |
Pollutant Categories | Point Sources | Nonpoint Sources |
---|---|---|
Heavy metal | Industrial effluents, waste from the pharmaceutical industry and hospitals, and effluents from thermal power plants | Herbicides, insecticides, pesticide runoff, and metal smelting and refining |
Nutrients | Effluents from the effluent treatment plants of industries | Agricultural waste and agricultural runoff |
Organic chemicals | Paper mill effluents and municipal solid and liquid waste | Emission of domestic waste and agrochemical and farm runoff |
Sedimentation | Drainage from construction sites (area < 20,000 m2) | Drainage from construction sites (area > 20,000 m2) |
Pathogens | Animal excreta, untreated wastewater, and municipal solid waste | Wastes emitted from households and farms and leachate from sanitation systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, H.; Li, X.; Iqbal, M.S.; Tulcan, R.X.S.; Chhetri, M.T. Unveiling the Dynamics of Cryptosporidium in Urban Surface Water: A Quantitative Microbial Risk Assessment and Insights into Climatic and Seasonal Influences. Water 2024, 16, 1352. https://doi.org/10.3390/w16101352
Bilal H, Li X, Iqbal MS, Tulcan RXS, Chhetri MT. Unveiling the Dynamics of Cryptosporidium in Urban Surface Water: A Quantitative Microbial Risk Assessment and Insights into Climatic and Seasonal Influences. Water. 2024; 16(10):1352. https://doi.org/10.3390/w16101352
Chicago/Turabian StyleBilal, Hazrat, Xiaowen Li, Muhammad Shahid Iqbal, Roberto Xavier Supe Tulcan, and Madan Thapa Chhetri. 2024. "Unveiling the Dynamics of Cryptosporidium in Urban Surface Water: A Quantitative Microbial Risk Assessment and Insights into Climatic and Seasonal Influences" Water 16, no. 10: 1352. https://doi.org/10.3390/w16101352
APA StyleBilal, H., Li, X., Iqbal, M. S., Tulcan, R. X. S., & Chhetri, M. T. (2024). Unveiling the Dynamics of Cryptosporidium in Urban Surface Water: A Quantitative Microbial Risk Assessment and Insights into Climatic and Seasonal Influences. Water, 16(10), 1352. https://doi.org/10.3390/w16101352