Water Governance in an Era of Climate Change: A Model to Assess the Shifting Irrigation Demand and Its Effect on Water Management in the Western United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Development
2.2. Model Validation
2.3. Integration of Climate Change Scenarios
3. Results
3.1. Soil–Water Balance Model Validation
3.2. Model Results
4. Discussion
4.1. Model Utility for Water Users
4.2. Usefulness for Broader Water Adaptation Policy
4.3. Usefulness for Water Management Decisions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winters v. United States, 207 U.S. 564 (1908). Available online: https://supreme.justia.com/cases/federal/us/207/564/ (accessed on 25 May 2024).
- Cappaert v. United States 426 U.S. 128 (1976). Available online: https://supreme.justia.com/cases/federal/us/426/128/ (accessed on 25 May 2024).
- Tarlock, A.D.; Robison, J.A. Law of Water Rights and Resources; West, A Thomson Reuters Business: Eagan, MN, USA, 2019. [Google Scholar]
- Matter of Steffens, 756 P.2d 1002 (Colo. 1988). Available online: https://casetext.com/case/matter-of-steffens (accessed on 25 May 2024).
- Washington Department of Ecology v. Grimes, 852 P.2d 1044 (Wash. 1993). Available online: https://law.justia.com/cases/washington/supreme-court/1993/58857-1-1.html (accessed on 25 May 2024).
- National Water Commission. Water Policies for the Future; National Water Commission: Kingston, Jamaica, 1973. [Google Scholar]
- United States Department of Agriculture. American Indian/Alaska Native Producers; United States Department of Agriculture: Washington, DC, USA, 2019.
- Sanchez, L.; Leonard, B.; Edwards, E.C. Paper Water, Wet Water, and the Recognition of Indigenous Property Rights. J. Assoc. Environ. Resour. Econ. 2023, 10, 1545–1579. [Google Scholar] [CrossRef]
- Brief of Digdeep Right to Water Project and Utah Tribal Relief Foundation As Amici Curiae in Support of Respondents, Arizona v. Navajo Nation, 599 U.S. 555. 2023. Available online: https://www.supremecourt.gov/DocketPDF/21/21-1484/254361/20230208163233914_DigDeep%20UTRF%20Amicus%20Brief%20-%20final.pdf (accessed on 25 May 2024).
- Ge, M.; Edwards, E.C.; Akhundjanov, S.B. Irrigation Investment on an American Indian Reservation. Am. J. Agric. Econ. 2020, 102, 1083–1104. [Google Scholar] [CrossRef]
- State ex. re. Reynolds v. Mears, 525 P.2d 870 (N.M. 1974). Available online: https://casetext.com/case/state-ex-rel-reynolds-v-mears (accessed on 25 May 2024).
- Hamlet, A.F.; Lettenmaier, D.P. Effects of 20th Century Warming and Climate Variability on Flood Risk in the Western U.S. Water Resour. Res. 2007, 43, W06427. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Elsner, M.M.; Mauger, G.S.; Lee, S.-Y.; Tohver, I.; Norheim, R.A. An Overview of the Columbia Basin Climate Change Scenarios Project: Approach, Methods, and Summary of Key Results. Atmos.-Ocean. 2013, 51, 392–415. [Google Scholar] [CrossRef]
- IPCC. Synthesis Report of the IPCC Sixth Assessment Report (AR6): Summary for Policy Makers. 2021. Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf (accessed on 25 May 2024).
- Leppi, J.C.; DeLuca, T.H.; Harrar, S.W.; Running, S.W. Impacts of Climate Change on August Stream Discharge in the Central-Rocky Mountains. Clim. Change 2011, 112, 997–1014. [Google Scholar] [CrossRef]
- Luce, C.H.; Holden, Z.A. Declining Annual Streamflow Distributions in the Pacific Northwest United States, 1948–2006. Geophys. Res. Lett. 2009, 36, L16401. [Google Scholar] [CrossRef]
- Mote, P.W.; Hamlet, A.F.; Clark, M.P.; Lettenmaier, D.P. Declining Mountain Snowpack in Western North America. Bull. Am. Meteorol. Soc. 2005, 86, 39–49. [Google Scholar] [CrossRef]
- Tohver, I.; Hamlet, A.F.; Lee, S.-Y. Impacts of 21st Century Climate Change on Hydrologic Extremes in the Pacific Northwest Region of North America. J. Am. Water Resour. Assoc. 2014, 50, 1461–1476. [Google Scholar] [CrossRef]
- U.S. Global Change Research Program. Fourth National Climate Assessment, Volume II. 2018. Available online: https://nca2018.globalchange.gov/downloads/NCA4_2018_FullReport.pdf (accessed on 25 May 2024).
- Lute, A.C.; Luce, C.H. Are Model Transferability and Complexity Antithetical? Insights from Validation of a Variable-Complexity Empirical Snow Model in Space and Time. Water Resour. Res. 2017, 53, 8825–8850. [Google Scholar] [CrossRef]
- Siirila-Woodburn, E.R.; Rhoades, A.M.; Hatchett, B.J.; Huning, L.S.; Szinai, J.; Tague, C.; Nico, P.S.; Feldman, D.R.; Jones, A.D.; Collins, W.D.; et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. 2021, 2, 800–819. [Google Scholar] [CrossRef]
- Fyfe, J.C.; Derksen, C.; Mudryk, L.; Flato, G.M.; Santer, B.D.; Swart, N.C.; Molotch, N.P.; Zhang, X.; Wan, H.; Arora, V.K.; et al. Large near-term projected snowpack loss over the western United States. Nat. Commun. 2017, 8, 14996. [Google Scholar] [CrossRef]
- Mote, P.W.; Rupp, D.E.; Li, S.; Sharp, D.J.; Otto, F.; Uhe, P.F.; Xiao, M.; Lettenmaier, D.P.; Cullen, H.; Allen, M.R. Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophys. Res. Lett. 2016, 43, 10980–10988. [Google Scholar] [CrossRef]
- Mote, P.W.; Li, S.; Lettenmaier, D.P.; Xiao, M.; Engel, R. Dramatic Declines in Snowpack in the Western U.S. NPJ Clim. Atmos. Sci. 2018, 1, 2. [Google Scholar] [CrossRef]
- Musselman, K.N.; Addor, N.; Vano, J.A.; Molotch, N.P. Winter melt trends portend widespread declines in snow water resources. Nat. Clim. Change 2021, 11, 418–424. [Google Scholar] [CrossRef]
- Uzun, S.; Tanir, T.; Coelho, G.d.A.; Souza de Lima, A.d.; Cassalho, F.; Ferreira, C.M. Changes in snowmelt runoff timing in the contiguous United States. Hydrol. Process. 2021, 35, e14430. [Google Scholar] [CrossRef]
- Ikeda, K.; Rasmussen, R.; Liu, C.; Newman, A.; Chen, F.; Barlage, M.; Gutmann, E.; Dudhia, J.; Dai, A.; Luce, C.; et al. Snowfall and snowpack in the Western U.S. as captured by convection permitting climate simulations: Current climate and pseudo global warming future climate. Clim. Dyn. 2021, 57, 2191–2215. [Google Scholar] [CrossRef]
- Konapala, G.; Mishra, A.K.; Wada, Y.; Mann, M.E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 2020, 11, 3044. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; McVicar, T.R.; Miralles, D.G.; Yang, Y.; Tomas-Burguera, M. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. WIREs Clim. Change 2019, 11, e632. [Google Scholar] [CrossRef]
- Albano, C.M.; Abatzoglou, J.T.; McEvoy, D.J.; Huntington, J.L.; Morton, C.G.; Dettinger, M.D.; Ott, T.J. A Multidataset Assessment of Climatic Drivers and Uncertainties of Recent Trends in Evaporative Demand across the Continental United States. J. Hydrometeorol. 2022, 23, 505–519. [Google Scholar] [CrossRef]
- Parks, S.A.; Abatzoglou, J.T. Warmer and Drier Fire Seasons Contribute to Increases in Area Burned at High Severity in Western US Forests from 1985 to 2017. Geophys. Res. Lett. 2020, 47, e2020GL089858. [Google Scholar] [CrossRef]
- Stephens, S.L.; Westerling, A.L.; Hurteau, M.D.; Peery, M.Z.; Schultz, C.A.; Thompson, S. Fire and climate change: Conserving seasonally dry forests is still possible. Front. Ecol. Environ. 2020, 18, 354–360. [Google Scholar] [CrossRef]
- Williams, A.P.; Livneh, B.; McKinnon, K.A.; Hansen, W.D.; Mankin, J.S.; Cook, B.I.; Smerdon, J.E.; Varuolo-Clarke, A.M.; Bjarke, N.R.; Juang, C.S.; et al. Growing impact of wildfire on western US water supply. Proc. Natl. Acad. Sci. USA 2022, 119, e2114069119. [Google Scholar] [CrossRef]
- Condon, L.E.; Atchley, A.L.; Maxwell, R.M. Evapotranspiration depletes groundwater under warming over the contiguous United States. Nat. Commun. 2020, 11, 873. [Google Scholar] [CrossRef]
- Russo, T.A.; Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 2017, 10, 105–108. [Google Scholar] [CrossRef]
- Miller, O.L.; Putman, A.L.; Alder, J.; Miller, M.; Jones, D.K.; Wise, D.R. Changing climate drives future streamflow declines and challenges in meeting water demand across the southwestern United States. J. Hydrol. X 2021, 11, 100074. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Ault, T.R.; Carrillo, C.M.; Chambers, R.G.; Lobell, D.B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Change 2021, 11, 306–312. [Google Scholar] [CrossRef]
- Blanc, E.; Caron, J.; Fant, C.; Monier, E. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields. Earth’s Future 2017, 5, 877–892. [Google Scholar] [CrossRef]
- Qin, Y.; Abatzoglou, J.T.; Siebert, S.; Huning, L.S.; AghaKouchak, A.; Mankin, J.S.; Hong, C.; Tong, D.; Davis, S.J.; Mueller, N.D. Agricultural risks from changing snowmelt. Nat. Clim. Change 2020, 10, 459–465. [Google Scholar] [CrossRef]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Hedden-Nicely, D.R. Climate change and the future of western US water governance. Nat. Clim. Change 2022, 12, 108–110. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Brown, T.J. A Comparison of Statistical Downscaling Methods Suited for Wildfire Applications. Int. J. Climatol. 2012, 32, 772–780. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Udall, B. Climate change and the aridification of North America. Proc. Natl. Acad. Sci. USA 2020, 117, 11856–11858. [Google Scholar] [CrossRef] [PubMed]
- Kormos, P.R.; Luce, C.H.; Wenger, S.J.; Berghuijs, W.R. Trends and sensitivities of low streamflow extremes to discharge timing and magnitude in Pacific Northwest mountain streams. Water Resour. Res. 2016, 52, 4990–5007. [Google Scholar] [CrossRef]
- Zhang, F.; Biederman, J.A.; Dannenberg, M.P.; Yan, D.; Reed, S.C.; Smith, W.K. Five Decades of Observed Daily Precipitation Reveal Longer and More Variable Drought Events across Much of the Western United States. Geophys. Res. Lett. 2021, 48, e2020GL092293. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Bukovsky, M.S.; Leung, L.R.; Sakaguchi, K. Climate change impacts on wind power generation. Nat. Rev. Earth Environ. 2020, 1, 627–643. [Google Scholar] [CrossRef]
- Zeng, Z.; Ziegler, A.D.; Searchinger, T.; Yang, L.; Chen, A.; Ju, K.; Piao, S.; Li, L.Z.X.; Ciais, P.; Chen, D.; et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 2019, 9, 979–985. [Google Scholar] [CrossRef]
- Johnson, D.L.; Erhardt, R.J. Projected impacts of climate change on wind energy density in the United States. Renew. Energy 2016, 85, 66–73. [Google Scholar] [CrossRef]
- Chen, L. Uncertainties in solar radiation assessment in the United States using climate models. Clim. Dyn. 2021, 56, 665–678. [Google Scholar] [CrossRef]
- Nechifor, V.; Winning, M. Global crop output and irrigation water requirements under a changing climate. Heliyon 2019, 5, e01266. [Google Scholar] [CrossRef] [PubMed]
- Jans, Y.; von Bloh, W.; Schaphoff, S.; Müller, C. Global cotton production under climate change—Implications for yield and water consumption. Hydrol. Earth Syst. Sci. 2021, 25, 2027–2044. [Google Scholar] [CrossRef]
- Xiao, D.; Liu, D.L.; Wang, B.; Feng, P.; Bai, H.; Tang, J. Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios. Agric. Water Manag. 2020, 238, 106238. [Google Scholar] [CrossRef]
- Gorguner, M.; Kavvas, M.L. Modeling impacts of future climate change on reservoir storages and irrigation water demands in a Mediterranean basin. Sci. Total Environ. 2020, 748, 141246. [Google Scholar] [CrossRef]
- Nie, W.; Zaitchik, B.F.; Rodell, M.; Kumar, S.V.; Arsenault, K.R.; Badr, H.S. Irrigation Water Demand Sensitivity to Climate Variability across the Contiguous United States. Water Resour. Res. 2021, 57, 2020WR027738. [Google Scholar] [CrossRef]
- Gondim, R.S.; de Castro, M.A.H.; Maia, A.d.H.N.; Evangelista, S.R.M.; Fuck, S.C.d.F. Climate Change Impacts on Irrigation Water Needs in the jaguaribe River Basin1. JAWRA J. Am. Water Resour. Assoc. 2012, 48, 355–365. [Google Scholar] [CrossRef]
- Rodríguez Díaz, J.A.; Weatherhead, E.K.; Knox, J.W.; Camacho, E. Climate change impacts on irrigation water requirements in the Guadalquivir river basin in Spain. Reg. Environ. Change 2007, 7, 149–159. [Google Scholar] [CrossRef]
- Rajagopalan, K.; Chinnayakanahalli, K.J.; Stockle, C.O.; Nelson, R.L.; Kruger, C.E.; Brady, M.P.; Malek, K.; Dinesh, S.T.; Barber, M.E.; Hamlet, A.F.; et al. Impacts of Near-Term Climate Change on Irrigation Demands and Crop Yields in the Columbia River Basin. Water Resour. Res. 2018, 54, 2152–2182. [Google Scholar] [CrossRef]
- National Agricultural Statistics Service. CroplandCROS. Available online: https://croplandcros.scinet.usda.gov/ (accessed on 25 May 2024).
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Huntington, J.L.; Hegewisch, K.C.; Daudert, B.; Morton, C.G.; Abatzoglou, J.T.; McEvoy, D.J.; Erickson, T. Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bull. Am. Meteorol. Soc. 2017, 98, 2397–2410. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56: Crop Evapotranspiration; FAO: Rome, Italy, 1998. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 Dual Crop Coefficient Method for Estimating Evaporation from Soil and Application Extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef]
- Allen, R.G.; Robison, C.W. Evapotranspiration and Consumptive Irrigation Water Requirements for Idaho. 2007. Available online: https://objects.lib.uidaho.edu/iwdl/iwdl-200703.pdf (accessed on 25 May 2024).
- American Society of Civil Engineers. THE ASCE Stanardized Reference Evapotranspiration Equation. 2005. Available online: https://epic.awi.de/id/eprint/42362/1/ascestzdetmain2005.pdf (accessed on 25 May 2024).
- Brady, N.C.; Weil, R.R. The Elements of the Nature and Properties of Soil, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Peters, R.T. Irrigation Scheduler Documentation and Users Manual. 2015. Available online: https://www.deschutesswcd.org/files/be83b09d2/IrrigationSchedulerMobile.pdf (accessed on 25 May 2024).
- Soil Conservation Service. Part 623, National Engineering Handbook, Ch. 2, Irrigation Water Requirements. 1993. Available online: https://www.wcc.nrcs.usda.gov/ftpref/wntsc/waterMgt/irrigation/NEH15/ch2.pdf (accessed on 25 May 2024).
- Bureau of Reclamation. AgriMet Cooperative Agricultural Weather Network. Available online: https://www.usbr.gov/gp/agrimet/agrimet_station_list.html (accessed on 25 May 2024).
- Idaho Dept. of Water Resources. Evapotranspiration and Consumptive Irrigation Water Requirements for Idaho. Available online: https://et-idwr.idaho.gov/ (accessed on 25 May 2024).
- Taylor, K.E.; Ronald, S.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2011, 93, 485–498. [Google Scholar] [CrossRef]
- Vuuren, D.P.v.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The Representative Concentration Pathways: An Oveview. Clim. Change 2011, 109, 5–31. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. Greenhouse Gas Emissions Continued to Increase Rapidly in 2022; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2023. Available online: https://www.noaa.gov/news-release/greenhouse-gases-continued-to-increase-rapidly-in-2022 (accessed on 25 May 2024).
- Bhanumati, P.; Haan, M.D.; Tebrake, J.W. Greenhouse Emissions Rise to Record, Erasing Drop during Pandemic. 2023. Available online: https://www.imf.org/en/Blogs/Articles/2022/06/30/greenhouse-emissions-rise-to-record-erasing-drop-during-pandemic (accessed on 25 May 2024).
- World Meterological Organization. The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2022. WMO Greenhouse Gas Bulliton No. 19. 2023. Available online: https://wmo.int/publication-series/wmo-greenhouse-gas-bulletin-no-19 (accessed on 25 May 2024).
- Riahi, K.; Rao, H.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5―A Scenario of Comparatively High Greenhouse Gas Emissions. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Cantorea, V.; Wassarb, F.; Yamaçb, S.S.; Sellamic, M.H.; Albrizioc, R.; Stellaccid, A.M.; Todorovicb, M. Yield and water use efficiency of early potato grownunder different irrigation regimes. Int. J. Plant Prod. 2014, 8, 409–428. [Google Scholar]
- Kirda, C. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. Water Rep. 2002, 22, 3–10. [Google Scholar]
- Klocke, N.L.; Currie, R.S.; Holman, J.D. Alfalfa Response to Irrigation From Limited Water Supplies. Trans. Am. Soc. Agric. Biol. Eng. 2013, 56, 1759–1768. [Google Scholar] [CrossRef]
- Tack, J.; Barkley, A.; Hendricks, N. Irrigation offsets wheat yield reductions from warming temperatures. Environ. Res. Lett. 2017, 12, 114027. [Google Scholar] [CrossRef]
- Yactayo, W.; Ramírez, D.A.; Gutiérrez, R.; Mares, V.; Posadas, A.; Quiroz, R. Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency. Agric. Water Manag. 2013, 123, 65–70. [Google Scholar] [CrossRef]
- Surface Water Coalition; Idaho Ground Water Appropriators, I. Settlement Agreement Entered into June 30, 2015 between Participating Members of the Surface Water Coalition and Participating Members of the Idaho Ground Water Appropriators, Inc. 2015. Available online: https://idwr.idaho.gov/wp-content/uploads/sites/2/legal/swc-igwa-settlement/SWC-IGWA-Settlement-20150630-SWC-IGWA-Settlement-Agreement.pdf (accessed on 25 May 2024).
- Neuman, J.C. Beneficial Use, Waste, and Forfeiture: The Inefficient Search for Efficiency in Western Water Use. Environ. Law Rev. 1998, 28, 919. [Google Scholar]
- Shokal v. Dunn, 707 P.2d 441 (1985). Available online: https://casetext.com/case/shokal-v-dunn (accessed on 25 May 2024).
- Idaho Water Appropriation Rules, IDAPA 37.03.08.025.01 (2022). Available online: https://adminrules.idaho.gov/rules/current/37/370308.pdf (accessed on 25 May 2024).
- Idaho Water Appropriation Rules, IDAPA 37.03.08.045.01 (2022). Available online: https://adminrules.idaho.gov/rules/current/37/370308.pdf (accessed on 25 May 2024).
- M.C.A. § 85-2-311 (2021). Available online: https://leg.mt.gov/bills/mca/title_0850/chapter_0020/part_0030/section_0110/0850-0020-0030-0110.html (accessed on 25 May 2024).
- Hedden-Nicely, D.R. New Developments for Conjunctive Management in Idaho: Why our Expanding Understanding of Science Should Expand How We Address the Doctrine against Waste in Idaho Water Right Transfers Comment. Ida. L. Rev. 2010, 47, 147. [Google Scholar]
- Montana v. Wyoming, 563 U.S. 368 (2011). Available online: https://casetext.com/case/montana-v-wyoming-142 (accessed on 25 May 2024).
- Inflation Reduction Act, 136 Stat. 1818 (2022). Available online: https://www.congress.gov/117/plaws/publ169/PLAW-117publ169.pdf (accessed on 25 May 2024).
- Schwabe, K.; Nemati, M.; Landry, C.; Zimmerman, G. Water Markets in the Western United States: Trends and Opportunities. Water 2020, 12, 233. [Google Scholar] [CrossRef]
- United States Department of the Interior; State of California; Imperial Irrigation District; San Diego County Water Authority; Metropolitan Water District; Coachella Valley Water District. Colorado River Water Delivery Agreement: Federal Quantification Settlement Agreement for Purposes of Section 5(B) of Interim Surplus Guidelines. 2003. Available online: https://www.sdcwa.org/sites/default/files/Federal%20QSA.pdf (accessed on 25 May 2024).
- Reisner, M. Cadillac Desert: The American West and its Disappearing Water; Penguin Books: New York, NY, USA, 1993. [Google Scholar]
- Fiege, M. Irrigated Eden: The Making of an Agricultural Landscape in the American West; University of Washington Press: Seattle, WA, USA, 1999. [Google Scholar]
- Harden, B. A River Lost: The Life and Death of the Columbia; WW Norton & Company: New York, NY, USA, 1996. [Google Scholar]
- Locke, A.; Stalnaker, C.; Zellmer, S.; Williams, K.; Beecher, H.; Richards, T.; Robertson, C.; Wald, A.; Paul, A.; Annear, T. Integrated Approaches to Riverine Resource Stewardship: Case Studies, Science Law, People, and Policy; Instream Flow Council: Cheyenne, WY, USA, 2008; p. 429. [Google Scholar]
- Carroll, S.R.; Garba, I.; Figueroa-Rodriguez, O.L.; Holbroo, J.; Lovett, R.; Materechera, S.; Parsons, M.; Raseroka, K.; Rodriguez-Lonebear, D.; Rowe, R.; et al. The CARE Principles for Indigenious Data Governance. Data Sci. J. 2020, 19, 43. [Google Scholar] [CrossRef]
Statistic | Timeframe | Northwest | Northern Plains | Great Basin | Southern Plains | Southwest |
---|---|---|---|---|---|---|
Mean (mm) | Current | 632 | 823 | 801 | 490 | 1069 |
2039 | 687 | 846 | 853 | 683 | 1298 | |
2069 | 734 | 896 | 901 | 803 | 1370 | |
2099 | 793 | 953 | 979 | 883 | 1439 | |
Median (mm) | Current | 536 | 582 | 601 | 445 | 939 |
2039 | 596 | 612 | 690 | 530 | 1163 | |
2069 | 645 | 768 | 793 | 578 | 1218 | |
2099 | 716 | 786 | 908 | 599 | 1270 | |
Change | 180 | 204 | 307 | 154 | 331 | |
% Change | 134 | 135 | 151 | 135 | 135 | |
Standard Deviation (mm) | Current | 6.2 | 7.3 | 10.5 | 8.1 | 10.5 |
2039 | 7 | 7.9 | 10.9 | 8.5 | 12.8 | |
2069 | 7.2 | 8.3 | 11.2 | 8.9 | 13 | |
2099 | 7.3 | 8.6 | 11.3 | 9.4 | 13.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hedden-Nicely, D.R.; Kaiser, K.E. Water Governance in an Era of Climate Change: A Model to Assess the Shifting Irrigation Demand and Its Effect on Water Management in the Western United States. Water 2024, 16, 1963. https://doi.org/10.3390/w16141963
Hedden-Nicely DR, Kaiser KE. Water Governance in an Era of Climate Change: A Model to Assess the Shifting Irrigation Demand and Its Effect on Water Management in the Western United States. Water. 2024; 16(14):1963. https://doi.org/10.3390/w16141963
Chicago/Turabian StyleHedden-Nicely, Dylan R., and Kendra E. Kaiser. 2024. "Water Governance in an Era of Climate Change: A Model to Assess the Shifting Irrigation Demand and Its Effect on Water Management in the Western United States" Water 16, no. 14: 1963. https://doi.org/10.3390/w16141963
APA StyleHedden-Nicely, D. R., & Kaiser, K. E. (2024). Water Governance in an Era of Climate Change: A Model to Assess the Shifting Irrigation Demand and Its Effect on Water Management in the Western United States. Water, 16(14), 1963. https://doi.org/10.3390/w16141963