Assessment of Different Frameworks for Addressing Climate Change Impact on Crop Production and Water Requirement
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area Description and Agricultural Dataset for Crop Modeling
2.2. Use of Climate Data for This Study
2.3. DSSAT Simulation to Assess the Implication of CO2 on Crop Production, Water Requirement, and Phenology
2.4. Estimation of Crop Yield, Water Demand, and Phenology from the Ensemble Climate Data
3. Results
3.1. Assessment of Default CO2 Concentration Impact on Rice Yield, Phenology, and Water Demand
3.1.1. RCP 2.6
3.1.2. RCP 4.5
3.1.3. RCP 6.0
3.1.4. RCP 8.5
3.2. Change in Yield, Water Demand, and Phenological Days Obtained from CERES-Rice Simulation Using Ensembled Climate Data of GCMs, and Comparison with Ensembled Crop Model Outputs Obtained Corresponding to Each GCM
3.2.1. RCP 2.6
3.2.2. RCP 4.5
3.2.3. RCP 6.0
3.2.4. RCP 8.5
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vuuren, D.; Meinshausen, M.; Plattner, G.-K.; Joos, F.; Strassmann, K.; Smith, S.; Wigley, T.; Raper, S.; Riahi, K.; de la Chesnaye, F.; et al. Temperature Increase of 21st Century Mitigation Scenarios. Proc. Natl. Acad. Sci. USA 2008, 105, 15258–15262. [Google Scholar] [CrossRef] [PubMed]
- Davis, W.J. The Relationship between Atmospheric Carbon Dioxide Concentration and Global Temperature for the Last 425 Million Years. Climate 2017, 5, 76. [Google Scholar] [CrossRef]
- Friedlingstein, P.; O’Sullivan, M.; Jones, M.W.; Andrew, R.M.; Gregor, L.; Hauck, J.; Le Quéré, C.; Luijkx, I.T.; Olsen, A.; Peters, G.P.; et al. Global Carbon Budget 2022. Earth Syst. Sci. Data 2022, 14, 4811–4900. [Google Scholar] [CrossRef]
- Mall, R.K.; Singh, R.; Gupta, A.; Srinivasan, G.; Rathore, L.S. Impact of Climate Change on Indian Agriculture: A Review. Clim. Chang. 2006, 78, 445–478. [Google Scholar] [CrossRef]
- Saud, S.; Wang, D.; Fahad, S.; Alharby, H.F.; Bamagoos, A.A.; Mjrashi, A.; Alabdallah, N.M.; AlZahrani, S.S.; AbdElgawad, H.; Adnan, M.; et al. Comprehensive Impacts of Climate Change on Rice Production and Adaptive Strategies in China. Front. Microbiol. 2022, 13, 926059. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef]
- Rezvi, H.U.A.; Tahjib-Ul-Arif, M.; Azim, M.A.; Tumpa, T.A.; Tipu, M.M.H.; Najnine, F.; Dawood, M.F.A.; Skalicky, M.; Brestič, M. Rice and Food Security: Climate Change Implications and the Future Prospects for Nutritional Security. Food Energy Secur. 2023, 12, e430. [Google Scholar] [CrossRef]
- Pathak, D.S.; Pramanik, P.; Khanna, M.; Kumar, A. Climate Change and Water Availability in Indian Agriculture: Impacts and Adaptation. Indian J. Agric. Sci. 2014, 84, 671–679. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, R.K.P.; Kumar, A.; Betne, R.; Singh, K.M. Adoption of Modern Rice Cultivation Practices in Bihar, India: Micro-Level Evidences from Village-Level Studies. Agric. Res. 2016, 5, 433–439. [Google Scholar] [CrossRef]
- Barbui, C. Access and Use of Psychotropic Medicines in Low-Resource Settings. Epidemiol. Psychiatr. Sci. 2015, 24, 206–209. [Google Scholar] [CrossRef]
- Jha, R.K.; Kalita, P.K.; Jat, R. Development of Production Management Strategies for a Long-Duration Rice Variety: Rajendra Mahsuri—Using Crop Growth Model, DSSAT, for the State of Bihar, India. Paddy Water Environ. 2020, 18, 531–545. [Google Scholar] [CrossRef]
- Salam, M.A.; Anwer, M.; Alam, M. Agriculture and The Economy of Bihar: An Analysis. Int. J. Sci. Res. Publ. 2013, 3, 1–19. [Google Scholar]
- Drewry, D.T.; Kumar, P.; Long, S.; Bernacchi, C.; Liang, X.Z.; Sivapalan, M. Ecohydrological responses of dense canopies to environmental variability: 2. Role of acclimation under elevated CO2. J. Geophys. Res. Biogeosci. 2010, 115. [Google Scholar] [CrossRef]
- Devkota, K.; Manschadi, A.M.; Devkota, M.; Lamers, J.; Ruzibaev, E.; Egamberdiev, O.; Amiri, E.; Vlek, P. Simulating the Impact of Climate Change on Rice Phenology and Grain Yield in Irrigated Drylands of Central Asia. J. Appl. Meteorol. Climatol. 2013, 52, 2033–2050. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Willems, P.; Geerts, S. Quantifying Field-Scale Effects of Elevated Carbon Dioxide Concentration on Crops. Clim. Res. 2012, 54, 35–47. [Google Scholar] [CrossRef]
- Adachi, M.; Hasegawa, T.; Fukayama, H.; Tokida, T.; Sakai, H.; Matsunami, T.; Nakamura, H.; Sameshima, R.; Okada, M. Soil and Water Warming Accelerates Phenology and Down-Regulation of Leaf Photosynthesis of Rice Plants Grown Under Free-Air CO2 Enrichment (FACE). Plant Cell Physiol. 2014, 55, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Kumar, U.; Quick, W.P.; Barrios, M.; Sta Cruz, P.C.; Dingkuhn, M. Atmospheric CO2 Concentration Effects on Rice Water Use and Biomass Production. PLoS ONE 2017, 12, e0169706. [Google Scholar] [CrossRef]
- de Figueiredo, E.B.; Panosso, A.R.; Reicosky, D.C.; La Scala, N., Jr. Short-term CO2-C emissions from soil prior to sugarcane (Saccharum spp.) replanting in southern Brazil. Gcb Bioenergy 2015, 7, 316–327. [Google Scholar] [CrossRef]
- N’guessan, K.J.-Y.; Adahi, B.; Konan-Waidhet, A.-B.; Masayoshi, S.; Assidjo, N.E. Assessment of Climate Change Impact on Water Requirement and Rice Productivity. Rice Sci. 2023, 30, 276–293. [Google Scholar] [CrossRef]
- Agrawal, A.; Srivastava, P.K.; Tripathi, V.K.; Maurya, S.; Sharma, R.; D.J., S. Future Projections of Crop Water and Irrigation Water Requirements Using a Bias-Corrected Regional Climate Model Coupled with CROPWAT. J. Water Clim. Chang. 2023, 14, 1147–1161. [Google Scholar] [CrossRef]
- Martre, P.; Wallach, D.; Asseng, S.; Ewert, F.; Jones, J.; Rötter, R.P.; Boote, K.; Ruane, A.; Thorburn, P.; Cammarano, D.; et al. Multimodel Ensembles of Wheat Growth: Many Models Are Better than One. Glob. Chang. Biol. 2014, 21, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.; Ruiz-Ramos, M.; Palosuo, T.; Carter, T.R.; Fronzek, S.; Lorite, I.J.; Ferrise, R.; Pirttioja, N.; Bindi, M.; Baranowski, P.; et al. Implications of Crop Model Ensemble Size and Composition for Estimates of Adaptation Effects and Agreement of Recommendations. Agric. For. Meteorol. 2019, 264, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Jha, R.K.; Kalita, P.K.; Cooke, R.A.; Kumar, P.; Davidson, P.C.; Jat, R. Predicting the Water Requirement for Rice Production as Affected by Projected Climate Change in Bihar, India. Water 2020, 12, 3312. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Mayer, L.; Intergovernmental Panel on Climate Change (Eds.) Climate Change 2014: Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015. [Google Scholar]
- Jha, R.K.; Kalita, P.K.; Cooke, R.A. Assessment of Climatic Parameters for Future Climate Change in a Major Agricultural State in India. Climate 2021, 9, 111. [Google Scholar] [CrossRef]
- Keeling, C. The Concentration and Isotopic Abundances of Carbon Dioxide in the Atmosphere. Tellus A 1960, 12, 9366. [Google Scholar] [CrossRef]
- Woznicki, S.A.; Nejadhashemi, A.P.; Parsinejad, M. Climate Change and Irrigation Demand: Uncertainty and Adaptation. J. Hydrol. Reg. Stud. 2015, 3, 247–264. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, T.; Zhang, Y.; Wang, K.; Xian, J. Review on Responses of Plant Phenology to Simulated Elevated CO2 Concentration and Temperature. Chin. J. Appl. Environ. Biol. 2008, 14, 716–720. [Google Scholar] [CrossRef]
- Padhan, B.K.; Sathee, L.; Meena, H.S.; Adavi, S.B.; Jha, S.K.; Chinnusamy, V. CO2 Elevation Accelerates Phenology and Alters Carbon/Nitrogen Metabolism Vis-à-Vis ROS Abundance in Bread Wheat. Front. Plant Sci. 2020, 11, 1061. [Google Scholar] [CrossRef]
- Meier, M.; Vitasse, Y.; Bugmann, H.; Bigler, C. Phenological Shifts Induced by Climate Change Amplify Drought for Broad-Leaved Trees at Low Elevations in Switzerland. Agric. For. Meteorol. 2021, 307, 108485. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Khurana, R.; Khatri-Chhetri, A.; Rahut, D.B.; Jat, M.L. Climate Change and Agriculture in South Asia: Adaptation Options in Smallholder Production Systems. Environ. Dev. Sustain. 2020, 22, 5045–5075. [Google Scholar] [CrossRef]
- Qin, M.; Zheng, E.; Hou, D.; Meng, X.; Meng, F.; Gao, Y.; Chen, P.; Qi, Z.; Xu, T. Response of Wheat, Maize, and Rice to Changes in Temperature, Precipitation, CO2 Concentration, and Uncertainty Based on Crop Simulation Approaches. Plants 2023, 12, 2709. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Sahany, S.; Singh, K.K.; Robock, A.; Xia, L. Future Climate Change Impacts on Rice in Uttar Pradesh, India’s Most Populous Agrarian State. Earths Future 2024, 12, e2023EF004009. [Google Scholar] [CrossRef]
- Shimono, H.; Okada, M.; Yamakawa, Y.; Nakamura, H.; Kobayashi, K.; Hasegawa, T. Rice Yield Enhancement by Elevated CO2 Is Reduced in Cool Weather. Glob. Chang. Biol. 2008, 14, 276–284. [Google Scholar] [CrossRef]
- Liu, S.; Waqas, M.A.; Wang, S.; Xiong, X.; Wan, Y. Effects of Increased Levels of Atmospheric CO2 and High Temperatures on Rice Growth and Quality. PLoS ONE 2017, 12, e0187724. [Google Scholar] [CrossRef]
- Bahuguna, R.N.; Chaturvedi, A.K.; Pal, M.; Viswanathan, C.; Jagadish, S.V.K.; Pareek, A. Carbon Dioxide Responsiveness Mitigates Rice Yield Loss under High Night Temperature. Plant Physiol. 2021, 188, 285–300. [Google Scholar] [CrossRef]
Climate Scenario | Yield (kg ha−1) | Precipitation (mm) | Irrigation (mm) | Water Demand (mm) | |
---|---|---|---|---|---|
Baseline (1980–2004) | 5372 | 729 | 282 | 476 | |
RCP 2.6 | 2020–2029 | 5480 | 797 | 253 | 493 |
2030–2039 | 5354 | 763 | 259 | 469 | |
2040–2049 | 5239 | 730 | 247 | 473 | |
2050–2059 | 5256 | 779 | 272 | 475 | |
RCP 4.5 | 2020–2029 | 5593 | 865 | 240 | 496 |
2030–2039 | 5429 | 814 | 267 | 486 | |
2040–2049 | 5553 | 869 | 239 | 490 | |
2050–2059 | 5201 | 775 | 261 | 465 | |
RCP 6.0 | 2020–2029 | 5474 | 800 | 265 | 483 |
2030–2039 | 5187 | 734 | 269 | 469 | |
2040–2049 | 5217 | 809 | 266 | 472 | |
2050–2059 | 5170 | 844 | 245 | 463 | |
RCP 8.5 | 2020–2029 | 5499 | 759 | 271 | 483 |
2030–2039 | 5556 | 820 | 254 | 493 | |
2040–2049 | 5439 | 774 | 262 | 480 | |
2050–2059 | 5040 | 834 | 236 | 452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jha, R.K.; Kalita, P.K.; Kumar, P.; Davidson, P.C.; Jat, R. Assessment of Different Frameworks for Addressing Climate Change Impact on Crop Production and Water Requirement. Water 2024, 16, 1992. https://doi.org/10.3390/w16141992
Jha RK, Kalita PK, Kumar P, Davidson PC, Jat R. Assessment of Different Frameworks for Addressing Climate Change Impact on Crop Production and Water Requirement. Water. 2024; 16(14):1992. https://doi.org/10.3390/w16141992
Chicago/Turabian StyleJha, Ranjeet K., Prasanta K. Kalita, Praveen Kumar, Paul C. Davidson, and Rajkumar Jat. 2024. "Assessment of Different Frameworks for Addressing Climate Change Impact on Crop Production and Water Requirement" Water 16, no. 14: 1992. https://doi.org/10.3390/w16141992
APA StyleJha, R. K., Kalita, P. K., Kumar, P., Davidson, P. C., & Jat, R. (2024). Assessment of Different Frameworks for Addressing Climate Change Impact on Crop Production and Water Requirement. Water, 16(14), 1992. https://doi.org/10.3390/w16141992