Comparative Study of In Situ Chlorophyll-a Measuring Methods and Remote Sensing Techniques Focusing on Different Applied Algorithms in an Inland Lake
Abstract
:1. Introduction
- Creation of a complex sampling and measuring program based on remote sensing, on-site, and laboratory measurements.
- Establishment of correlations between the laboratory and remote sensing chlorophyll-a measurements.
- Comparison between the different applied chlorophyll-a concentration algorithms based on remote sensing data.
- Investigating the effect of chlorophyll-a’s vertical and horizontal distribution on remote sensing.
2. Materials and Methods
2.1. Data Collection and Measurements
- Chlorophyll-a concentration: vertical distribution of phytoplankton by taking water samples for further laboratory analysis.
- Water temperature: water temperature profile of the sampling points for further analysis.
- Depth of the water: depth profile of the sampling points for further analysis.
2.2. Source of the Dataset
2.3. Data Processing
- chl_oc2, chl_oc3: Chlorophyll-a concentration (µg/L) using the blue–green ratio algorithm. The oc2 and oc3 use two and three bands, respectively. Results should be used with care in coastal and inland waters, especially in the presence of sediments and CDOM [40].
- chl_re_gons, chl_re_gons740: Chlorophyll-a concentration (µg/L) using the red edge algorithm by Gons et al. [41], with published coefficients and a mass-specific chlorophyll-a absorption of 0.015. By default, 780 nm (band 6) was used as a reference, but the chl_re_gons740 product uses 740 nm (band 5) on MSI [40].
3. Results and Discussion
3.1. Overall Comparison of Laboratory-Based Chlorophyll-a Values with Remote Sensing Data
3.2. Horizontal and Vertical Distribution of Phytoplankton
3.3. Seasonal Trends
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Community: Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Communities 2000, 43, 1–74.
- Padisák, J. Általános Limnológia; ELTE Eötvös Kiadó: Budapest, Hungary, 2005. (In Hungarian) [Google Scholar]
- Parésys, G.; Rigart, C.; Rousseau, B.; Wong, A.; Fan, F.; Barbiere, J.; Lavaud, J. Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria. Water Res. 2005, 39, 911–921. [Google Scholar] [CrossRef]
- Babichenko, S.; Poryvkina, L.; Arikese, V.; Kaitala, S.; Kuosa, H. Remote sensing of phytoplankton using laser-induced fluorescence. Remote Sens. Environ. 1993, 45, 43–50. [Google Scholar] [CrossRef]
- Poryvkina, L.; Babichenko, S.; Leeben, A. Analysis of Phytoplankton Pigments by Excitation Spectra of Fluorescence. In Proceedings of the EARSeL-SIG-Workshop LIDAR, Dresden, Germany, 16–17 June 2000; pp. 224–232. [Google Scholar]
- Gregor, J.; Maršálek, B. Freshwater phytoplankton quantification by chlorophyll-a: A comparative study of in vitro, in vivo and in situ methods. Water Res. 2004, 38, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Kalf, J. Limnology: Inland Water Ecosystems; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Grósz, J.; Waltner, I.; Vekerdy, Z. First analysis results of in situ measurements for algae monitoring in Lake Naplás (Hungary). Carpathian J. Earth Environ. Sci. 2019, 14, 385–398. [Google Scholar] [CrossRef]
- Dekker, A.; Brando, V.; Anstee, J.; Pinnel, N.; Kutser, T.; Hoogenboom, E.; Peters, S.; Pasterkamp, R.; Vos, R.; Olbert, C.; et al. Imaging Spectrometry of Water. Imaging Spectrom. Basic Princ. Prospect. Appl. 2001, 4, 307–359. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Mirnasab, M.A.; Hashemi, H.; Samaei, M.R.; Azhdarpoor, A. Advanced removal of water NOM by Pre-ozonation, Enhanced coagulation and Bio-augmented Granular Activated Carbon. Int. J. Environ. Sci. Technol. 2021, 18, 3143–3152. [Google Scholar] [CrossRef]
- Ganf, G.G.; Oliver, R.L. Vertical Separation of Light and Available Nutrients as a Factor Causing Replacement of Green Algae by Blue-Green Algae in the Plankton of a Stratified Lake. J. Ecol. 1982, 70, 829–844. [Google Scholar] [CrossRef]
- Gitelson, A.; Szilágyi, F.; Mittenzwey, K.H. Improving quantitative remote sensing for monitoring of inland water quality. Water Res. 1993, 27, 1185–1194. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.; Lavender, S.; Castaing, P. Spectral signature of highly turbid waters: Application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ. 2002, 81, 149–161. [Google Scholar] [CrossRef]
- Fonseca, B.M.; Bicudo, C.E.M. Phytoplankton seasonal variation in a shallow stratified eutrophic reservoir (Garças Pond, Brazil). Hydrobiologia 2008, 600, 267–282. [Google Scholar] [CrossRef]
- Jindal, R.; Thakur, R.; Singh, U.; Ahluwalia, A. Phytoplankton dynamics and water quality of Prashar Lake, Himachal Pradesh, India. Sustain. Water Qual. Ecol. 2014, 3–4, 101–113. [Google Scholar] [CrossRef]
- ISO 10260:1992; Water Quality. Measurement of Biochemical Parameters. Spectrometric Determination of the Chlorophyll-a Concentration. International Organization for Standardization: Geneva, Switzerland, 1992.
- Jönsson, L. Satellite Data and Lakes. In Encyclopedia of Lakes and Reservoirs; Encyclopedia of Earth Sciences Series; Bengtsson, L., Herschy, R.W., Fairbridge, R.W., Eds.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Pereira-Sandoval, M.; Ruiz-Verdú, A.; Tenjo, C.; Delegido, J.; Urrego, P.; Pena, R.; Vicente, E.; Soria, J.; Soria, J.; Moreno, J. Calibration and Validation of Algorithms for the Estimation of Chlorophyll-A in Inland Waters with Sentinel-2. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 9276–9279. [Google Scholar] [CrossRef]
- Alba, G.; Anabella, F.; Marcelo, S.; Andrea, G.A.; Ivana, T.; Guillermo, I.; Sandra, T.; Michal, S. Spectral monitoring of algal blooms in an eutrophic lake using sentinel-2. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 306–309. [Google Scholar]
- Bramich, J.; Bolch, C.J.; Fischer, A. Improved red-edge chlorophyll-a detection for Sentinel 2. Ecol. Indic. 2021, 120, 106876. [Google Scholar] [CrossRef]
- Hong, Y.; Zhang, Y.; Khan, S.I. (Eds.) Hydrologic Remote Sensing: Capacity Building for Sustainability and Resilience; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Tóth, V.Z.; Ladányi, M.; Jung, A. Adaptation and Validation of a Sentinel-Based Chlorophyll-a Retrieval Software for the Central European Freshwater Lake, Balaton. PFG—J. Photogramm. Remote Sens. Geoinf. Sci. 2021, 89, 335–344. [Google Scholar] [CrossRef]
- Gordon, H.R.; Morel, A.Y. Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1983; Volume 4. [Google Scholar]
- Zeng, C.; Xu, H.; Fischer, A.M. Chlorophyll-a estimation around the Antarctica peninsula using satellite algorithms: Hints from field water leaving reflectance. Sensors 2016, 16, 2075. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Thao, N.T.P.; Koike, K.; Nhuan, M.T. Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a Tropical Freshwater Lake Using Sentinel 2A Images from a Case Study of Lake Ba Be (Northern Vietnam). ISPRS Int. J. Geo-Inf. 2017, 6, 290. [Google Scholar] [CrossRef]
- Han, L.; Rundquist, D.C. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir. Remote Sens. Environ. 1997, 62, 253–261. [Google Scholar] [CrossRef]
- Wang, D.; Tang, B.-H.; Fu, Z.; Huang, L.; Li, M.; Chen, G.; Pan, X. Estimation of Chlorophyll-A Concentration with Remotely Sensed Data for the Nine Plateau Lakes in Yunnan Province. Remote Sens. 2022, 14, 4950. [Google Scholar] [CrossRef]
- Bognár, A.L. Védett Természeti Értékek a Fővárosban. (‘Environmental Protected Values in the Capital [of Budapest, Hungary]’); Főpolgármesteri Hivatal: Budapest, Hungary, 2008; p. 38. (In Hungarian) [Google Scholar]
- USGS. Available online: https://earthexplorer.usgs.gov/ (accessed on 6 August 2022).
- Copernicus. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 6 November 2022).
- Ha, N.T.T.; Koike, K.; Nhuan, M.T. Improved Accuracy of Chlorophyll-a Concentration Estimates from MODIS Imagery Using a Two-Band Ratio Algorithm and Geostatistics: As Applied to the Monitoring of Eutrophication Processes over Tien Yen Bay (Northern Vietnam). Remote Sens. 2014, 6, 421–442. [Google Scholar] [CrossRef]
- Jang, W.; Kim, J.; Kim, J.H.; Shin, J.-K.; Chon, K.; Kang, E.T.; Park, Y.; Kim, S. Evaluation of Sentinel-2 Based Chlorophyll-a Estimation in a Small-Scale Reservoir: Assessing Accuracy and Availability. Remote Sens. 2024, 16, 315. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, X.; Gao, W.; Zhang, Y.; Hou, X. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing. Environ. Sci. Pollut. Res. 2023, 30, 83628–83642. [Google Scholar] [CrossRef]
- Acolite. Available online: https://odnature.naturalsciences.be/remsem/software-and-data/acolite (accessed on 1 December 2023).
- QGIS.org: QGIS 3.14. Geographic Information System API Documentation. QGIS Association. Available online: https://api.qgis.org/api/3.14/ (accessed on 28 November 2023).
- IBM Corp. Released 2017. IBM SPSS Statistics for Windows; Version 25.0; IBM Corp: Armonk, NY, USA, 2017; Available online: https://www.ibm.com/support/pages/how-cite-ibm-spss-statistics-or-earlier-versions-spss (accessed on 1 January 2020).
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume 9. [Google Scholar]
- Alcolite User Manual. Available online: https://www.scribd.com/document/650829066/acolite-manual-20221114-0 (accessed on 1 December 2023).
- Gons, H.J.; Rijkeboer, M.; Ruddick, K.G. A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters. J. Plankton Res. 2002, 24, 947–951. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Saprygin, V.; Povazhnyi, V. Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters—The Azov Sea case study. Remote Sens. Environ. 2012, 121, 118–124. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Ryding, S.O.; Rast, W.; Uhlmann, D.; Clasen, J.; Somlyody, L.; Schorscher, J. (Eds.) Le Contrôle de L’eutrophisation des Lacs et des Reservoirs; Masson: Singapore, 1994. [Google Scholar]
- Giripunje, M.; Fulke, A.; Khaimar, K.; Mesharam, P.; Paunikar, W. A review of phytoplankton ecology in freshwater lakes of India. Lakes Reserv. Ponds 2013, 7, 127–141. [Google Scholar]
Study Area | Sampling Point | Coordinates | Water Depth | Sampling Depth 0–1 m | Sampling Depth 1–2 m | Number of Samplings |
---|---|---|---|---|---|---|
Lake Naplás | N1 | 47°30′36.17″ N 19°14′50.66″ E | 1.8 m | By 0.1 m | By 0.2 m | 15 |
N2 | 47°30′29.84″ N 19°14′47.50″ E | 1.8 m | By 0.1 m | By 0.2 m | 15 | |
N3 | 47°30′33.29″ N 19°14′57.13″ E | 0.7 m | By 0.1 m | n.d. | 8 |
Tests of Normality | ||||||
---|---|---|---|---|---|---|
Kolmogorov–Smirnov a | Shapiro–Wilk | |||||
Statistic | df | Sig. | Statistic | df | Sig. | |
spectrometer | 0.096 | 19 | 0.200 * | 0.973 | 19 | 0.829 |
chl_oc2 | 0.324 | 19 | 0.000 | 0.661 | 19 | 0.000 |
chl_oc3 | 0.315 | 19 | 0.000 | 0.692 | 19 | 0.000 |
chl_re_gons | 0.199 | 19 | 0.046 | 0.857 | 19 | 0.009 |
chl_re_gons740 | 0.208 | 19 | 0.029 | 0.891 | 19 | 0.034 |
chl_re_mishra | 0.138 | 19 | 0.200 * | 0.951 | 19 | 0.415 |
chl_re_moses3b | 0.227 | 19 | 0.011 | 0.900 | 19 | 0.048 |
chl_re_moses3b740 | 0.151 | 19 | 0.200 * | 0.930 | 19 | 0.176 |
Correlations | |||
---|---|---|---|
chl_re_mishra | chl_re_moses3b740 | ||
spectrometer | Pearson correlation | 0.618 ** | 0.322 |
Sig. (2-tailed) | 0.005 | 0.178 | |
N | 19 | 19 |
Date | Laboratory Measurements (N1) | Satellite Measurements (chl_re_mishra) | |||
---|---|---|---|---|---|
Maximum Chl-a Concentration (µg L−1) | Average Chl-a Concentration (µg L−1) | Surface Chl-a Concentration (µg L−1) | Placement Depth of Maximum Chl-a Concentration (cm) | Chl-a Concentration (µg L−1) | |
11 July 2016 | 73.9 | 41.6 | 73.9 | 0.0 | 68.6 |
8 August 2016 | 55.7 | 24.3 | 36.5 | 50.0 | 35.7 |
8 September 2016 | 111.2 | 37.6 | 76.3 | 50.0 | 79.9 |
1 October 2016 | 56.9 | 26.3 | 15.4 | 40.0 | 59.6 |
30 December 2016 | 16.0 | 2.7 | 0.0 | 20.0 | 39.1 |
5 July 2017 | 295.4 | 110.9 | 295.4 | 0.0 | 141.8 |
4 August 2017 | 350.7 | 122.9 | 350.7 | 0.0 | 189.3 |
16 August 2017 | 112.6 | 65.8 | 66.7 | 50.0 | 65.9 |
22 August 2017 | 154.3 | 47.9 | 70.4 | 50.0 | 73.8 |
12 October 2017 | 55.0 | 21.4 | 55.0 | 0.0 | 51.5 |
20 October 2017 | 31.3 | 21.2 | 10.5 | 40.0 | 35.4 |
3 November 2017 | 29.5 | 15.8 | 12.4 | 40.0 | 33.8 |
20 December 2017 | 5.7 | 3.3 | 0.0 | 20.0 | 48.6 |
13 July 2018 | 111.7 | 33.9 | 25.4 | 40.0 | 109.4 |
24 July 2018 | 121.2 | 44.4 | 19.4 | 40.0 | 118.5 |
23 August 2018 | 155.0 | 52.5 | 69.9 | 50.0 | 73.7 |
30 September 2018 | 102.4 | 56.7 | 82.3 | 40.0 | 80.2 |
16 October 2018 | 71.3 | 52.3 | 12.4 | 40.0 | 75.3 |
15 November 2018 | 26.4 | 21.7 | 26.4 | 0.0 | 31.3 |
5 August 2022 | 84.7 | 35.2 | 18.2 | 40.0 | 86.6 |
10 August 2022 | 105.6 | 40.4 | 68.5 | 40.0 | 65.4 |
15 August 2022 | 111.3 | 42.7 | 86.0 | 40.0 | 89.4 |
Date | Laboratory Measurements N2 | Satellite Measurements (chl_re_mishra) | |||
---|---|---|---|---|---|
Maximum Chl-a Concentration (µg L−1) | Average Chl-a Concentration (µg L−1) | Surface Chl-a Concentration (µg L−1) | Placement Depth of Maximum Chl-a Concentration (cm) | Chl-a Concentration (µg L−1) | |
11 July 2016 | 71.23 | 41.59 | 71.23 | 0 | 68.52 |
8 August 2016 | 96.45 | 30.66 | 21.3 | 40 | 75.36 |
8 September 2016 | 106.56 | 44.42 | 71.36 | 40 | 74.39 |
1 October 2016 | 78.5 | 34.55 | 78.5 | 0 | 80.61 |
30 December 2016 | 12.5 | 2.76 | 0 | 30 | 28.74 |
4 July 2017 | 260.3 | 58.25 | 260.3 | 0 | 185.9 |
4 August 2017 | 180.63 | 46.58 | 180.63 | 0 | 145.9 |
16 August 2017 | 135.9 | 49.81 | 18.96 | 40 | 132.56 |
22 August 2017 | 144.89 | 50.4 | 105.3 | 40 | 101.28 |
12 October 2017 | 65.69 | 26.08 | 65.69 | 0 | 67.14 |
20 October 2017 | 45.36 | 20.43 | 45.36 | 0 | 41.78 |
3 November 2017 | 32.6 | 16.75 | 32.6 | 0 | 32.55 |
20 December 2017 | 15.63 | 7.74 | 0 | 20 | 31.25 |
13 July 2018 | 132.6 | 36.36 | 19.45 | 40 | 128.41 |
24 July 2018 | 143.6 | 58.18 | 95.63 | 40 | 97.61 |
23 August 2018 | 168.9 | 46.25 | 21.35 | 40 | 160.45 |
30 September 2018 | 84.36 | 42.97 | 84.36 | 0 | 80.39 |
16 October 2018 | 89.65 | 44.86 | 89.65 | 0 | 83.69 |
15 November 2018 | 25.3 | 18.63 | 25.3 | 0 | 31.56 |
5 August 2022 | 48.56 | 30.74 | 45.89 | 40 | 44.69 |
10 August 2022 | 138.98 | 55.64 | 98.56 | 50 | 100.36 |
15 August 2022 | 125.9 | 46.52 | 24.6 | 40 | 120.64 |
Date | Laboratory Measurements N3 | Satellite Measurements (chl_re_mishra) | |||
---|---|---|---|---|---|
Maximum Chl-a Concentration (µg L−1) | Average Chl-a Concentration (µg L−1) | Surface Chl-a Concentration (µg L−1) | Placement Depth of Maximum Chl-a Concentration (cm) | Chl-a Concentration (µg L−1) | |
11 July 2016 | 104.50 | 54.04 | 104.50 | 0 | 98.39 |
8 August 2016 | 65.85 | 29.46 | 27.10 | 30 | 60.28 |
8 September 2018 | 105.20 | 47.26 | 105.20 | 0 | 97.85 |
1 October 2016 | 66.90 | 39.40 | 66.90 | 0 | 70.96 |
30 December 2016 | 16.90 | 4.13 | 0.00 | 30 | 32.90 |
4 July 2017 | 278.30 | 50.84 | 278.30 | 0 | 158.30 |
4 August 2017 | 218.77 | 30.38 | 218.77 | 0 | 147.87 |
16 August 2017 | 123.80 | 50.89 | 24.30 | 40 | 106.90 |
22 August 2017 | 386.96 | 102.91 | 386.96 | 0 | 196.30 |
12 October 2017 | 58.63 | 29.78 | 58.63 | 0 | 55.71 |
20 October 2017 | 52.36 | 31.16 | 52.36 | 0 | 46.93 |
3 November 2017 | 36.68 | 20.82 | 36.68 | 0 | 40.63 |
20 December 2017 | 10.20 | 6.10 | 0.00 | 20 | 35.36 |
13 July 2018 | 95.30 | 50.63 | 95.30 | 0 | 91.28 |
24 July 2018 | 112.30 | 72.07 | 112.30 | 0 | 106.90 |
23 August 2018 | 171.36 | 45.61 | 24.60 | 20 | 163.58 |
30 September 2018 | 90.63 | 45.00 | 23.60 | 30 | 95.69 |
16 October 2018 | 85.60 | 46.69 | 25.60 | 30 | 90.71 |
15 November 2018 | 28.90 | 23.31 | 28.90 | 0 | 31.58 |
5 August 2022 | 88.65 | 46.40 | 63.39 | 40 | 61.97 |
10 August 2022 | 102.35 | 50.21 | 71.69 | 40 | 67.82 |
15 August 2022 | 135.25 | 45.72 | 135.25 | 0 | 128.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grósz, J.; Tóth, V.Z.; Waltner, I.; Vekerdy, Z.; Halupka, G. Comparative Study of In Situ Chlorophyll-a Measuring Methods and Remote Sensing Techniques Focusing on Different Applied Algorithms in an Inland Lake. Water 2024, 16, 2104. https://doi.org/10.3390/w16152104
Grósz J, Tóth VZ, Waltner I, Vekerdy Z, Halupka G. Comparative Study of In Situ Chlorophyll-a Measuring Methods and Remote Sensing Techniques Focusing on Different Applied Algorithms in an Inland Lake. Water. 2024; 16(15):2104. https://doi.org/10.3390/w16152104
Chicago/Turabian StyleGrósz, János, Veronika Zsófia Tóth, István Waltner, Zoltán Vekerdy, and Gábor Halupka. 2024. "Comparative Study of In Situ Chlorophyll-a Measuring Methods and Remote Sensing Techniques Focusing on Different Applied Algorithms in an Inland Lake" Water 16, no. 15: 2104. https://doi.org/10.3390/w16152104
APA StyleGrósz, J., Tóth, V. Z., Waltner, I., Vekerdy, Z., & Halupka, G. (2024). Comparative Study of In Situ Chlorophyll-a Measuring Methods and Remote Sensing Techniques Focusing on Different Applied Algorithms in an Inland Lake. Water, 16(15), 2104. https://doi.org/10.3390/w16152104