Flood Extent Delineation and Exposure Assessment in Senegal Using the Google Earth Engine: The 2022 Event
Abstract
:1. Introduction
2. Study Area
- The dry season (November to April/May) is marked by the prevalence of easterly maritime trade winds and westerly continental trade winds;
- The rainy season (June to October) is dominated by the monsoon flow from the St. Helena anticyclone.
3. Materials and Methods
3.1. Data
3.2. Mapping the Spatial and Temporal Distribution of Flooded Areas
3.3. Comparison of the Flooding for a One-in-a-Hundred-Year Flood Event with Flooded Areas Mapped Using Sentinel-1 Images, GSW Layers, and the DEM
3.3.1. Hydrological and Hydraulic Modeling
- Digital terrain model (DTM): Utilized Vricon’s 2 m × 2 m resolution from Maxar Technologies, covering Senegal. This DTM, derived from high-resolution satellite imagery, integrates over a decade of monoscopic image collections from various angles;
- Ground-based rainfall data sourced from the World Meteorological Organization (WMO), the Hydrometric Information System for the Environment and Water Resources (SIEREM), and the National Agency of Civil Aviation and Meteorology (ANACIM): The WMO data include 59 stations covering 1900–2021, with a 71% gap rate, reduced to 50% for 1970–2021. The SIEREM data comprises 329 stations, with 181 stations having data from 1980–2007 and a 52% gap rate. The ANACIM data, with 23 stations providing data from 1955–2005;
- Satellite rainfall data: Integrated rainfall data from Integrated Multi-satellite Retrievals/Global Precipitation Measurement (IMERG/GPM; 2000–2020), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN; 2000–2019), Multi-source Weighted-Ensemble Precipitation (MSWEP; 1979–2017), Tropical Applications of Meteorology using SATellite and ground-based data (TAMSAT; 1983–2016), and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS; 1981-present), covering the study area, with various temporal and spatial resolutions;
- Flow data: Historical flow records incorporated to ensure model robustness, focusing on a 100-year return period flow;
- Land use information: Land use and soil characteristics data are crucial for modeling. Data sources include the Directorate of Geographic and Cartographic Works (DTGC) for detailed built-up area delineation, ESA Copernicus for land use data, the Institute of Research for Development (IRD) Soil Map for comprehensive soil mapping of Senegal, and the United States Geological Survey (USGS) Geologic Provinces of Africa (version 2.0) for geological zoning data.
- Hydrological transformation: The Soil Conservation Service (SCS) method was applied, dynamically adjusting soil saturation levels and converting precipitation into runoff based on land use, soil type, and moisture conditions.
- Runoff depth (Q) calculation:
- b.
- Potential maximum retention (S):
- Hydraulic propagation: Employed the Barré de Saint-Venant equations to simulate water movement, considering momentum conservation, continuity, and flow resistance.
- Continuity equation:
- b.
- Momentum equation:
- A synthetic rainfall event was simulated, represented as NetCDF rasters, depicting a concentrated 10-day rainfall episode within a 2-month period. The rainfall data was transformed into runoff volumes, representing a 100-year return period, and was used to produce flood maps for rare events.
3.3.2. Comparative Analysis
3.4. Estimation of Flood Exposure
3.4.1. Exposed People
3.4.2. Exposed Farmland and Urban Areas
4. Results
4.1. Mapping of Flooded Areas Using Sentinel-1 Images, GSW Layers, and the DEM
4.2. Comparison of Flooded Areas Obtained by Remote Sensing (Google Earth Engine) with 100-Year Flood-Prone Areas Obtained Using Hydrological and Hydraulic Modeling
4.3. Exposed Population Assessment
4.4. Exposed Urban Areas and Farmland
5. Discussion
5.1. Integrated Methodology for Flood Analysis
5.2. Accuracy and Limitations of Flooded Area Mapping Using Sentinel-1 Imagery
5.3. Comparison of Remote Sensing Flood Extent and Flooding for a One-in-a-Hundred-Year Flood Event
5.4. Insights and Futures Implications for Flood Exposure Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ndehedehe, C. Hydro-Climatic Extremes: Climate change and human influence. In Hydro-Climatic Extremes in the Anthropocene; Springer International Publishing: Cham, Switzerland, 2023; pp. 25–55. [Google Scholar] [CrossRef]
- UNISDR-CRED. The Human Cost of Weather-Related Disasters 1995–2015; The United Nations office for Disaster Risk Reduction (UNISDR) and Centre for Research on the Epidemiology of Disasters (CRED): Geneva, Switzerland, 2015; pp. 1–30. [Google Scholar]
- EM-DAT. The OFDA/CRED International Disaster Database. Available online: https://public.emdat.be/data (accessed on 24 January 2024).
- Chen, Y.; Zhou, H.; Zhang, H.; Du, G.; Zhou, J. Urban flood risk warning under rapid urbanization. Environ. Res. 2015, 139, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sy, B.; Frischknecht, C.; Dao, H.; Consuegra, D.; Giuliani, G. Reconstituting past flood events: The contribution of citizen science. Hydrol. Earth Syst. Sci. 2020, 24, 61–74. [Google Scholar] [CrossRef]
- de Moel, H.; Aerts, J.C.; Koomen, E. Development of flood exposure in the Netherlands during the 20th and 21st Century. Glob. Environ. Chang. 2011, 21, 620–627. [Google Scholar] [CrossRef]
- Rahman, M.; Ningsheng, C.; Mahmud, G.I.; Islam, M.M.; Pourghasemi, H.R.; Ahmad, H.; Habumugisha, J.M.; Washakh, R.M.A.; Alam, M.; Liu, E. Flooding and its relationship with land cover change, population growth, and road density. Geosci. Front. 2021, 12, 101224. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global Flood Risk under Climate Change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Kedowide, C.M.G.; Cissé, O. Adaptating to Flooding Impact in Yeumbeul Nord, a Suburb of Dakar, Senegal: Generation of Knowledge and of Mapping Data at the Crossroads of a Need for the Territorialization of Spatialized Phenomena. In Proceedings of the Resilient Cities, Bonn, Germany, 29–31 May 2014; pp. 1–20. Available online: http://hdl.handle.net/10625/53299 (accessed on 8 March 2024).
- Waca. Floods in Senegal Are Retention Basins Part of the Solution? Available online: https://www.wacaprogram.org/article/floods-senegal-are-retention-basins-part-solution (accessed on 8 March 2024).
- Li, C.; Dash, J.; Asamoah, M.; Sheffield, J.; Dzodzomenyo, M.; Gebrechorkos, S.H.; Anghileri, D.; Wright, J. Increased flooded area and exposure in the white Volta river basin in Western Africa, identified from multi-Source remote sensing data. Sci. Rep. 2022, 12, 3701. [Google Scholar] [CrossRef]
- Sy, B. Approche Multidisciplinaire de l’évaluation de l’aléa d’inondation à Yeumbeul Nord, Dakar, Sénégal: La Contribution de La Science Citoyenne. Thesis, Université de Genève, Geneva, Switzerland, 2019. [Google Scholar] [CrossRef]
- Muis, S.; Güneralp, B.; Jongman, B.; Aerts, J.C.; Ward, P.J. Flood Risk and Adaptation Strategies under Climate Change and Urban Expansion: A Probabilistic Analysis Using Global Data. Sci. Total Environ. 2015, 538, 445–457. [Google Scholar] [CrossRef]
- DeVries, B.; Huang, C.; Armston, J.; Huang, W.; Jones, J.W.; Lang, M.W. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Ward, D.P.; Petty, A.; Setterfield, S.A.; Douglas, M.M.; Ferdinands, K.; Hamilton, S.K.; Phinn, S. Floodplain inundation and vegetation dynamics in the Alligator rivers region (Kakadu) of Northern Australia assessed uing optical and radar remote sensing. Remote Sens. Environ. 2014, 147, 43–55. [Google Scholar] [CrossRef]
- Singha, M.; Dong, J.; Sarmah, S.; You, N.; Zhou, Y.; Zhang, G.; Doughty, R.; Xiao, X. Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 166, 278–293. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Tiwari, V.; Kumar, V.; Matin, M.A.; Thapa, A.; Ellenburg, W.L.; Gupta, N.; Thapa, S. Flood inundation mapping-Kerala 2018; Harnessing the Power of SAR, Automatic threshold detection method and Google Earth Engine. PLoS ONE 2020, 15, e0237324. [Google Scholar] [CrossRef] [PubMed]
- Moharrami, M.; Javanbakht, M.; Attarchi, S. Automatic Flood Detection Using Sentinel-1 Images on the Google Earth Engine. Environ. Monit. Assess. 2021, 193, 248. [Google Scholar] [CrossRef] [PubMed]
- Johary, R.; Révillion, C.; Catry, T.; Alexandre, C.; Mouquet, P.; Rakotoniaina, S.; Pennober, G.; Rakotondraompiana, S. Detection of large-scale floods using Google Earth Engine and Google Colab. Remote Sens. 2023, 15, 5368. [Google Scholar] [CrossRef]
- Ghouri, A.Y.; Khan, A.; Raoof, H.; Miandad, M.; Rehman, G. Flood mapping using the Sentinel-1 SAR dataset and application of the change detection approach technique (CDAT) to the Google Earth Engine in Sindh Province, Pakistan. Ecol. Quest. 2024, 35, 1–18. [Google Scholar] [CrossRef]
- Rentschler, J.; Salhab, M.; Jafino, B.A. Flood exposure and poverty in 188 countries. Nat. Commun. 2022, 13, 3527. [Google Scholar] [CrossRef] [PubMed]
- Van Den Homberg, M.; Susha, I. Characterizing data ecosystems to support official statistics with open mapping data for reporting on sustainable development Goals. ISPRS Int. J. Geo-Inf. 2018, 7, 456. [Google Scholar] [CrossRef]
- Wouters, L.; Couasnon, A.; De Ruiter, M.C.; Van Den Homberg, M.J.; Teklesadik, A.; De Moel, H. Improving flood damage assessments in data-scarce areas by retrieval of building characteristics through UAV image segmentation and machine learning–a case study of the 2019 floods in Southern Malawi. Nat. Hazards Earth Syst. Sci. 2021, 21, 3199–3218. [Google Scholar] [CrossRef]
- Cea, L.; Álvarez, M.; Puertas, J. Estimation of flood-exposed population in data-scarce regions combining satellite imagery and high resolution hydrological-hydraulic modelling: A case study in the Licungo Basin (Mozambique). J. Hydrol. Reg. Stud. 2022, 44, 101247. [Google Scholar] [CrossRef]
- Mbow, C.; Diop, A.; Diaw, A.; Niang, C.I. Urban sprawl development and flooding at Yeumbeul suburb (Dakar-Senegal). Afr. J. Environ. Sci. Technol. 2008, 2, 75–88. [Google Scholar]
- Sy, B.; Frischknecht, C.; Dao, H.; Giuliani, G.; Consuegra, D.; Wade, S.; Kêdowidé, C. Participatory approach for flood risk assessment: The case of Yeumbeul Nord (YN), Dakar, Senegal. WIT Trans. Built Environ. 2016, 165, 331–342. [Google Scholar] [CrossRef]
- PGIIS. Cartographie du risque d’inondation à l’échelle nationale; Projet de Gestion Intégrée des Inondations au Sénégal (PGIIS), 2022; pp. 1–126. [Google Scholar]
- ANACIM. Rapport Annuel Du Groupe De Travail Pluridisciplinaire Pour La Campagne Agricole 2022; Agence Nationale de l’Aviation Civile et de la Météorologie: Dakar, Senegal, 2022; pp. 1–41. [Google Scholar]
- ANAT. Atlas Cartographique; Agence Nationale de l’Aménagement du Territoire: Dakar, Senegal, 2020; pp. 1–69. [Google Scholar]
- ANSD. 5ème Recencement Général de La Population et de l’habitat; Agence Nationale de la Statistique et de la Démographie: Dakar, Senegal, 2023; pp. 1–21. [Google Scholar]
- ANSD. Situation Économique et Sociale régionale; Agence Nationale de la Statistique et de la Démographie: Dakar, Senegal, 2013; pp. 1–129. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M. GMES Sentinel-1 Mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Malenovský, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for Science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-Based Flood Mapping: A fully automated processing Chain. Int. J. Remote Sens. 2016, 37, 2990–3004. [Google Scholar] [CrossRef]
- Clement, M.A.; Kilsby, C.; Moore, P. Multi-temporal synthetic aperture radar flood mapping using change detection. J. Flood Risk Manag. 2018, 11, 152–168. [Google Scholar] [CrossRef]
- ESA. Revisit and Coverage Frequency of the Sentinel-1 Constellation, Showing Which Areas Are Mainly Covered with Descending or Ascending Imagery. Available online: Https://Sentinel.Esa.Int/Web/Sentinel/Copernicus/Sentinel-1/Acquisition-Plans (accessed on 24 January 2024).
- Cian, F.; Marconcini, M.; Ceccato, P. Normalized Difference Flood Index for Rapid Flood Mapping: Taking Advantage of EO Big Data. Remote Sens. Environ. 2018, 209, 712–730. [Google Scholar] [CrossRef]
- European Commission Global Human Settlement Layer—Open and Free Data and Tools for Assessing the Human Presence on the Planet. Available online: https://human-settlement.emergency.copernicus.eu/p2023Release.php (accessed on 22 April 2024).
- Pappenberger, F.; Beven, K.; Horritt, M.; Blazkova, S. Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. J. Hydrol. 2005, 302, 46–69. [Google Scholar] [CrossRef]
- Amitrano, D.; Di Martino, G.; Iodice, A.; Riccio, D.; Ruello, G. Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3290–3299. [Google Scholar] [CrossRef]
- Nghia, B.P.Q.; Pal, I.; Chollacoop, N.; Mukhopadhyay, A. Applying Google Earth Engine for flood mapping and monitoring in the downstream Provinces of Mekong River. Prog. Disaster Sci. 2022, 14, 100235. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.-P.; Bates, P.D.; Mason, D.C. A Change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-84875707692&origin=inward&txGid=80f7a1beeeb5efc7c78e7e46e6626b75 (accessed on 22 June 2024). [CrossRef]
- Ramírez, J.A. Prediction and Modeling of Flood Hydrology and Hydraulics. Inland Flood Hazards Hum. Riparian Aquat. Communities 2000, 498. [Google Scholar]
- Schulp, C.J.; Landuyt, D. Uncertainty measures and maps. In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2017; pp. 263–270. [Google Scholar] [CrossRef]
- Smith, A.; Bates, P.D.; Wing, O.; Sampson, C.; Quinn, N.; Neal, J. New estimates of flood exposure in developing countries using high-resolution population data. Nat. Commun. 2019, 10, 1814. [Google Scholar] [CrossRef] [PubMed]
- de Bruijn, J.A.; de Moel, H.; Jongman, B.; de Ruiter, M.C.; Wagemaker, J.; Aerts, J.C. A global database of historic and real-time flood events based on social media. Sci. Data 2019, 6, 311. [Google Scholar] [CrossRef] [PubMed]
Layers Names | Sources | Date | Type | Resolution (m) |
---|---|---|---|---|
Administrative limits | LGA | 2020 | Vector | |
Sentinel-1 images | Copernicus | Before flooding: 2–31 March 2022 | Raster | 10 |
After flooding: 20–31 July 2022; 1–31 August 2022; 1–10 September 2022; 1–10 October 2022 | ||||
Flooding for a one-in-a-hundred-year flood event | PGIIS | 2023 | Raster | |
Global Surface Water | EC/JRC | 1 January 2022 | Raster | 30 |
HydroSHEDS | WWF US | 22 February 2020 | Raster | 30 |
Global Human Settlement Layer | EC/JRC | 2020 | Raster | 100 |
MODIS Land Cover Type | NASA | 30 September 2022 | Raster | 500 |
Administrative Region | Flooded Area (August 2022) from Remote Sensing (km2) | Floodable Areas from Modeling (km2) | Overlap (%) |
---|---|---|---|
Dakar | 10.34 | 101.42 | 10.19 |
Ziguinchor | 91.91 | 2992.43 | 3.07 |
Diourbel | 2.99 | 1093.56 | 0.27 |
Saint-Louis | 309.2 | 9666.56 | 3.20 |
Tambacounda | 59.21 | 9739.77 | 0.61 |
Kaolack | 18.31 | 1476.10 | 1.24 |
Thies | 14.15 | 1313.32 | 1.08 |
Louga | 41.14 | 6031.24 | 0.68 |
Fatick | 69.1 | 3059.26 | 2.26 |
Kolda | 18.17 | 2578.36 | 0.70 |
Matam | 77.41 | 9449.34 | 0.82 |
Kaffrine | 1.04 | 2631.82 | 0.04 |
Kedougou | 56.22 | 2740.52 | 2.05 |
Sedhiou | 10.53 | 1662.70 | 0.63 |
Total | 779.54 | 54,536.34 | 1.43 |
Standard deviation | 2.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sy, B.; Bah, F.B.; Dao, H. Flood Extent Delineation and Exposure Assessment in Senegal Using the Google Earth Engine: The 2022 Event. Water 2024, 16, 2201. https://doi.org/10.3390/w16152201
Sy B, Bah FB, Dao H. Flood Extent Delineation and Exposure Assessment in Senegal Using the Google Earth Engine: The 2022 Event. Water. 2024; 16(15):2201. https://doi.org/10.3390/w16152201
Chicago/Turabian StyleSy, Bocar, Fatoumata Bineta Bah, and Hy Dao. 2024. "Flood Extent Delineation and Exposure Assessment in Senegal Using the Google Earth Engine: The 2022 Event" Water 16, no. 15: 2201. https://doi.org/10.3390/w16152201
APA StyleSy, B., Bah, F. B., & Dao, H. (2024). Flood Extent Delineation and Exposure Assessment in Senegal Using the Google Earth Engine: The 2022 Event. Water, 16(15), 2201. https://doi.org/10.3390/w16152201