Transformation and Mitigation of Tar and Related Secondary Pollutants during Sewage Sludge Pyrolysis
Abstract
:1. Introduction
2. Insight into the Generation and Characteristics of Tar from SS
2.1. Influence of SS Composition on Pyrolysis Tar
2.2. Comparison of Pyrolysis Tar between Conventional and Microwave Pyrolysis
2.3. Characteristics of Tar Components from SS Pyrolysis
3. Key Role of Tar in the Transformation of Secondary Pollutants during Pyrolysis
3.1. Tar in the Transformation of Nitrogen-Containing Pollutants
3.2. Tar in the Transformation of Sulfur-Containing Pollutants
3.3. Tar in the Transformation of Chlorine-Containing Pollutants
3.4. Tar in the Transformation of Heavy Metal Pollutants
4. Contaminant Mitigation Strategy in SS Pyrolysis
4.1. Nitrogen, Sulfur, and Chlorine Contaminants’ Control Strategy in SS Pyrolysis
4.2. Heavy Metals Control Strategy in SS Pyrolysis
4.3. Tar Pollutants Control Strategy in SS Pyrolysis
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Hu, Y.; Xia, N.; Li, M.C.; Chen, D.S.; Xu, Y.Y. Urban regeneration and SDGs assessment based on multi-source data: Practical experience from Shenzhen, China. Ecol. Indic. 2024, 165, 112138. [Google Scholar] [CrossRef]
- Lu, L.; Guest, J.S.; Peters, C.A.; Zhu, X.P.; Rau, G.H.; Ren, Z.J. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 2018, 1, 750–758. [Google Scholar] [CrossRef]
- Li, H.H.; Cheng, X.H.; Ding, H.; Yang, Y.; Li, D.; Wang, J.Q.; Han, J.J. Cleaner production and carbon reduction target: Analysis of sewage treatment plants in Nort-Central China. Energy Source Part A 2022, 44, 2770–2781. [Google Scholar] [CrossRef]
- Gao, N.; Quan, C.; Liu, B.; Li, Z.; Wu, C.; Li, A. Continuous Pyrolysis of Sewage Sludge in a Screw-Feeding Reactor: Products Characterization and Ecological Risk Assessment of Heavy Metals. Energy Fuels 2017, 31, 5063–5072. [Google Scholar] [CrossRef]
- Raheem, A.; Sikarwar, V.S.; He, J.; Dastyar, W.; Dionysiou, D.D.; Wang, W.; Zhao, M. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review. Chem. Eng. J. 2018, 337, 616–641. [Google Scholar] [CrossRef]
- Yang, J.; Song, J.; Liang, S.; Guan, R.; Shi, Y.; Yu, W.; Zhu, S.; Fan, W.; Hou, H.; Hu, J.; et al. Synergistic effect of water content and composite conditioner of Fenton’s reagent combined with red mud on the enhanced hydrogen production from sludge pyrolysis. Water Res. 2017, 123, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, L.; Mei, Q.; Dong, B.; Dai, X.; Ding, G.; Zeng, E.Y. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res. 2018, 142, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Van Houten, R.T.; Borger, A.R.; Eikelboom, D.H.; Fan, Y. Minimization of excess sludge production for biological wastewater treatment. Water Res. 2003, 37, 4453–4467. [Google Scholar] [CrossRef]
- Joo, S.H.; Dello Monaco, F.; Antmann, E.; Chorath, P. Sustainable approaches for minimizing biosolids production and maximizing reuse options in sludge management: A review. J. Environ. Manag. 2015, 158, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Gu, Y.; Yuan, H.; Gong, Y.; Wu, Y. Selecting sustainable technologies for disposal of municipal sewage sludge using a multi-criterion decision-making method: A case study from China. Resour. Conserv. Recycl. 2020, 161, 104881. [Google Scholar] [CrossRef]
- Karayildirim, T.; Yanik, J.; Yuksel, M.; Bockhorn, H. Characterisation of products from pyrolysis of waste sludges. Fuel 2006, 85, 1498–1508. [Google Scholar] [CrossRef]
- Yuan, H.; Lu, T.; Zhao, D.; Huang, H.; Noriyuki, K.; Chen, Y. Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. J. Mater. Cycles Waste Manag. 2013, 15, 357–361. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, L.; Geng, Y.; Wang, N.; Mao, Y.; Cai, Y. Occurrence, speciation and fate of mercury in the sewage sludge of China. Ecotoxicol. Environ. Saf. 2019, 186, 109787. [Google Scholar] [CrossRef] [PubMed]
- Karaca, C.; Sozen, S.; Orhon, D.; Okutan, H. High temperature pyrolysis of sewage sludge as a sustainable process for energy recovery. Waste Manag. 2018, 78, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Horn, A.L.; Düring, R.-A.; Gäth, S. Comparison of decision support systems for an optimised application of compost and sewage sludge on agricultural land based on heavy metal accumulation in soil. Sci. Total Environ. 2003, 311, 35–48. [Google Scholar] [CrossRef] [PubMed]
- Hospido, A.; Carballa, M.; Moreira, M.; Omil, F.; Lema, J.M.; Feijoo, G. Environmental assessment of anaerobically digested sludge reuse in agriculture: Potential impacts of emerging micropollutants. Water Res. 2010, 44, 3225–3233. [Google Scholar] [CrossRef] [PubMed]
- Djandja, O.S.; Yin, L.-X.; Wang, Z.-C.; Duan, P.-G. From wastewater treatment to resources recovery through hydrothermal treatments of municipal sewage sludge: A critical review. Process Saf. Environ. Prot. 2021, 151, 101–127. [Google Scholar] [CrossRef]
- Zheng, A.; Li, L.; Tippayawong, N.; Huang, Z.; Zhao, K.; Wei, G.; Zhao, Z.; Li, H. Reducing emission of NOx and SOx precursors while enhancing char production from pyrolysis of sewage sludge by torrefaction pretreatment. Energy 2020, 192, 116620. [Google Scholar] [CrossRef]
- Jang, C.; Abebe, T.N. Utilizing Wheel Washing Machine Sludge as a Cement Substitute in Repair Mortar: An Experimental Investigation into Material Characteristics. Materials 2024, 17, 2037. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, G.; Tian, H. Current state of sewage treatment in China. Water Res. 2014, 66, 85–98. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods—A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Zhang, X.; Gao, M.; Zhang, C.; Zang, X.; Wu, L. Feasibility of sludge deep dewaterability improvement for incineration disposal by combined conditioning of freeze-thaw and sawdust. Environ. Res. 2024, 252, 118987. [Google Scholar] [CrossRef] [PubMed]
- Chanaka Udayanga, W.D.; Veksha, A.; Giannis, A.; Lisak, G.; Chang, V.W.C.; Lim, T.-T. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel 2018, 226, 721–744. [Google Scholar] [CrossRef]
- Alvarez, J.; Lopez, G.; Amutio, M.; Artetxe, M.; Barbarias, I.; Arregi, A.; Bilbao, J.; Olazar, M. Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. Fuel Process. Technol. 2016, 149, 169–175. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, J.; Wang, J. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation. Bioresour. Technol. 2014, 174, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Raczkiewicz, M.; Ostolska, I.; Mašek, O.; Oleszczuk, P. Effect of the pyrolysis conditions and type of feedstock on nanobiochars obtained as a result of ball milling. J. Clean. Prod. 2024, 458, 142456. [Google Scholar] [CrossRef]
- Fonts, I.; Azuara, M.; Gea, G.; Murillo, M.B. Study of the pyrolysis liquids obtained from different sewage sludge. J. Anal. Appl. Pyrolysis 2009, 85, 184–191. [Google Scholar] [CrossRef]
- Zaimes, G.G.; Soratana, K.; Harden, C.L.; Landis, A.E.; Khanna, V. Biofuels via Fast Pyrolysis of Perennial Grasses: A Life Cycle Evaluation of Energy Consumption and Greenhouse Gas Emissions. Environ. Sci. Technol. 2015, 49, 10007–10018. [Google Scholar] [CrossRef]
- Manara, P.; Zabaniotou, A. Towards sewage sludge based biofuels via thermochemical conversion—A review. Renew. Sustain. Energy Rev. 2012, 16, 2566–2582. [Google Scholar] [CrossRef]
- Fonts, I.; Kuoppala, E.; Oasmaa, A. Physicochemical Properties of Product Liquid from Pyrolysis of Sewage Sludge. Energy Fuels 2009, 23, 4121–4128. [Google Scholar] [CrossRef]
- Luo, J.; Ma, R.; Lin, J.; Sun, S.; Gong, G.; Sun, J.; Chen, Y.; Ma, N. Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal. Renew. Sustain. Energy Rev. 2023, 173, 113107. [Google Scholar] [CrossRef]
- Li, M.; Xiao, B.; Wang, X.; Liu, J. Consequences of sludge composition on combustion performance derived from thermogravimetry analysis. Waste Manag. 2015, 35, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Arazo, R.O.; Genuino, D.A.D.; de Luna, M.D.G.; Capareda, S.C. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor. Sustain. Environ. Res. 2017, 27, 7–14. [Google Scholar] [CrossRef]
- Liu, Z.; McNamara, P.; Zitomer, D. Autocatalytic Pyrolysis of Wastewater Biosolids for Product Upgrading. Environ. Sci. Technol. 2017, 51, 9808–9816. [Google Scholar] [CrossRef]
- Liu, Y.; Ran, C.; Siddiqui, A.R.; Chtaeva, P.; Siyal, A.A.; Song, Y.; Dai, J.; Deng, Z.; Fu, J.; Ao, W.; et al. Pyrolysis of sewage sludge in a benchtop fluidized bed reactor: Characteristics of condensates and non-condensable gases. Renew. Energy 2020, 160, 707–720. [Google Scholar] [CrossRef]
- Huang, F.; Yu, Y.; Huang, H. Temperature influence and distribution of bio-oil from pyrolysis of granular sewage sludge. J. Anal. Appl. Pyrolysis 2018, 130, 36–42. [Google Scholar] [CrossRef]
- Arazo, R.O.; Capareda, S.C.; Ofrasio, B.I.G.; Ido, A.L.; Chen, W.-H.; de Luna, M.D.G. Low-temperature catalytic conversion of alkaline sewage sludge bio-oil to biodiesel: Product characteristics and reaction mechanisms. Environ. Technol. Innov. 2021, 21, 101266. [Google Scholar] [CrossRef]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production: A review. Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Trinh, T.N.; Jensen, P.A.; Dam-Johansen, K.; Knudsen, N.O.; Sørensen, H.R. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties. Energy Fuels 2013, 27, 1419–1427. [Google Scholar] [CrossRef]
- Jayanarasimhan, A.; Pathak, R.M.; Shivapuji, A.M.; Rao, L. Tar Formation in Gasification Systems: A Holistic Review of Remediation Approaches and Removal Methods. ACS Omega 2024, 9, 2060–2079. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, T.; Gao, B.; Meng, R.; Zhou, P.; Chen, G.; Zhan, Y.; Lu, W.; Wang, H. Comparison between hydrogen-rich biogas production from conventional pyrolysis and microwave pyrolysis of sewage sludge: Is microwave pyrolysis always better in the whole temperature range? Int. J. Hydrog. Energy 2021, 46, 23322–23333. [Google Scholar] [CrossRef]
- Mphahlele, K.; Matjie, R.H.; Osifo, P.O. Thermodynamics, kinetics and thermal decomposition characteristics of sewage sludge during slow pyrolysis. J. Environ. Manag. 2021, 284, 112006. [Google Scholar] [CrossRef]
- Atienza-Martínez, M.; Fonts, I.; Lázaro, L.; Ceamanos, J.; Gea, G. Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor. Chem. Eng. J. 2015, 259, 467–480. [Google Scholar] [CrossRef]
- Wei, F.; Cao, J.-P.; Zhao, X.-Y.; Ren, J.; Gu, B.; Wei, X.-Y. Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: A study of sewage sludge and model amino acids. Fuel 2018, 218, 148–154. [Google Scholar] [CrossRef]
- Alvarez, J.; Amutio, M.; Lopez, G.; Barbarias, I.; Bilbao, J.; Olazar, M. Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor. Chem. Eng. J. 2015, 273, 173–183. [Google Scholar] [CrossRef]
- Fang, S.; Yu, Z.; Ma, X.; Lin, Y.; Chen, L.; Liao, Y. Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model). Energy 2018, 143, 517–532. [Google Scholar] [CrossRef]
- Li, J.; Zheng, F.; Li, Q.; Farooq, M.Z.; Lin, F.; Yuan, D.; Yan, B.; Song, Y.; Chen, G. Effects of inherent minerals on oily sludge pyrolysis: Kinetics, products, and secondary pollutants. Chem. Eng. J. 2022, 431, 133218. [Google Scholar] [CrossRef]
- Dong, Q.; Zhang, S.; Wu, B.; Pi, M.; Xiong, Y.; Zhang, H. Co-pyrolysis of Sewage Sludge and Rice Straw: Thermal Behavior and Char Characteristic Evaluations. Energy Fuels 2019, 34, 607–615. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Guan, Y.; Feng, Y. Characteristic of the production of hydrogen-rich combustible gas by pyrolysis of high-ash sewage sludge. J. Clean. Prod. 2022, 334, 130224. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Tariq, R.; Shahbaz, M.; Naqvi, M.; Aslam, M.; Khan, Z.; Mackey, H.; McKay, G.; Al-Ansari, T. Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Comput. Chem. Eng. 2021, 150, 107325. [Google Scholar] [CrossRef]
- Zaker, A.; Chen, Z.; Wang, X.; Zhang, Q. Microwave-assisted pyrolysis of sewage sludge: A review. Fuel Process. Technol. 2019, 187, 84–104. [Google Scholar] [CrossRef]
- Bohlmann, J.T.; Lorth, C.M.; Drews, A.; Buchholz, R. Microwave High-Pressure Thermochemical Conversion of Sewage Sludge as an Alternative to Incineration. Chem. Eng. Technol. 1999, 22, 404–409. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Shao, Z. Microwave pyrolysis of sludge: A review. Sustain. Environ. Res. 2022, 32, 23. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, P.; Liu, S.; Peng, P.; Min, M.; Cheng, Y.; Anderson, E.; Zhou, N.; Fan, L.; Liu, C.; et al. Effects of feedstock characteristics on microwave-assisted pyrolysis—A review. Bioresour. Technol. 2017, 230, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Nizamuddin, S.; Baloch, H.A.; Siddiqui, M.T.H.; Mubarak, N.M.; Tunio, M.M.; Bhutto, A.W.; Jatoi, A.S.; Griffin, G.J.; Srinivasan, M.P. An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass. Rev. Environ. Sci. Bio/Technol. 2018, 17, 813–837. [Google Scholar] [CrossRef]
- Uddin, M.N.; Daud, W.M.A.W.; Abbas, H.F. Effects of pyrolysis parameters on hydrogen formations from biomass: A review. RSC Adv. 2014, 4, 10467–10490. [Google Scholar] [CrossRef]
- Ren, L.; Wang, F.; Cheng, F.; Yang, F.; Zhang, K. Mechanisms of gas generation from conventional and microwave pyrolysis of coal slime. Chem. Eng. J. 2023, 452, 139388. [Google Scholar] [CrossRef]
- Su, G.; Ong, H.C.; Cheah, M.Y.; Chen, W.-H.; Lam, S.S.; Huang, Y. Microwave-assisted pyrolysis technology for bioenergy recovery: Mechanism, performance, and prospect. Fuel 2022, 326, 124983. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhang, Y.; Li, A. Pressurized pyrolysis of sewage sludge: Process performance and products characterization. J. Anal. Appl. Pyrolysis 2019, 139, 205–212. [Google Scholar] [CrossRef]
- Park, E.-S.; Kang, B.-S.; Kim, J.-S. Recovery of Oils with High Caloric Value and Low Contaminant Content by Pyrolysis of Digested and Dried Sewage Sludge Containing Polymer Flocculants. Energy Fuels 2008, 22, 1335–1340. [Google Scholar] [CrossRef]
- Domínguez, A.; Menéndez, J.A.; Inguanzo, M.; Pis, J.J. Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge. Fuel Process. Technol. 2005, 86, 1007–1020. [Google Scholar] [CrossRef]
- Gil-Lalaguna, N.; Fonts, I.; Gea, G.; Murillo, M.B.; Lázaro, L. Reduction of Water Content in Sewage Sludge Pyrolysis Liquid by Selective Online Condensation of the Vapors. Energy Fuels 2010, 24, 6555–6564. [Google Scholar] [CrossRef]
- Fonts, I.; Azuara, M.; Lázaro, L.; Gea, G.; Murillo, M.B. Gas Chromatography Study of Sewage Sludge Pyrolysis Liquids Obtained at Different Operational Conditions in a Fluidized Bed. Ind. Eng. Chem. Res. 2009, 48, 5907–5915. [Google Scholar] [CrossRef]
- Azuara, M.; Fonts, I.; Bimbela, F.; Murillo, M.B.; Gea, G. Catalytic post-treatment of the vapors from sewage sludge pyrolysis by means of γ-Al2O3: Effect on the liquid product properties. Fuel Process. Technol. 2015, 130, 252–262. [Google Scholar] [CrossRef]
- Zhang, Z.; Sui, S.; Wang, F.; Wang, Q.; Pittman, C. Catalytic Conversion of Bio-Oil to Oxygen-Containing Fuels by Acid-Catalyzed Reaction with Olefins and Alcohols over Silica Sulfuric Acid. Energies 2013, 6, 4531–4550. [Google Scholar] [CrossRef]
- Chen, H.; Namioka, T.; Yoshikawa, K. Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge. Appl. Energy 2011, 88, 5032–5041. [Google Scholar] [CrossRef]
- Saber, M.; Nakhshiniev, B.; Yoshikawa, K. A review of production and upgrading of algal bio-oil. Renew. Sustain. Energy Rev. 2016, 58, 918–930. [Google Scholar] [CrossRef]
- Neveux, N.; Yuen, A.K.; Jazrawi, C.; Magnusson, M.; Haynes, B.S.; Masters, A.F.; Montoya, A.; Paul, N.A.; Maschmeyer, T.; de Nys, R. Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresour. Technol. 2014, 155, 334–341. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, B.; Fan, Y.; Hu, Y.; Zhai, X.; Deng, C.; Xu, Y.; Shen, D.; Dai, X. Nitrogen transformation during pyrolysis of oilfield sludge with high polymer content. Chemosphere 2019, 219, 383–389. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, Y.; Yin, L.; Zuo, W.; Gong, Z.; Zhang, J. Investigation on the removal of H2S from microwave pyrolysis of sewage sludge by an integrated two-stage system. Environ. Sci. Pollut. Res. 2017, 24, 19920–19926. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Li, J.; Quan, C.; Tan, H. Product property and environmental risk assessment of heavy metals during pyrolysis of oily sludge with fly ash additive. Fuel 2020, 266, 117090. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, J.Y.; Chen, J. Behavior of sulfur during pyrolysis of waste tires: A critical review. J. Energy Inst. 2022, 102, 302–314. [Google Scholar] [CrossRef]
- Gao, P.P.; Hu, Z.C.; Sheng, Y.; Pan, W.T.; Tang, L.F.; Chen, Y.H.; Chen, X.L.; Wang, F.C. Migration characteristics of chlorine during pyrolysis of municipal solid waste pellets. Waste Manag. 2023, 172, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Deng, Z.; Lin, Y.; Huang, Z.; Ding, L.; Deng, L.; Huang, H. Investigation of the nitrogen migration characteristics in sewage sludge during chemical looping gasification. Energy 2021, 216, 119247. [Google Scholar] [CrossRef]
- Liu, H.; Luo, G.Q.; Hu, H.Y.; Zhang, Q.; Yang, J.K.; Yao, H. Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes. J. Hazard. Mater. 2012, 235–236, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, H.; Wu, Z.; Sugimoto, Y. Change of nitrogen functionality of 15N-enriched condensation products during pyrolysis. Fuel 2002, 81, 2307–2316. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Q.; Hu, H.; Liu, P.; Hu, X.; Li, A.; Yao, H. Catalytic role of conditioner CaO in nitrogen transformation during sewage sludge pyrolysis. Proc. Combust. Inst. 2015, 35, 2759–2766. [Google Scholar] [CrossRef]
- Yan, X.; Duan, C.; Sun, R.; Ji, X.; Zhang, Y.; Chu, H. Revealing the nitrogen migration mechanism during pyrolysis and steam gasification of biomass: A combined ReaxFF MD and DFT study. Fuel 2024, 369, 131739. [Google Scholar] [CrossRef]
- Liu, X.; Shen, J.; Wang, Z.; Guo, Y.; Wang, S.; Chen, B.; Deng, S.; Zhang, H. Theoretical Revelation of HNCO Formation during Coal Pyrolysis: Mechanism, Formation Pathway and DFT Calculation. Combust. Sci. Technol. 2024, 1–14. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; Zuo, W.; Chen, L.; Cui, Y.; Tan, T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environ. Sci. Technol. 2013, 47, 3498–3505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, Y.; Cui, Y.; Zuo, W.; Tan, T. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: A protein model compound study. Bioresour. Technol. 2013, 132, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Guo, Y.; Peng, N.; Lang, Q.; Xia, Y.; Gai, C.; Liu, Z. Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar. J. Anal. Appl. Pyrolysis 2017, 126, 298–306. [Google Scholar] [CrossRef]
- Tian, F.-J.; Zhang, S.; Hayashi, J.-I.; Li, C.-Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part X: Effects of volatile–char interactions on the conversion of coal-N during the gasification of a Victorian brown coal in O2 and steam at 800 °C. Fuel 2010, 89, 1035–1040. [Google Scholar] [CrossRef]
- Xie, Z.; Feng, J.; Zhao, W.; Xie, K.-C.; Pratt, K.C.; Li, C.-Z. Formation of NOx and SOx precursors during the pyrolysis of coal and biomass. Part IV. Pyrolysis of a set of Australian and Chinese coals. Fuel 2001, 80, 2131–2138. [Google Scholar] [CrossRef]
- Leppälahti, J.; Koljonen, T. Nitrogen evolution from coal, peat and wood during gasification: Literature review. Fuel Process. Technol. 1995, 43, 1–45. [Google Scholar] [CrossRef]
- Tian, F.-J.; Li, B.-Q.; Chen, Y.; Li, C.-Z. Formation of NOx precursors during the pyrolysis of coal and biomass. Part V. Pyrolysis of a sewage sludge. Fuel 2002, 81, 2203–2208. [Google Scholar] [CrossRef]
- Wei, L.-H.; Wen, L.-N.; Liu, M.-J.; Yang, T.-H. Interaction Characteristics of Mineral Matter and Nitrogen during Sewage Sludge Pyrolysis. Energy Fuels 2016, 30, 10505–10510. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Sun, Z.; Ma, K.; Du, L.; Yuan, R. Evolution of S/N containing compounds in pyrolysis of highly oily petroleum sludge. Fuel 2022, 318, 123687. [Google Scholar] [CrossRef]
- Huang, R.; Tang, Y.; Luo, L. Thermochemistry of sulfur during pyrolysis and hydrothermal carbonization of sewage sludges. Waste Manag. 2021, 121, 276–285. [Google Scholar] [CrossRef]
- Zhang, J.; Zuo, W.; Tian, Y.; Chen, L.; Yin, L.; Zhang, J. Sulfur Transformation during Microwave and Conventional Pyrolysis of Sewage Sludge. Environ. Sci. Technol. 2017, 51, 709–717. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Cheng, J.-H.; Ma, X.-Q.; Shen, J.-Y.; Xu, Z.-X.; Duan, P.-G. Transformation of the Sulfur Element during Pyrolysis of Sewage Sludge at Low Temperatures. Energy Fuels 2020, 35, 501–509. [Google Scholar] [CrossRef]
- Liu, S.; Wei, M.; Qiao, Y.; Yang, Z.; Gui, B.; Yu, Y.; Xu, M. Release of organic sulfur as sulfur-containing gases during low temperature pyrolysis of sewage sludge. Proc. Combust. Inst. 2015, 35, 2767–2775. [Google Scholar] [CrossRef]
- Ma, R.; Zhu, J.; Wu, B.; Li, X. Adsorptive removal of organic chloride from model jet fuel by Na-LSX zeolite: Kinetic, equilibrium and thermodynamic studies. Chem. Eng. Res. Des. 2016, 114, 321–330. [Google Scholar] [CrossRef]
- Wu, B.; Li, Y.; Li, X.; Zhu, J. Distribution and Identification of Chlorides in Distillates from YS Crude Oil. Energy Fuels 2015, 29, 1391–1396. [Google Scholar] [CrossRef]
- Tsubouchi, N.; Saito, T.; Ohtaka, N.; Ohtsuka, Y. Evolution of Hydrogen Chloride and Change in the Chlorine Functionality during Pyrolysis of Argonne Premium Coal Samples. Energy Fuels 2012, 27, 87–96. [Google Scholar] [CrossRef]
- Tang, S.; Tang, Y.; Zheng, C.; Zhang, Z. Alkali metal-driven release behaviors of volatiles during sewage sludge pyrolysis. J. Clean. Prod. 2018, 203, 860–872. [Google Scholar] [CrossRef]
- Du, S.; Wang, X.; Shao, J.; Yang, H.; Xu, G.; Chen, H. Releasing behavior of chlorine and fluorine during agricultural waste pyrolysis. Energy 2014, 74, 295–300. [Google Scholar] [CrossRef]
- Li, J.; Lin, F.; Xiang, L.; Zheng, F.; Che, L.; Tian, W.; Guo, X.; Yan, B.; Song, Y.; Chen, G. Hazardous elements flow during pyrolysis of oily sludge. J. Hazard. Mater. 2021, 409, 124986. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, L.; Sun, B.; Li, J.; Yan, B.; He, X.; Liu, G.; Chen, G. Migration of chlorinated compounds on products quality and dioxins releasing during pyrolysis of oily sludge with high chlorine content. Fuel 2021, 306, 121744. [Google Scholar] [CrossRef]
- Liu, W.J.; Li, W.W.; Jiang, H.; Yu, H.Q. Fates of Chemical Elements in Biomass during Its Pyrolysis. Chem. Rev. 2017, 117, 6367–6398. [Google Scholar] [CrossRef] [PubMed]
- Turn, S.Q. Chemical Equilibrium Prediction of Potassium, Sodium, and Chlorine Concentrations in the Product Gas from Biomass Gasification. Ind. Eng. Chem. Res. 2007, 46, 8928–8937. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Li, K.; Lin, F.; Tian, W.; Che, L.; Yan, B.; Ma, W.; Song, Y. Nitrogen, sulfur, chlorine containing pollutants releasing characteristics during pyrolysis and combustion of oily sludge. Fuel 2020, 273, 117772. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Sárossy, Z.; Dong, C.; Glarborg, P. Release and transformation of chlorine and potassium during pyrolysis of KCl doped biomass. Fuel 2017, 197, 422–432. [Google Scholar] [CrossRef]
- Liu, T.; Liu, Z.; Zheng, Q.; Lang, Q.; Xia, Y.; Peng, N.; Gai, C. Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis. Bioresour. Technol. 2018, 247, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chi, Q.; Liu, X.; Wang, Y. Influence of pyrolysis temperature on characteristics and environmental risk of heavy metals in pyrolyzed biochar made from hydrothermally treated sewage sludge. Chemosphere 2019, 216, 698–706. [Google Scholar] [CrossRef]
- Huang, H.J.; Yuan, X.Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge. Bioresour. Technol. 2016, 200, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Yuan, X.; Leng, L.; Huang, H.; Jiang, L.; Wang, H.; Chen, X.; Zeng, G. The comparison of the migration and transformation behavior of heavy metals during pyrolysis and liquefaction of municipal sewage sludge, paper mill sludge, and slaughterhouse sludge. Bioresour. Technol. 2015, 198, 16–22. [Google Scholar] [CrossRef]
- Breulmann, M.; van Afferden, M.; Müller, R.A.; Schulz, E.; Fühner, C. Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration. J. Anal. Appl. Pyrolysis 2017, 124, 256–265. [Google Scholar] [CrossRef]
- Kistler, R.C.; Widmer, F.; Brunner, P.H. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge. Environ. Sci. Technol. 1987, 21, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ju, R.; Zhou, H.; Chen, H. Migration characteristics of heavy metals during sludge pyrolysis. Waste Manag. 2021, 120, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Yuan, H.; Wang, Y.; Huang, H.; Chen, Y. Characteristic of heavy metals in biochar derived from sewage sludge. J. Mater. Cycles Waste Manag. 2015, 18, 725–733. [Google Scholar] [CrossRef]
- Yuan, X.; Leng, L.; Huang, H.; Chen, X.; Wang, H.; Xiao, Z.; Zhai, Y.; Chen, H.; Zeng, G. Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere 2015, 120, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Udayanga, W.D.C.; Veksha, A.; Giannis, A.; Liang, Y.N.; Lisak, G.; Hu, X.; Lim, T.T. Insights into the speciation of heavy metals during pyrolysis of industrial sludge. Sci. Total Environ. 2019, 691, 232–242. [Google Scholar] [CrossRef]
- Passos, F.; Uggetti, E.; Carrère, H.; Ferrer, I. Pretreatment of microalgae to improve biogas production: A review. Bioresour. Technol. 2014, 172, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Alvira, P.; Tomas-Pejo, E.; Ballesteros, M.; Negro, M.J. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresour. Technol. 2010, 101, 4851–4861. [Google Scholar] [CrossRef] [PubMed]
- Poudel, J.; Ohm, T.I.; Lee, S.H.; Oh, S.C. A study on torrefaction of sewage sludge to enhance solid fuel qualities. Waste Manag. 2015, 40, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.W.; Chen, M.Q.; Luo, H.F. Nonisothermal torrefaction kinetics of sewage sludge using the simplified distributed activation energy model. Chem. Eng. J. 2016, 298, 154–161. [Google Scholar] [CrossRef]
- Zhao, P.; Shen, Y.; Ge, S.; Chen, Z.; Yoshikawa, K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment. Appl. Energy 2014, 131, 345–367. [Google Scholar] [CrossRef]
- Chen, G.; Cheng, C.; Zhang, J.; Sun, Y.; Hu, Q.; Qu, C.; Dong, S. Synergistic effect of surfactant and alkali on the treatment of oil sludge. J. Pet. Sci. Eng. 2019, 183, 106420. [Google Scholar] [CrossRef]
- Zhang, H.; Tao, W.; Hou, M.; Ran, M.; Chen, C.; Liu, J.; Tu, L.; Huang, L.; Deng, P.; Chen, D.; et al. Effect of Potassium Ferrate as a Dewatering Conditioner on Sludge Pyrolysis Characteristics and the Releasing Characteristics of Nitrogen, Sulfur, and Chlorine during Sewage Sludge Pyrolysis. Processes 2023, 11, 920. [Google Scholar] [CrossRef]
- Liu, H.; Yi, L.; Hu, H.; Xu, K.; Zhang, Q.; Lu, G.; Yao, H. Emission control of NOx precursors during sewage sludge pyrolysis using an integrated pretreatment of Fenton peroxidation and CaO conditioning. Fuel 2017, 195, 208–216. [Google Scholar] [CrossRef]
- Yuan, Z.; Ma, W.; Zhu, N.; Zhu, Y.; Wu, S.; Lou, Z. Identifying the fate of nitrogenous species during sewage sludge pyrolysis via in-situ tracing of protein-sludge inherent components interactions. Sci. Total Environ. 2023, 859, 160437. [Google Scholar] [CrossRef] [PubMed]
- Xiao, K.; Yu, Z.; Wang, H.; Yang, J.; Liang, S.; Hu, J.; Hou, H.; Liu, B. Investigation on emission control of NOx precursors and phosphorus reclamation during pyrolysis of ferric sludge. Sci. Total Environ. 2019, 670, 932–940. [Google Scholar] [CrossRef]
- Yao, Z.; Ma, X. Effects of hydrothermal treatment on the pyrolysis behavior of Chinese fan palm. Bioresour. Technol. 2018, 247, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Guan, T.; Luo, J.; Yang, K.; Wu, Y.; Xu, L.; He, W.; Liang, Y.; Liu, W. Pretreatment with Ochrobactrum immobilizes chromium and copper during sludge pyrolysis. Ecotoxicol. Environ. Saf. 2020, 199, 110755. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Tang, Y.; Shih, K.; Li, B. Enhanced phosphorus availability and heavy metal removal by chlorination during sewage sludge pyrolysis. J. Hazard. Mater. 2020, 382, 121110. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Meng, J.; Zhang, Y.; Haider, G.; Ge, T.; Zhang, H.; Li, Z.; Yu, Y.; Shan, S. Co-pyrolysis of sewage sludge and metal-free/metal-loaded polyvinyl chloride (PVC) microplastics improved biochar properties and reduced environmental risk of heavy metals. Environ. Pollut. 2022, 302, 119092. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Wu, X.; Lv, H.; Liu, S.; Hou, H.; Wu, X. Influence of rice husk addition on phosphorus fractions and heavy metals risk of biochar derived from sewage sludge. Chemosphere 2021, 280, 130566. [Google Scholar] [CrossRef]
- Chen, X.; Ma, R.; Luo, J.; Huang, W.; Fang, L.; Sun, S.; Lin, J. Co-microwave pyrolysis of electroplating sludge and municipal sewage sludge to synergistically improve the immobilization of high-concentration heavy metals and an analysis of the mechanism. J. Hazard. Mater. 2021, 417, 126099. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Deng, S.; Chen, J.; Zhang, M.; Li, S.; Shao, Y.; Yang, J.; Li, J. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale. Energy Convers. Manag. 2017, 143, 505–512. [Google Scholar] [CrossRef]
- Zhuang, X.; Song, Y.; Wang, X.; Zhan, H.; Yin, X.; Wu, C.; Wang, P. Pyrolysis of hydrothermally pretreated biowastes: The controllability on the formation of NO precursors. Chem. Eng. J. 2020, 393, 124727. [Google Scholar] [CrossRef]
- Liu, Y.; Zhai, Y.; Li, S.; Liu, X.; Liu, X.; Wang, B.; Qiu, Z.; Li, C. Production of bio-oil with low oxygen and nitrogen contents by combined hydrothermal pretreatment and pyrolysis of sewage sludge. Energy 2020, 203, 117829. [Google Scholar] [CrossRef]
- Pittman, C.U.; Mohan, D.; Eseyin, A.; Li, Q.; Ingram, L.; Hassan, E.-B.M.; Mitchell, B.; Guo, H.; Steele, P.H. Characterization of Bio-oils Produced from Fast Pyrolysis of Corn Stalks in an Auger Reactor. Energy Fuels 2012, 26, 3816–3825. [Google Scholar] [CrossRef]
- Kuzhiyil, N.; Dalluge, D.; Bai, X.; Kim, K.H.; Brown, R.C. Pyrolytic sugars from cellulosic biomass. ChemSusChem 2012, 5, 2228–2236. [Google Scholar] [CrossRef] [PubMed]
- Sheha, D.; Khalaf, H.; Daghestani, N. Experimental Design Methodology for the Preparation of Activated Carbon from Sewage Sludge by Chemical Activation Process. Arab. J. Sci. Eng. 2012, 38, 2941–2951. [Google Scholar] [CrossRef]
- Lin, Q.; Chen, G.; Liu, Y. Scale-up of microwave heating process for the production of bio-oil from sewage sludge. J. Anal. Appl. Pyrolysis 2012, 94, 114–119. [Google Scholar] [CrossRef]
- Hakeem, I.G.; Halder, P.; Marzbali, M.H.; Patel, S.; Rathnayake, N.; Surapaneni, A.; Short, G.; Paz-Ferreiro, J.; Shah, K. Mild sulphuric acid pre-treatment for metals removal from biosolids and the fate of metals in the treated biosolids derived biochar. J. Environ. Chem. Eng. 2022, 10, 107378. [Google Scholar] [CrossRef]
- Haghighat, M.; Majidian, N.; Hallajisani, A.; Samipourgiri, M. Production of bio-oil from sewage sludge: A review on the thermal and catalytic conversion by pyrolysis. Sustain. Energy Technol. Assess. 2020, 42, 100870. [Google Scholar] [CrossRef]
SS Treatment Technology | Description | Advantages | Disadvantages |
---|---|---|---|
Agricultural purposes | Stabilized SS could be used as a fertilizer. | N, P, and K can provide high-value fertilizer; organic matter can serve as an effective soil conditioner. | The direct disposal of SS in farmland can be a source of risks for both human health and the environment. |
Construction material production | SS could be used as building materials. | Reduced land occupation and the consumption of resources; recycling of resources. | There are strict requirements for the pre-processing of SS. |
Landfilling | Landfilling is the conventional way of treating, storing and disposing of SS. | Well-known process for disposal of SS due to mature technology; extensive experience; Simple operation management; economic energy saving; low investment, fast results; generates 50–60% of CH4 under anaerobic conditions. | The high moisture and volatile solids contents of the SS complicates the process; the CH4 could be generated along with CO2 (30–40%) and many harmful pollutants, such as H2S, NH3, and volatile organic compounds; additional environmental challenges include limited land resources and strict anti-leakage requirements. |
Incineration | Operating temperature: 800–900 °C; O2/air atmosphere; atmospheric pressure; suitable for dry SS. | High Waste volume reduction (up to 70%); recovery of fuel (similar to the sub-grade coal); overall CO2 reduction; effectively kill the pathogen; solve the problem of stains and smell. | High cost; Source of noxious emissions of furans, dioxins, HF, CxHy, HCl, SO2, N2O, and NOX; strict emission standards; require additional fuel. |
Gasification | Operating temperature: >700 °C; gasifying agent (steam/CO2, etc.) needed; atmospheric pressure; suitable for dry to semidry SS. | High-grade burnable gas. | High-energy consumption; low resulting gas quality; low gasification efficiency. |
Anaerobic digestion | Anaerobic digestion is one of the most well-known conventional processes for the stabilization of organic SS, and it is now considered an essential part of modern wastewater treatment due to its economical and environmentally friendly aspects. | Sustainable technology for SS management; production of biogas for heat and power generation or conversion into transport fuel or renewable natural gas; reduce 35% -50% of volatile solids in SS; reduce the amount of SS dry solids; reduce subsequent SS treatment costs. | Sticky reaction conditions; need for additional energy input; low treatment yield, low product recovery; high greenhouse gas production; small fraction of CH4 produced; limited reduction of volatile solids; long reaction time (over 20 days), high environmental conditions and long initial debugging of the microbial bacteria; high moisture content of the SS after anaerobic and digestion. |
Pyrolysis | Operating temperature: 400–600 °C; inert atmosphere; atmospheric pressure or high pressure; suitable for dry SS. | Production of bio-oil, biogas, or biochar; optimization of the conversion and maximization of the most desired product yield and properties. | High costs for the pre-drying process. |
Components | Proportion of Peak Area of Relative Contents (%) a | ||||||
---|---|---|---|---|---|---|---|
[24] b | [33] | [4] | [34] | [35] | [36] | [37] | |
Alcohols | 2.08 | 4.65 | 0 | 2.54 | 6.02 | 7.40 | 3.25 |
Aldehydes | 0.19 | 1.74 | - | 0.07 | - | - | |
Aliphatic hydrocarbons | 0.23 | 21.93 | 5.86 | - | 3.08 | 12.26 | 13.57 |
Amides | 3.42 | 1.20 | 9.93 | - | - | 3.83 | - |
Amines | 1.09 | - | - | - | - | - | - |
Aromatic hydrocarbons | 0.33 | 2.46 | 9.21 | 1.81 | - | 8.50 | 9.38 |
Acids | 5.53 | 3.15 | 20.13 | 8.45 | 25.76 | - | |
Ethers | 1.20 | - | - | 1.65 | - | - | - |
Esters | 0.72 | 0.88 | 9.18 | - | - | 1.37 | 48.59 |
Furans | 3.24 | 1.66 | - | - | - | - | - |
Ketones | 6.85 | 11.72 | 6.40 | 2.00 | 7.25 | - | - |
Nitriles | 2.37 | 8.18 | 5.47 | - | - | 14.89 | - |
Phenols | 17.82 | 15.28 | 7.00 | 1.48 | 0 | 1.40 | 6.95 |
Pyrroles | 3.82 | 4.04 | - | - | 27.99 | - | - |
Saccharides | 2.66 | - | - | - | - | - | - |
Halo hydrocarbon | - | - | 20.44 | - | - | - | - |
Guaiacol | - | - | - | 0.45 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Q.; Liu, Y.; Jiao, Y.; Lv, P.; Liu, Y.; Zuo, W.; Tian, Y.; Zhang, J. Transformation and Mitigation of Tar and Related Secondary Pollutants during Sewage Sludge Pyrolysis. Water 2024, 16, 2066. https://doi.org/10.3390/w16142066
Lin Q, Liu Y, Jiao Y, Lv P, Liu Y, Zuo W, Tian Y, Zhang J. Transformation and Mitigation of Tar and Related Secondary Pollutants during Sewage Sludge Pyrolysis. Water. 2024; 16(14):2066. https://doi.org/10.3390/w16142066
Chicago/Turabian StyleLin, Qingyuan, Yongxiao Liu, Yimeng Jiao, Pengzhao Lv, Yanbo Liu, Wei Zuo, Yu Tian, and Jun Zhang. 2024. "Transformation and Mitigation of Tar and Related Secondary Pollutants during Sewage Sludge Pyrolysis" Water 16, no. 14: 2066. https://doi.org/10.3390/w16142066
APA StyleLin, Q., Liu, Y., Jiao, Y., Lv, P., Liu, Y., Zuo, W., Tian, Y., & Zhang, J. (2024). Transformation and Mitigation of Tar and Related Secondary Pollutants during Sewage Sludge Pyrolysis. Water, 16(14), 2066. https://doi.org/10.3390/w16142066