Multi-Objective Optimization of Urban Drainage System by Integrating Rule-Based Control with Permeable Pavement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Modeling
2.3. Optimization of RBC Strategy
- To prevent submersible pumps from overheating due to exposure above the water surface, the RBC parameter down(0) for pump shutdown should be higher than the water depth at which the pumps become exposed;
- To prevent the increased risk of CSO due to excessive water depth, the RBC parameter up(3) required to start up the pump at maximum flow should be lower than the depth of the reservoir when CSO occurs;
- To prevent conflicts between the RBC rules, all RBC parameters must satisfy the following sequential relationship:
- 4.
- To prevent excessive pump operation frequency, the differences between adjacent RBC parameters should be greater than the minimum allowable interval ∆d. Additionally, we set the differences ∆d between adjacent RBC parameters to be equal.
2.4. Cost-Effectiveness of Permeable Pavement
3. Results
3.1. Calibration and Validation of SWMM Model
3.2. Pareto Solutions of RBC Parameters
3.3. Classification of Different Scenarios
3.4. Feature Importance Ranking
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balistrocchi, M.; Grossi, G. Predicting the Impact of Climate Change on Urban Drainage Systems in Northwestern Italy by a Copula-Based Approach. J. Hydrol. Reg. Stud. 2020, 28, 100670. [Google Scholar] [CrossRef]
- Bibi, T.S.; Kara, K.G.; Bedada, H.J.; Bededa, R.D. Application of PCSWMM for Assessing the Impacts of Urbanization and Climate Changes on the Efficiency of Stormwater Drainage Systems in Managing Urban Flooding in Robe Town, Ethiopia. J. Hydrol. Reg. Stud. 2023, 45, 101291. [Google Scholar] [CrossRef]
- Bibi, T.S.; Kara, K.G. Evaluation of Climate Change, Urbanization, and Low-Impact Development Practices on Urban Flooding. Heliyon 2023, 9, e12955. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, J.; Ou, S.; Gao, C.; Zhou, Y.; Shi, L.; Zhou, K. Impact of Effective Impervious Surface Disconnection on Urban Hydrographs: A Multi-Scenario Modeling Study at the Catchment Scale. J. Hydrol. 2024, 630, 130656. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Ou, S.; Shi, Y.; Gao, C.; Shi, L.; Jin, C. A Multi-Criteria Analysis Framework for Water Transfers to Improve the Water Environments under Strong Artificial Interventions in Highly Urbanized Areas. Environ. Res. 2023, 220, 115244. [Google Scholar] [CrossRef] [PubMed]
- Bertels, D.; Meester, J.D.; Dirckx, G.; Willems, P. Estimation of the Impact of Combined Sewer Overflows on Surface Water Quality in a Sparsely Monitored Area. Water Res. 2023, 244, 120498. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, E.; Fuchs, S.; Liefting, H.J.; Schellart, A.; Pistocchi, A. A Hydrological Model to Estimate Pollution from Combined Sewer Overflows at the Regional Scale: Application to Europe. J. Hydrol. Reg. Stud. 2022, 41, 101080. [Google Scholar] [CrossRef]
- Hou, X.; Qin, L.; Xue, X.; Xu, S.; Yang, Y.; Liu, X.; Li, M. A City-Scale Fully Controlled System for Stormwater Management: Consideration of Flooding, Non-Point Source Pollution and Sewer Overflow Pollution. J. Hydrol. 2021, 603, 127155. [Google Scholar] [CrossRef]
- Zan, R.; Blackburn, A.; Plaimart, J.; Acharya, K.; Walsh, C.; Stirling, R.; Kilsby, C.G.; Werner, D. Environmental DNA Clarifies Impacts of Combined Sewer Overflows on the Bacteriology of an Urban River and Resulting Risks to Public Health. Sci. Total Environ. 2023, 889, 164282. [Google Scholar] [CrossRef]
- Sojobi, A.O.; Zayed, T. Impact of Sewer Overflow on Public Health: A Comprehensive Scientometric Analysis and Systematic Review. Environ. Res. 2022, 203, 111609. [Google Scholar] [CrossRef]
- Jean, M.-È.; Morin, C.; Duchesne, S.; Pelletier, G.; Pleau, M. Real-Time Model Predictive and Rule-Based Control with Green Infrastructures to Reduce Combined Sewer Overflows. Water Res. 2022, 221, 118753. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Aboagye, E.M.; Li, H.; Che, S. Comments and Recommendations on Sponge City—China’s Solutions to Prevent Flooding Risks. Heliyon 2023, 9, e12745. [Google Scholar] [CrossRef]
- Fei, Y.; Rene, E.R.; Shang, Q.; Singh, R.P. Comprehensive Effect Evaluation of LID Facilities Implemented in Sponge Campuses: A Case Study. Ecol. Indic. 2023, 155, 110912. [Google Scholar] [CrossRef]
- Qiao, X.-J. Maintenance of Low Impact Development Facilities: A Case Study of Pilot Sponge Cities in China. J. Clean. Prod. 2023, 425, 139008. [Google Scholar] [CrossRef]
- van der Werf, J.A.; Kapelan, Z.; Langeveld, J. Real-Time Control of Combined Sewer Systems: Risks Associated with Uncertainties. J. Hydrol. 2023, 617, 128900. [Google Scholar] [CrossRef]
- Luo, H.; Oberg, N.; Landry, B.J.; García, M.H. Assessing the System Performance of an Evolving and Integrated Urban Drainage System to Control Combined Sewer Overflows Using a Multiple-Layer Based Coupled Modeling Approach. J. Hydrol. 2021, 603, 127130. [Google Scholar] [CrossRef]
- Wang, W.; Leitão, J.P.; Wani, O. Is Flow Control in a Space-Constrained Drainage Network Effective? A Performance Assessment for Combined Sewer Overflow Reduction. Environ. Res. 2021, 202, 111688. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Liu, P.; Cheng, L.; Liu, W.; Cheng, Q.; Zhou, C. Optimization of In-Pipe Storage Capacity Use in Urban Drainage Systems with Improved DP Considering the Time Lag of Flow Routing. Water Res. 2022, 227, 119350. [Google Scholar] [CrossRef]
- Su, X.; Shao, W.; Liu, J.; Jiang, Y.; Wang, J.; Yang, Z.; Wang, N. How Does Sponge City Construction Affect Carbon Emission from Integrated Urban Drainage System? J. Clean. Prod. 2022, 363, 132595. [Google Scholar] [CrossRef]
- Zhuang, Q.; Li, M.; Lu, Z. Assessing Runoff Control of Low Impact Development in Hong Kong’s Dense Community with Reliable SWMM Setup and Calibration. J. Environ. Manag. 2023, 345, 118599. [Google Scholar] [CrossRef]
- Madrazo-Uribeetxebarria, E.; Antín, M.G.; Eguilegor, G.A.; Andrés-Doménech, I. Analysis of the Hydraulic Performance of Permeable Pavements on a Layer-by-Layer Basis. Constr. Build. Mater. 2023, 387, 131587. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, C.; Liu, Z.; Yin, D.; Jia, H.; Guan, Y. Spatial Layout Optimization of Green Infrastructure Based on Life-Cycle Multi-Objective Optimization Algorithm and SWMM Model. Resour. Conserv. Recycl. 2023, 191, 106906. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, X.; Zeng, Z.; Shen, P.; Lai, C. A Novel Spatial Optimization Approach for the Cost-Effectiveness Improvement of LID Practices Based on SWMM-FTC. J. Environ. Manag. 2022, 307, 114574. [Google Scholar] [CrossRef] [PubMed]
- Chui, T.F.M.; Liu, X.; Zhan, W. Assessing Cost-Effectiveness of Specific LID Practice Designs in Response to Large Storm Events. J. Hydrol. 2016, 533, 353–364. [Google Scholar] [CrossRef]
- Zhi, X.; Xiao, Y.; Chen, L.; Hou, X.; Yu, Y.; Zhou, X.; Fu, Y.; Chen, B.; Shen, Z. Integrating Cost-Effectiveness Optimization and Robustness Analysis for Low Impact Development Practices Design. Resour. Conserv. Recycl. 2022, 185, 106491. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T.F.M. A Comprehensive Review of Spatial Allocation of LID-BMP-GI Practices: Strategies and Optimization Tools. Sci. Total Environ. 2018, 621, 915–929. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Li, Y.; Zhang, R.; Zhao, N.; Zeng, X. Comprehensive Performance Evaluation System Based on Environmental and Economic Benefits for Optimal Allocation of LID Facilities. Water 2019, 11, 341. [Google Scholar] [CrossRef]
- Wang, H.; Yan, M.; Gao, Y.; Wang, Y.; Dai, X. An Evaluation System for Assessing the Operational Efficiency of Urban Combined Sewer Systems Using AHP—Fuzzy Comprehensive Evaluation: A Case Study in Shanghai, China. Water 2023, 15, 3434. [Google Scholar] [CrossRef]
- Wang, H.; Zeng, P.; Liu, Z.; Li, W.; Zhou, J. Optimization of LID Strategies for Urban CSO Reduction and Cost Efficiency: A Beijing Case Study. Water 2024, 16, 965. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, W.; Wang, W.; Zhou, J.; Liu, D.; Qi, X.; Zhao, X. The Hydrological Effect and Uncertainty Assessment by Runoff Indicators Based on SWMM for Various LID Facilities. J. Hydrol. 2022, 613, 128418. [Google Scholar] [CrossRef]
- Sytsma, A.; Bell, C.; Eisenstein, W.; Hogue, T.; Kondolf, G.M. A Geospatial Approach for Estimating Hydrological Connectivity of Impervious Surfaces. J. Hydrol. 2020, 591, 125545. [Google Scholar] [CrossRef]
- Riaño-Briceño, G.; Barreiro-Gomez, J.; Ramirez-Jaime, A.; Quijano, N.; Ocampo-Martinez, C. MatSWMM—An Open-Source Toolbox for Designing Real-Time Control of Urban Drainage Systems. Environ. Model. Softw. 2016, 83, 143–154. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, T.; Li, J.; Feng, P.; Miao, Y. Optimal Designs of LID Based on LID Experiments and SWMM for a Small-Scale Community in Tianjin, North China. J. Environ. Manag. 2023, 334, 117442. [Google Scholar] [CrossRef] [PubMed]
- Lisenbee, W.A.; Hathaway, J.M.; Winston, R.J. Modeling Bioretention Hydrology: Quantifying the Performance of DRAINMOD-Urban and the SWMM LID Module. J. Hydrol. 2022, 612, 128179. [Google Scholar] [CrossRef]
- Yang, J.; Xiang, Y.; Xu, X.; Sun, J. Design Hyetograph for Short-Duration Rainstorm in Jiangsu. Atmosphere 2022, 13, 899. [Google Scholar] [CrossRef]
- Keifer, C.J.; Chu, H.H. Synthetic Storm Pattern for Drainage Design. J. Hydraul. Div. 1957, 83, 1332-1–1332-25. [Google Scholar] [CrossRef]
- Ritter, A.; Muñoz-Carpena, R. Performance Evaluation of Hydrological Models: Statistical Significance for Reducing Subjectivity in Goodness-of-Fit Assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
Rule | Conditions | Actions |
---|---|---|
RBC01 | Depth < down(0), setting = L(1) | Setting = L(0) |
RBC02 | Depth > up(0), setting = L(0) | Setting = L(1) |
RBC03 | Depth < down(1), setting = L(2) | Setting = L(1) |
RBC04 | Depth > up(1), setting = L(1) | Setting = L(2) |
RBC05 | Depth < down(2), setting = L(3) | Setting = L(2) |
RBC06 | Depth > up(2), setting = L(2) | Setting = L(3) |
RBC07 | Depth < down(3), setting = L(4) | Setting = L(3) |
RBC08 | Depth > up(3), setting = L(3) | Setting = L(4) |
Sub-Catchment | Area (ha) | Proportion | ||||||
---|---|---|---|---|---|---|---|---|
Water Bodies | Buildings | Green Lands | Impermeable Grounds | Water Bodies | Buildings | Green Lands | Impermeable Grounds | |
S(0) | 0.20 | 6.63 | 5.70 | 20.21 | 0.60% | 20.30% | 17.40% | 61.70% |
S(1) | 0.08 | 4.02 | 5.65 | 10.76 | 0.40% | 19.60% | 27.50% | 52.50% |
S(2) | 0.34 | 2.42 | 6.04 | 7.16 | 2.20% | 15.20% | 37.80% | 44.90% |
S(3)] | 0.00 | 3.66 | 5.26 | 3.43 | 0.00% | 29.60% | 42.60% | 27.80% |
S(4)] | 0.02 | 3.82 | 7.69 | 4.14 | 0.10% | 24.40% | 49.10% | 26.40% |
S(5) | 0.25 | 6.23 | 5.96 | 9.83 | 1.10% | 28.00% | 26.80% | 44.10% |
S(6) | 2.24 | 9.51 | 3.02 | 14.31 | 7.70% | 32.70% | 10.40% | 49.20% |
S(7) | 0.00 | 3.87 | 7.70 | 8.34 | 0.00% | 19.40% | 38.70% | 41.90% |
S(8) | 0.00 | 3.78 | 9.85 | 4.44 | 0.00% | 20.90% | 54.50% | 24.60% |
S(9) | 0.03 | 3.43 | 6.31 | 9.70 | 0.20% | 17.60% | 32.40% | 49.80% |
S(10) | 0.03 | 2.82 | 8.59 | 4.85 | 0.20% | 17.30% | 52.70% | 29.80% |
S(11) | 1.17 | 5.50 | 2.92 | 13.09 | 5.10% | 24.30% | 12.90% | 57.70% |
Features | RBC Parameters (sv1) | RBC Parameters (sv2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2 yr | 5 yr | 10 yr | 20 yr | Mean | 2 yr | 5 yr | 10 yr | 20 yr | Mean | |
pp(0) | 0.79 | 0.80 | 0.81 | 0.84 | 0.81 | 0.80 | 0.82 | 0.82 | 0.84 | 0.82 |
pp(1) | 0.48 | 0.49 | 0.52 | 0.54 | 0.51 | 0.48 | 0.50 | 0.51 | 0.54 | 0.51 |
pp(2) | 0.39 | 0.39 | 0.40 | 0.44 | 0.41 | 0.40 | 0.38 | 0.43 | 0.45 | 0.42 |
pp(3) | 0.50 | 0.50 | 0.51 | 0.50 | 0.50 | 0.50 | 0.51 | 0.51 | 0.51 | 0.51 |
pp(4) | 0.46 | 0.47 | 0.48 | 0.48 | 0.47 | 0.46 | 0.46 | 0.49 | 0.49 | 0.48 |
pp(5) | 0.58 | 0.57 | 0.61 | 0.62 | 0.60 | 0.59 | 0.58 | 0.60 | 0.61 | 0.59 |
pp(6) | 0.85 | 0.82 | 0.84 | 0.83 | 0.83 | 0.82 | 0.80 | 0.84 | 0.84 | 0.82 |
pp(7) | 0.48 | 0.48 | 0.48 | 0.49 | 0.48 | 0.46 | 0.46 | 0.47 | 0.50 | 0.47 |
pp(8) | 0.43 | 0.41 | 0.42 | 0.43 | 0.42 | 0.40 | 0.39 | 0.42 | 0.42 | 0.41 |
pp(9) | 0.42 | 0.39 | 0.42 | 0.43 | 0.41 | 0.40 | 0.38 | 0.41 | 0.43 | 0.40 |
pp(10) | 0.42 | 0.41 | 0.43 | 0.43 | 0.42 | 0.41 | 0.41 | 0.41 | 0.41 | 0.41 |
pp(11) | 0.72 | 0.70 | 0.72 | 0.72 | 0.71 | 0.72 | 0.70 | 0.71 | 0.71 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Shi, L.; Zhou, H.; Liu, J. Multi-Objective Optimization of Urban Drainage System by Integrating Rule-Based Control with Permeable Pavement. Water 2024, 16, 2200. https://doi.org/10.3390/w16152200
Lu Z, Shi L, Zhou H, Liu J. Multi-Objective Optimization of Urban Drainage System by Integrating Rule-Based Control with Permeable Pavement. Water. 2024; 16(15):2200. https://doi.org/10.3390/w16152200
Chicago/Turabian StyleLu, Zhengsheng, Liming Shi, Hong Zhou, and Jun Liu. 2024. "Multi-Objective Optimization of Urban Drainage System by Integrating Rule-Based Control with Permeable Pavement" Water 16, no. 15: 2200. https://doi.org/10.3390/w16152200
APA StyleLu, Z., Shi, L., Zhou, H., & Liu, J. (2024). Multi-Objective Optimization of Urban Drainage System by Integrating Rule-Based Control with Permeable Pavement. Water, 16(15), 2200. https://doi.org/10.3390/w16152200