Research on Runoff Management of Sponge Cities under Urban Expansion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preprocessing and Preparation
2.3. Study Methods
2.3.1. Analysis Method for Historical Land Use Structure
2.3.2. Methodology for Future Land Use Prediction
2.3.3. Runoff Volume Control Target Calculation Method
2.3.4. Sensitivity Analysis Method
3. Results
3.1. Land Use Change
3.1.1. Historical Land Use Basic Data of Changchun City
3.1.2. Future Land Use Evolution Prediction for Changchun City
3.2. Analysis of Runoff Total Control Objectives in Changchun Sponge City Construction
3.2.1. Comprehensive Perspective of Changchun City for Runoff Total Control Objectives
3.2.2. Runoff Control Comparison in Old and New Changchun Urban Areas
3.3. Sensitivity Analysis of Construction Land Structure on Runoff Control Target Calculation
4. Discussion
4.1. Impact of Land Changes on Runoff Control in Sponge Cities
4.2. Limitations and Future Prospects
5. Conclusions
- (1)
- Utilizing the GeoSOS-FLUS software platform and grounded in the surface conditions of Changchun in 2011 and 2019, we developed a predictive model for future land use, simulating the 2035 land-use data for Changchun. The results indicate a consistent trend of surface hardening, leading to a reduction in the overall runoff coefficient and an escalation in the risk of urban flooding amid Changchun’s urbanization.
- (2)
- With the sponge city construction goal set at an 80% control rate for annual runoff in 2035 (a design rainfall of 20.8 mm), we calculated the LID design storage volume as 77.38 million m3 based on the 2035 surface data. In comparison to the LID design storage volume based on the 2019 surface data, this represents an 8.2% increase, affirming the imperative nature of integrating future land-use predictions into the analysis of runoff control objectives.
- (3)
- By employing the Monte Carlo simulation method to conduct sensitivity analyses on the land-use proportions and runoff coefficients in construction land, we observed that the sensitivity of LID design storage volume to industrial land is the highest. This underscores the necessity for thorough and accurate investigations into the proportion of industrial land and its underlying surface composition for sponge city planning in Changchun.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, X.; Wei, H.; Lu, S.; Dai, Q.; Su, H. Assessment on the urbanization strategy in China: Achievements, challenges and reflections. Habitat Int. 2018, 71, 97–109. [Google Scholar] [CrossRef]
- Peng, K.; He, X.; Xu, C. Coupling coordination relationship and dynamic response between urbanization and urban resilience: Case of Yangtze river delta. Sustainability 2023, 15, 2702. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, H.; Wu, J. Protecting Existing Urban Green Space versus Cultivating More Green Infrastructures: Strategies Choices to Alleviate Urban Waterlogging Risks in Shenzhen. Remote Sens. 2021, 13, 4433. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, C.; Fan, G.; Tian, M.; Wang, J. A New Urban Waterlogging Simulation Method Based on Multi-Factor Correlation. Water 2022, 14, 1421. [Google Scholar] [CrossRef]
- Sobieraj, J.; Bryx, M.; Metelski, D. Stormwater Management in the City of Warsaw: A Review and Evaluation of Technical Solutions and Strategies to Improve the Capacity of the Combined Sewer System. Water 2022, 14, 2109. [Google Scholar] [CrossRef]
- Yu, Q.; Sun, Z.; Shen, J.; Xu, X.; Han, Q.; Zhu, M. The nonlinear effect of new urbanization on water pollutant emissions: Empirical analysis based on the panel threshold model. J. Environ. Manag. 2023, 345, 118564. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, C.; Qi, Z.; Meng, F.; Liang, X. Development tendency analysis for the water resource carrying capacity based on system dynamics model and the improved fuzzy comprehensive evaluation method in the Changchun city, China. Ecol. Indic. 2021, 122, 107232. [Google Scholar] [CrossRef]
- Du, N.; Ottens, H.; Sliuzas, R. Spatial impact of urban expansion on surface water bodies—A case study of Wuhan, China. Landsc. Urban Plann. 2010, 94, 175–185. [Google Scholar] [CrossRef]
- Qin, Y. Urban flooding mitigation techniques: A systematic review and future studies. Water 2020, 12, 3579. [Google Scholar] [CrossRef]
- Han, J.; Wang, C.; Deng, S.; Lichtfouse, E. China’s sponge cities alleviate urban flooding and water shortage: A review. Environ. Chem. Lett. 2023, 21, 1297–1314. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Hua, D.; Wei, B. The influence of urbanization on storm runoff. In Proceedings of the IOP Conference Series Earth Environmental Science; IOP Science: Bristol, UK, 2021; p. 022031. [Google Scholar]
- Ji, L.; Rao, F. Comprehensive Case Study on the Ecologically Sustainable Design of Urban Parks Based on the Sponge City Concept in the Yangtze River Delta Region of China. Sustainability 2023, 15, 4184. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.; Xiong, L.; He, S.; Wang, L.; Yu, Z. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Li, J.; Jiang, Y.; Zhai, M.; Gao, J.; Yao, Y.; Li, Y. Construction and application of sponge city resilience evaluation system: A case study in Xi’an, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 62051–62066. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Wang, X.C.; Ren, N.; Li, G.; Ding, J.; Liang, H. Implementation of a specific urban water management-Sponge City. Sci. Total Environ. 2019, 652, 147–162. [Google Scholar] [CrossRef]
- Chen, M.; Liu, W.; Tao, X. Evolution and assessment on China’s urbanization 1960–2010: Under-urbanization or over-urbanization? Habitat Int. 2013, 38, 25–33. [Google Scholar] [CrossRef]
- Gao, Y.; Shen, Z.; Liu, Y.; Yu, C.; Cui, L.; Song, C. Optimization of differentiated regional land development patterns based on urban expansion simulation—A case in China. Growth Chang. 2023, 54, 45–73. [Google Scholar] [CrossRef]
- Kong, F.; Sun, S.; Lei, T. Understanding China’s urban rainstorm waterlogging and its potential governance. Water 2021, 13, 891. [Google Scholar] [CrossRef]
- Hu, J.; Wu, Y.; Wang, L.; Sun, P.; Zhao, F.; Jin, Z.; Wang, Y.; Qiu, L.; Lian, Y. Impacts of land-use conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau. J. Hydrol. 2021, 593, 125741. [Google Scholar] [CrossRef]
- Zhang, Z.; Wei, Y.; Li, X.; Wan, D.; Shi, Z. Study on Tianjin Land-Cover Dynamic Changes, Driving Factor Analysis, and Forecasting. Land 2024, 13, 726. [Google Scholar] [CrossRef]
- Scalenghe, R.; Marsan, F.A. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Wałęga, A.; Radecki-Pawlik, A.; Cupak, A.; Hathaway, J.; Pukowiec, M.J.W. Influence of changes of catchment permeability and frequency of rainfall on critical storm duration in an urbanized catchment—A case study, Cracow, Poland. Water 2019, 11, 2557. [Google Scholar] [CrossRef]
- Chahar, B.R.; Graillot, D.; Gaur, S. Storm-water management through infiltration trenches. J. Irrig. Drain. Eng. 2012, 138, 274–281. [Google Scholar] [CrossRef]
- Gradeci, K.; Labonnote, N.; Sivertsen, E.; Time, B. The use of insurance data in the analysis of Surface Water Flood events—A systematic review. J. Hydrol. 2019, 568, 194–206. [Google Scholar] [CrossRef]
- Janicka, E.; Kanclerz, J. Assessing the Effects of Urbanization on Water Flow and Flood Events Using the HEC-HMS Model in the Wirynka River Catchment, Poland. Water 2022, 15, 86. [Google Scholar] [CrossRef]
- Hassan, B.T.; Yassine, M.; Amin, D. Comparison of urbanization, climate change, and drainage design impacts on urban flashfloods in an arid region: Case study, New Cairo, Egypt. Water 2022, 14, 2430. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, K.; Yang, M.; Meng, H.; Li, P. The effect of roughness and rainfall on hydrodynamic properties of overland flow. Hydrol. Res. 2019, 50, 1324–1343. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X. Preparation and Component Optimization of Resin-Based Permeable Brick. Materials 2020, 13, 2701. [Google Scholar] [CrossRef]
- Fu, G.; Zhang, C.; Hall, J.W.; Butler, D. Are sponge cities the solution to China’s growing urban flooding problems? WIREs Water 2023, 10, e1613. [Google Scholar] [CrossRef]
- Cheng, T.; Huang, B.; Yang, Z.; Qiu, J.; Zhao, B.; Xu, Z. On the effects of flood reduction for green and grey sponge city measures and their synergistic relationship—Case study in Jinan sponge city pilot area. Urban Clim. 2022, 42, 101058. [Google Scholar] [CrossRef]
- Larsen, T.A.; Hoffmann, S.; Lüthi, C.; Truffer, B.; Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 2016, 352, 928–933. [Google Scholar] [CrossRef]
- Bai, S.; Tu, Y.; Sun, H.; Zhang, H.; Yang, S.; Ren, N.-Q. Optimization of wastewater treatment strategies using life cycle assessment from a watershed perspective. J. Clean. Prod. 2021, 312, 127784. [Google Scholar] [CrossRef]
- Ma, J.; Liu, D.; Wang, Z. Sponge City Construction and Urban Economic Sustainable Development: An Ecological Philosophical Perspective. Int. J. Environ. Res. Public Health 2023, 20, 1694. [Google Scholar] [CrossRef] [PubMed]
- Sambito, M.; Freni, G. Strategies for improving optimal positioning of quality sensors in urban drainage systems for non-conservative contaminants. Water 2021, 13, 934. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y. Landscape Analysis of Runoff and Sedimentation Based on Land Use/Cover Change in Two Typical Watersheds on the Loess Plateau, China. Life 2022, 12, 1688. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Duan, X.; Lu, S. The application research of rainwater wetland based on the Sponge City. Sci. Total Environ. 2021, 771, 144475. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Chen, J.; Guo, M.; Ren, N.; Zhao, X. Vertical-scale spatial influence of radial oxygen loss on rhizosphere microbial community in constructed wetland. Environ. Int. 2023, 171, 107690. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, T. A Weighted Overlay Analysis for Assessing Urban Flood Risks in Arid Lands: A Case Study of Riyadh, Saudi Arabia. Water 2024, 16, 397. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Thakur, P.K.; Kumar, P.; Ashraful Alam, M.; Garg, V.; Rousta, I.; Olafsson, H. Decadal urban land use/land cover changes and its impact on surface runoff potential for the Dhaka City and surroundings using remote sensing. Remote Sens. 2020, 13, 83. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, G.; Zhao, R. Resilient urban expansion: Identifying critical conflict patches by integrating flood risk and land use predictions: A case study of Min Delta Urban Agglomerations in China. Int. J. Disaster Risk Reduct. 2024, 100, 104192. [Google Scholar] [CrossRef]
- Nasar-u-Minallah, M.; Zia, S.; Rahman, A.-U.; Riaz, O. Spatio-Temporal Analysis of Urban Expansion and Future Growth Patterns of Lahore, Pakistan. Geogr. Environ. Sustain. 2021, 14, 41–53. [Google Scholar] [CrossRef]
- Yunping, Z.; Jianping, L.; Yimin, H.; Zebin, C.; Chenhui, Z.; Hao, Y. Delineation of urban growth boundary based on FLUS model under the perspective of land use evaluation in hilly mountainous areas. J. Mt. Sci. 2024, 21, 1647–1662. [Google Scholar]
- Zhao, H.; Gu, T.; Tang, J.; Gong, Z.; Zhao, P. Urban flood risk differentiation under land use scenario simulation. iScience 2023, 26, 106479. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; He, P.; Yang, L.; He, X.; Lu, S.; Liu, D. Predicting future urban waterlogging-prone areas by coupling the maximum entropy and FLUS model. Sustain. Cities Soc. 2022, 80, 103812. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, L.; Feng, Z.; Zhou, J.; Wang, S.; Wang, X.; Fan, J. Estimating the past and future trajectory of LUCC on wetland ecosystem service values in the Yellow River Delta Region of China. Sustainability 2024, 16, 619. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.; Zheng, J.; Zhang, F.; Yan, Y.; Hai, W.; Han, C.; Liu, L. A Multi-Scenario Simulation and Dynamic Assessment of the Ecosystem Service Values in Key Ecological Functional Areas: A Case Study of the Sichuan Province, China. Land 2024, 13, 468. [Google Scholar] [CrossRef]
- Miao, L.; Ju, L.; Sun, S.; Agathokleous, E.; Wang, Q.; Zhu, Z.; Liu, R.; Zou, Y.; Lu, Y.; Liu, Q. Unveiling the dynamics of sequential extreme precipitation-heatwave compounds in China. Nature 2024, 7, 67. [Google Scholar] [CrossRef]
- Ren, D.-F.; Cao, A.-H.; Wang, F. Response and multi-scenario prediction of carbon storage and habitat quality to land use in liaoning Province, China. Sustainability 2023, 15, 4500. [Google Scholar] [CrossRef]
- Liu, X.; He, J.; Yao, Y.; Zhang, J.; Liang, H.; Wang, H.; Hong, Y. Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 2017, 31, 1675–1696. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, J.; Xu, Y.; Chen, S.; Zhang, J.; Tang, S.; Wang, G. Community Resilience Assessment and Identification of Barriers in the Context of Population Aging: A Case Study of Changchun City, China. Sustainability 2023, 15, 7185. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, Y.; Li, C.; Li, R.; Yao, H.; Zhang, Y.; Zhang, G.; Li, D. National-Standards-and Deep-Learning-Oriented Raster and Vector Benchmark Dataset (RVBD) for Land-Use/Land-Cover Mapping in the Yangtze River Basin. Remote Sens. 2023, 15, 3907. [Google Scholar] [CrossRef]
- Shawul, A.A.; Chakma, S. Spatiotemporal detection of land use/land cover change in the large basin using integrated approaches of remote sensing and GIS in the Upper Awash basin, Ethiopia. Environ. Earth Sci. 2019, 78, 141. [Google Scholar] [CrossRef]
- Dong, Q.; Bai, S.; Wang, Z.; Zhao, X.; Yang, S.; Ren, N. Virtual sample generation empowers machine learning-based effluent prediction in constructed wetlands. J. Environ. Manag. 2023, 346, 118961. [Google Scholar] [CrossRef] [PubMed]
- Marin, R.J.; Mattos, Á.J. Physically-based landslide susceptibility analysis using Monte Carlo simulation in a tropical mountain basin. Georisk 2020, 14, 192–205. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.; Zhang, H. The Control Index for the Construction of Sponge City in the Residential Area: A Case Study of Nanjing Jiangbei New District. J. Environ. Public Health 2022, 2022, 2209161. [Google Scholar] [CrossRef] [PubMed]
Year | Area of Various Land Use Types (ha) | Comprehensive Runoff Coefficient for the Current Situation | Current Annual Runoff Control Rate (%) | LID Design Storage Volume (Ten Thousand m3) | |||||
---|---|---|---|---|---|---|---|---|---|
Farmland | Forest Land | Grass Land | Water Area | Construction Land | Unused Land | ||||
2019 | 19,306.8 | 2341.5 | 12,411.1 | 1759.1 | 32,113.4 | 453.5 | 0.51 | 59.9 | 720.7 |
2035 | 11,692.0 | 2267.5 | 12,351.4 | 1759.1 | 39,882.4 | 433.0 | 0.57 | 55.8 | 809.8 |
Changed area | −7614.8 | −74.0 | −59.7 | 0.0 | 7769.0 | −20.5 | 0.06 | −4.1 | 89.1 |
Rate of change | −39.4% | −3.2% | −0.5% | 0.0% | 24.2% | −4.5% | 12.4% | −6.8% | 12.4% |
Year | Area of Various Land Use Types (ha) | Comprehensive Runoff Coefficient for the Current Situation | Current Annual Runoff Control Rate (%) | LID Design Storage Volume (Ten Thousand m3) | |||||
---|---|---|---|---|---|---|---|---|---|
Farmland | Forest Land | Grass Land | Water Area | Construction Land | Unused Land | ||||
2019 | 109.2 | 77.1 | 548.2 | 54.3 | 2842.8 | 17.7 | 0.67 | 46.6 | 51.1 |
2035 | 1.3 | 77.1 | 548.1 | 54.3 | 2950.9 | 17.7 | 0.69 | 44.3 | 52.3 |
Rate of change | −98.8% | −0.1% | 0.0% | 0.0% | 3.8% | 0.0% | 2.4% | −5.0% | 2.4% |
Year | Area of Various Land Use Types (ha) | Comprehensive Runoff Coefficient for the Current Situation | Current Annual Runoff Control Rate (%) | LID Design Storage Volume (Ten Thousand m3) | |||||
---|---|---|---|---|---|---|---|---|---|
Farmland | Forest Land | Grass Land | Water Area | Construction Land | Unused Land | ||||
2019 | 1542.1 | 9.9 | 750.4 | 67.0 | 1738.8 | 23.8 | 0.48 | 61.6 | 40.9 |
2035 | 525.9 | 9.8 | 736.9 | 67.0 | 2768.5 | 23.8 | 0.61 | 52.7 | 52.7 |
Rate of change | −65.9% | −0.6% | −1.8% | 0.0% | 59.2% | 0.0% | 28.9% | −14.5% | 28.9% |
Land Use Type | Proportion of Construction Land (%) | Area (ha) | Runoff Coefficient |
---|---|---|---|
Arable Land | — | 11,692 | 0.25 |
Forest Land | — | 2268 | 0.15 |
Water Area | — | 1759 | 0.15 |
Residential | 28% | 14,626 | 1 |
Public | 9% | 4701 | 0.56 |
Commercial | 5% | 2612 | 0.66 |
Industrial | 25% | 13,059 | 0.71 |
Logistics and Warehousing | 3% | 1567 | 0.71 |
Road and Transportation | 16% | 8357 | 0.68 |
Public Facilities | 5% | 2612 | 0.64 |
Green Space and Plaza | 7% | 3656 | 0.29 |
Special Use | 2% | 1045 | 0.58 |
Unused Land | — | 433 | 0.35 |
Land Use Type | Proportion of Construction Land (%) | Runoff Coefficient |
---|---|---|
Residential | 28~31 | 0.57~0.65 |
Public | 9~10 | 0.55~0.63 |
Commercial | 4~5 | 0.64~0.74 |
Industrial | 22~25 | 0.7~0.8 |
Logistics and Warehousing | 2~3 | 0.7~0.8 |
Road and Transportation | 15~16 | 0.66~0.77 |
Public Facilities | 4~5 | 0.63~0.72 |
Green Space and Plaza | 7~8 | 0.27~0.32 |
Special Use | 2~3 | 0.57~0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Wu, S.; Dong, Q.; Zhou, X.; Yang, J.; Li, G. Research on Runoff Management of Sponge Cities under Urban Expansion. Water 2024, 16, 2103. https://doi.org/10.3390/w16152103
Sun H, Wu S, Dong Q, Zhou X, Yang J, Li G. Research on Runoff Management of Sponge Cities under Urban Expansion. Water. 2024; 16(15):2103. https://doi.org/10.3390/w16152103
Chicago/Turabian StyleSun, Hongliang, Shangkun Wu, Qiyu Dong, Xue Zhou, Jixian Yang, and Gang Li. 2024. "Research on Runoff Management of Sponge Cities under Urban Expansion" Water 16, no. 15: 2103. https://doi.org/10.3390/w16152103
APA StyleSun, H., Wu, S., Dong, Q., Zhou, X., Yang, J., & Li, G. (2024). Research on Runoff Management of Sponge Cities under Urban Expansion. Water, 16(15), 2103. https://doi.org/10.3390/w16152103