Virtual Screening of Fluorescent Heterocyclic Molecules and Advanced Oxidation Degradation of Rhodamine B in Synthetic Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virtual Screening
2.1.1. Compilation of a Molecule Library
2.1.2. Search and Reporting of Similar Molecules
2.1.3. Toxicity Analysis of the Computational Hypothesis
2.1.4. 2D and 3D Description of the Pattern and Its Isostere
2.2. Experimental Tests
2.2.1. Materials
2.2.2. Catalytic Oxidation Process of Rhodamine B with TiO2 and H2O2
2.2.3. Kinetics of the Catalytic Reaction
2.2.4. Photo-Fenton Treatment of Rhodamine B with UV-LED Light
2.3. Analytical Analysis
2.3.1. Quantification of Rhodamine B
2.3.2. Residual Amount of Fe2+ Quantification
2.4. Statistical Analysis
3. Results and Discussion
3.1. Virtual Screening
3.2. Molecule Library
3.3. Report of Similar Molecules
Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME-Tox) Response
3.4. 2D and 3D Description
3.5. Experimental Tests
3.5.1. Catalytic Oxidation Process of Rhodamine B with TiO2 and H2O2
Alternatives for Saturated TiO2
3.5.2. Photo-Fenton Treatment of Rhodamine B with UV-LED Light
3.5.3. Comparison of RhB Degradation with Previous Studies
Type of Process | Operating Parameters | Light | Results | Reference |
---|---|---|---|---|
Photocatalytic | Initial pH: 5 RhB: 6 mg/L TiO2: 0.3 g/L | UV lamp λmax: 280 nm Ephoton: 4.43–12.4 ev | 93.80% degradation of RhB after 75 min | [41] |
Photocatalytic | Initial pH: 2 RhB: 2.4 g/L TiO2: 1.6 g/L | UV irradiation 15 W | 75.06% degradation of RhB after 15 min | [50] |
Ultrasound-assisted TiO2 photocatalysis | Initial pH: 7 RhB: 20 mg/L TiO2: 500 mg/L Ultrasonic vibration frecuency: 40 kHz | No light | 90.63% degradation of RhB after 20 min | [30] |
Cavitation process | Initial pH: 3 RhB: 10 mg/L H2O2: 0.6% Ultrasonic vibration frecuency: 20 kHz | No light | 84.06% degradation of RhB after 100 min | [43] |
Photocatalytic | Initial pH: 3 Rh 6G: 5 μM Raschig rings supported TiO2: 10 | UV lamp λ: 365 nm | 77.50% degradation of Rh-6G after 90 min | [51] |
Photocatalytic | Initial pH: 5.5 Rh 6G: 3.76 × 10−5 mol/L TiO2 (77 nm): 0.6 g/L | Solar irradiation 150 W/m2 | 71.70% degradation of Rh-6G after 100 min | [52] |
Photocatalytic | Initial pH: 2.5 Rh 6G: 10 mg/L TiO2: 3.0 g/L | Solar irradiation | 72% degradation of Rh-6G after 180 min | [53] |
Catalytic process | Initial pH: 3.78–3.95 RhB: 25 mg/L TiO2: 0.8 g H2O2: 20 mL 1100 rpm Air flow rate: 0.4 scfh | No light | 95.11% degradation of RhB after 60 min | This study |
Degradation with ZVI and air | Initial pH: 3 Dye (Reactive Blue): 100 mg/L ZVI: 50 g/L Air flow rate: 5 L/min | No light | 87.00% degradation of Reactive Blue after 9 min | [42] |
Photo-Fenton/Fe2O3 | H2O2: 1 mL Fe2O3: 12% | Sunlight simulator lamp λ > 420 nm | 81.00% degradation of RhB after 150 min | [54] |
Photo-Fenton /ZVI | Initial pH: 4.61–4.70 RhB: 25 mg/L ZVI: 38 mg H2O2: 20 µL/h | UV Led 450 W | 80.42% degradation of RhB for 180 min | This study |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sulaiman, S.O.; Najm, A.B.A.; Kamel, A.H.; Al-Ansari, N. Evaluate the Optimal Future Demand of Water Consumption in Al-Anbar Province in the West of Iraq. Int. J. Sustain. Dev. Plan. 2021, 16, 457–462. [Google Scholar] [CrossRef]
- Philip, L.; Pradeep, T.; Murty Bhallamudi, S. Technological Solutions for Water Sustainability: Challenges and Prospects. Towards a Water-Secure India, 1st ed.; IWA: London, UK, 2023. [Google Scholar]
- Qadir, M. Potential of Municipal Wastewater for Resource Recovery and Reuse. In Water and Climate Change; Elsevier: Amsterdam, The Netherlands, 2022; pp. 263–271. [Google Scholar]
- Palani, G.; Arputhalatha, A.; Kannan, K.; Lakkaboyana, S.K.; Hanafiah, M.M.; Kumar, V.; Marella, R.K. Current Trends in the Application of Nanomaterials for the Removal of Pollutants from Industrial Wastewater Treatment—A Review. Molecules 2021, 26, 2799. [Google Scholar] [CrossRef] [PubMed]
- Oladoye, P.O.; Kadhom, M.; Khan, I.; Hama Aziz, K.H.; Alli, Y.A. Advancements in Adsorption and Photodegradation Technologies for Rhodamine B Dye Wastewater Treatment: Fundamentals, Applications, and Future Directions. Green Chem. Eng. 2023. [Google Scholar] [CrossRef]
- Kumar, N.; Pandey, A.; Rosy; Sharma, Y.C. A Review on Sustainable Mesoporous Activated Carbon as Adsorbent for Efficient Removal of Hazardous Dyes from Industrial Wastewater. J. Water Process Eng. 2023, 54, 104054. [Google Scholar] [CrossRef]
- Deng, D.; Lamssali, M.; Aryal, N.; Ofori-Boadu, A.; Jha, M.K.; Samuel, R.E. Textiles Wastewater Treatment Technology: A Review. Water Environ. Res. 2020, 92, 1805–1810. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, T.L.; Orimolade, B.O.; Masekela, D.; Mamba, B.; Mabuba, N. The Application of Photoelectrocatalysis in the Degradation of Rhodamine B in Aqueous Solutions: A Review. RSC Adv. 2022, 12, 26176–26191. [Google Scholar] [CrossRef] [PubMed]
- Pepling, M.; Howard, P.; Durkin, P. Use and Assessment of Marker Dyes Used with Herbicides. 1997; p. 11. Available online: https://www.fs.usda.gov/foresthealth/pesticide/pdfs/091602_markerdyes.pdf (accessed on 15 July 2024).
- Sharma, J.; Sharma, S.; Bhatt, U.; Soni, V. Toxic Effects of Rhodamine B on Antioxidant System and Photosynthesis of Hydrilla Verticillata. J. Hazard. Mater. Lett. 2022, 3, 100069. [Google Scholar] [CrossRef]
- Al-Buriahi, A.K.; Al-Gheethi, A.A.; Senthil Kumar, P.; Radin Mohamed, R.M.S.; Yusof, H.; Alshalif, A.F.; Khalifa, N.A. Elimination of Rhodamine B from Textile Wastewater Using Nanoparticle Photocatalysts: A Review for Sustainable Approaches. Chemosphere 2022, 287, 132162. [Google Scholar] [CrossRef] [PubMed]
- Amalina, F.; Abd Razak, A.S.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. A Review of Eco-Sustainable Techniques for the Removal of Rhodamine B Dye Utilizing Biomass Residue Adsorbents. Phys. Chem. Earth Parts A/B/C 2022, 128, 103267. [Google Scholar] [CrossRef]
- Yang, J.; Han, Y.; Sun, Z.; Zhao, X.; Chen, F.; Wu, T.; Jiang, Y. PEG/Sodium Tripolyphosphate-Modified Chitosan/Activated Carbon Membrane for Rhodamine B Removal. ACS Omega 2021, 6, 15885–15891. [Google Scholar] [CrossRef]
- Rodríguez-Peña, M.; Natividad, R.; Barrera-Díaz, C.E.; Balderas Hernández, P.; Alanis Ramírez, C.I.; Roa-Morales, G. Current Perspective of Advanced Electrochemical Oxidation Processes in Wastewater Treatment and Life Cycle Analysis. Int. J. Electrochem. Sci. 2024, 19, 100589. [Google Scholar] [CrossRef]
- Cuti Merma, R.L.; Oblitas Huallpa, M.E. Efecto de Concentraciones TiO2 Sobre La Degradación Fotocatalítica de Cianuro En Aguas Residuales de Minería Aurífera; Universidad César Vallejo: Trujillo, Peru, 2022. [Google Scholar]
- Santana-Romo, F.; Lagos, C.F.; Duarte, Y.; Castillo, F.; Moglie, Y.; Maestro, M.A.; Charbe, N.; Zacconi, F.C. Innovative Three-Step Microwave-Promoted Synthesis of N-Propargyltetrahydroquinoline and 1,2,3-Triazole Derivatives as a Potential Factor Xa (FXa) Inhibitors: Drug Design, Synthesis, and Biological Evaluation. Molecules 2020, 25, 491. [Google Scholar] [CrossRef] [PubMed]
- Santana Romo, F.M.; Morales Ortíz, M.J.; Carreño Otero, A.L.; Vizuete Fiallos, G.E.; Peñaherrera Veintimilla, J.L. Descripción Físico-Química Teórica y Computacional de Los Complejos Enzima-Ligando de La Proteína Bromelina Reportada Mediante Difracción de Rayos X. Rev. Investig. Talent. 2024, 11, 1–14. [Google Scholar] [CrossRef]
- Durán, R.; Barrales-Martínez, C.; Santana-Romo, F.; Rodríguez, D.F.; Zacconi, F.C.; Herrera, B. Substitution Effects in Aryl Halides and Amides into the Reaction Mechanism of Ullmann-Type Coupling Reactions. Molecules 2024, 29, 1770. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Santana-Romo, F.; Peñaherrera, J.L.; Sanchez, J.S.; Carreño-Otero, A.L. Chemical-Computational Comparison of Organometallic Complexes in Oxygen Carriers and Their Incidence on Blood Color. Investig. Desarro. 2023, 18. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. ILOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, F.; Ocampo, R.; Rodríguez, D.F.; Santana-Romo, F.; Galdamez, A.; Zacconi, F.C.; Burrow, R.A.; Mandolesi, S.; D’Accorso, N. Solvent-Free Efficient Synthesis of New 4-Thiazolidinones with a Fructose Scaffold through a Microwave-Assisted Cascade Multicomponent Reaction. Synthesis 2024, 56, 1429–1437. [Google Scholar] [CrossRef]
- Santana-Romo, F.; Núñez-Villacís, L.; Cadena-Carrera, S.; Garcés-Moncayo, M.D. Aplicación de Herramientas Informáticas En El Análisis Químico-Biológico de Compuestos Anticancerígenos y Simulación Del Efecto Dual En El Modelo de Coagulación Tipo Cascada. Rev. Ibér. Sist. Tecnol. Inf. 2023, 103–119. [Google Scholar]
- Santana-Romo, F.; Zacconi, F.C. Cribado Virtual y Análisis de Complejos Enzima-Ligando Para El Factor Xa (FXa) En La Cascada de La Coagulación Humana. Bionatura 2023, 27, 1–20. [Google Scholar] [CrossRef]
- Siwińska-Ciesielczyk, K.; Świgoń, D.; Rychtowski, P.; Moszyński, D.; Zgoła-Grześkowiak, A.; Jesionowski, T. The Performance of Multicomponent Oxide Systems Based on TiO2, ZrO2 and SiO2 in the Photocatalytic Degradation of Rhodamine B: Mechanism and Kinetic Studies. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124272. [Google Scholar] [CrossRef]
- Dehghani, M.T.; Delnavaz, M. UV-Light-Responsive Ag/TiO2/PVA Nanocomposite for Photocatalytic Degradation of Cr, Ni, Zn, and Cu Heavy Metal Ions. Sci. Rep. 2024, 14, 5195. [Google Scholar] [CrossRef]
- Bejaoui, B.; Bouchmila, I.; Nefzi, K.; Slimen, I.B.; Koumbad, S.; Martin, P.; Joly, N.; M’hamdi, N. Nanostructured Titanium Dioxide (NS-TiO2); IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Lin, Z.; Dong, C.; Mu, W.; Han, X. Degradation of Rhodamine B in the Photocatalytic Reactor Containing TiO2 Nanotube Arrays Coupled with Nanobubbles. Adv. Sens. Energy Mater. 2023, 2, 100054. [Google Scholar] [CrossRef]
- Xu, D.; Ma, H. Degradation of Rhodamine B in Water by Ultrasound-Assisted TiO2 Photocatalysis. J. Clean. Prod. 2021, 313, 127758. [Google Scholar] [CrossRef]
- Asenjo, N.G.; Santamaría, R.; Blanco, C.; Granda, M.; Álvarez, P.; Menéndez, R. Correct Use of the Langmuir–Hinshelwood Equation for Proving the Absence of a Synergy Effect in the Photocatalytic Degradation of Phenol on a Suspended Mixture of Titania and Activated Carbon. Carbon N. Y. 2013, 55, 62–69. [Google Scholar] [CrossRef]
- Das, D.; Nandi, B.K. Removal of Fe (II) Ions from Drinking Water Using Electrocoagulation (EC) Process: Parametric Optimization and Kinetic Study. J. Environ. Chem. Eng. 2019, 7, 103116. [Google Scholar] [CrossRef]
- Nguyen, L.H.; Van, H.T.; Chu, T.H.H.; Nguyen, T.H.V.; Nguyen, T.D.; Hoang, L.P.; Hoang, V.H. Paper Waste Sludge-Derived Hydrochar Modified by Iron (III) Chloride for Enhancement of Ammonium Adsorption: An Adsorption Mechanism Study. Environ. Technol. Innov. 2021, 21, 101223. [Google Scholar] [CrossRef]
- Wu, Y.; Zhao, Y.; Li, X.; Gao, H.; Guo, Z.; Wang, D.; Luan, Y.; Wang, L. Preparation and Characterization of Bilayer Polymer-Dispersed Liquid Crystals Doped with Gd2O3 Nanoparticles and Rhodamine B Base Fluorescent Dye. Molecules 2024, 29, 1126. [Google Scholar] [CrossRef]
- Lali, N.; Tsiatsiani, L.; Elffrink, W.; Kokke, B.; Satzer, P.; Dirksen, E.; Eppink, M.; Jungbauer, A. An Inert Tracer: The Binding Site of a Fluorescent Dye on the Antibody and Its Effects on Protein A Chromatography. J. Chromatogr. A 2024, 1728, 464995. [Google Scholar] [CrossRef]
- Jing, Z.; Wu, L.; Pan, Y.; Zhang, L.; Zhang, X.; Shi, D.; Shi, H.; Chen, J.; Ji, Z.; Zhang, J.; et al. Rotavirus Infection Inhibits SLA-I Expression on the Cell Surface by Degrading Β2 M via ERAD-Proteasome Pathway. Vet. Microbiol. 2024, 292, 110036. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Sun, M.; Zhou, F.; Xu, G. Ultratrace Aromatic Anhydride Dopant as Intermediate Island to Promote Charge Transfer of Graphitic Carbon Nitride for Enhancing the Photocatalytic Degradation of Rhodamine B. Langmuir 2024, 40, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A. Lead and Drug-like Compounds: The Rule of Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012, 52, 1757–1768. [Google Scholar] [CrossRef] [PubMed]
- Sigma Aldrich. Rhodamine B. Available online: https://www.sigmaaldrich.com/US/en/search/rhodamine-b?focus=products&page=1&perpage=30&sort=relevance&term=Rhodamine%20B&type=product (accessed on 26 June 2024).
- El-Dossoki, F.I.; Atwee, T.M.; Hamada, A.M.; El-Bindary, A.A. Photocatalytic Degradation of Remazol Red B and Rhodamine B Dyes Using TiO2 Nanomaterial: Estimation of the Effective Operating Parameters. Desalination Water Treat. 2021, 233, 319–330. [Google Scholar] [CrossRef]
- Chang, S.H.; Wang, K.S.; Chao, S.J.; Peng, T.H.; Huang, L.C. Degradation of Azo and Anthraquinone Dyes by a Low-Cost Fe0/Air Process. J. Hazard. Mater. 2009, 166, 1127–1133. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.-F.; Zhu, Y.; Lu, N.; Wang, X.; Su, Z. Treatment of Rhodamine B with Cavitation Technology: Comparison of Hydrodynamic Cavitation with Ultrasonic Cavitation. RSC Adv. 2021, 11, 5096–5106. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, H.; Li, G.; An, T.; Choi, W. Fouling of TiO2 Induced by Natural Organic Matters during Photocatalytic Water Treatment: Mechanisms and Regeneration Strategy. Appl. Catal. B 2021, 294, 120252. [Google Scholar] [CrossRef]
- Zhang, B.; Sun, B.; Liu, F.; Gao, T.; Zhou, G. TiO2-Based S-Scheme Photocatalysts for Solar Energy Conversion and Environmental Remediation. Sci. China Mater. 2024, 67, 424–443. [Google Scholar] [CrossRef]
- Yang, M.; Liu, G.; Zhao, W.; Meng, F.; Lao, Y.; Liang, Y. Preparation and Properties of TiO2 Photocatalytic Self—Cleaning Coating Material for Glass. Int. J. Low-Carbon Technol. 2023, 18, 322–330. [Google Scholar] [CrossRef]
- de Souza, Z.S.B.; Silva, M.P.; Fraga, T.J.M.; Motta Sobrinho, M.A. A Comparative Study of Photo-Fenton Process Assisted by Natural Sunlight, UV-A, or Visible LED Light Irradiation for Degradation of Real Textile Wastewater: Factorial Designs, Kinetics, Cost Assessment, and Phytotoxicity Studies. Environ. Sci. Pollut. Res. 2021, 28, 23912–23928. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.; Teixeira, A.C.S.C.; Ruotolo, L.A.M. Critical Review of Fenton and Photo-Fenton Wastewater Treatment Processes over the Last Two Decades. Int. J. Environ. Sci. Technol. 2023, 20, 13995–14032. [Google Scholar] [CrossRef]
- Chen, D.; Lu, R.; Pu, Z.; Zhu, J.; Li, H.-W.; Liu, F.; Hu, S.; Luo, X.; Wu, J.; Zhao, Y.; et al. Ru-Doped 3D Flower-like Bimetallic Phosphide with a Climbing Effect on Overall Water Splitting. Appl. Catal. B 2020, 279, 119396. [Google Scholar] [CrossRef]
- Kumawat, M.Y.S.; Kulkarni, D.A.D.; Scholar, M.-T.; Vidyapeeth, B. Treatment of Textile Wastewater Containing Rhodamine B Using Advance Oxidation Processes. Int. J. Sci. Dev. Res. 2017, 2, 48–59. [Google Scholar]
- Pino, E.; Calderón, C.; Herrera, F.; Cifuentes, G.; Arteaga, G. Photocatalytic Degradation of Aqueous Rhodamine 6G Using Supported TiO2 Catalysts. A Model for the Removal of Organic Contaminants From Aqueous Samples. Front. Chem. 2020, 8, 365. [Google Scholar] [CrossRef] [PubMed]
- Asiri, A.M.; Al-Amoudi, M.S.; Al-Talhi, T.A.; Al-Talhi, A.D. Photodegradation of Rhodamine 6G and Phenol Red by Nanosized TiO2 under Solar Irradiation. J. Saudi Chem. Soc. 2011, 15, 121–128. [Google Scholar] [CrossRef]
- Bhaskar, N.S.; Kadam, A.D.; Biwal, J.J.; Diwate, P.M.; Dalbhanjan, R.R.; Mahale, D.D.; Hinge, S.P.; Banerjee, B.S.; Mohod, A.V.; Gogate, P.R. Removal of Rhodamine 6G from Wastewater Using Solar Irradiations in the Presence of Different Additives. Desalination Water Treat. 2016, 57, 18275–18285. [Google Scholar] [CrossRef]
- Van Viet, P.; Van Chuyen, D.; Hien, N.Q.; Duy, N.N.; Thi, C.M. Visible-Light-Induced Photo-Fenton Degradation of Rhodamine B over Fe2O3-Diatomite Materials. J. Sci. Adv. Mater. Devices 2020, 5, 308–315. [Google Scholar] [CrossRef]
Molecule Number | IUPAC Nomenclature |
---|---|
2 | 2-(6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid |
3 | 2-(2,4,5,7-tetrabromo-6-hydroxy-3-oxo-3H-xanthen-9-yl)benzoic acid |
4 | 2-(4,5-dibromo-6-hydroxy-2,7-dinitro-3-oxo-3H-xanthen-9-yl)benzoic acid |
5 | 2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-6′-hydroxy-3H-spiro[isobenzofuran-1,9′-xanthene]-3,3′(9a′H)-dione |
6 | 6′-hydroxy-2′,4′,5′,7′-tetraiodo-3H-spiro[isobenzofuran-1,9′-xanthene]-3,3′(9a′H)-dione |
7 | 2,3,4,5-tetrachloro-6-(6-hydroxy-2,4,5,7-tetraiodo-3-oxo-9, 9a-dihydro-3H-xanthen-9-yl)benzoic acid |
8 | (2,7-dibromo-9-(2-carboxyphenyl)-6-hydroxy-3-oxo-9,9a-dihydro-3H-xanthen-4-yl) (hydroxy) mercury |
9 | (2′,7′-dibromo-6′-hydroxy-3,3′-dioxo-3′,9a′-dihydro-3H-spiro[isobenzofuran-1,9′-xanthen]-4′-yl)(hydroxy)mercury |
10 | 6-amino-9-phenyl-3H-xanthen-3-iminium |
11 | (E)-N-(9-(2-(ethoxycarbonyl)phenyl)-6-(ethylamino)-2,7-dimethyl-3H-xanthen-3-ylidene)ethanaminium |
12 | N-(9-(2-carboxyphenyl)-6-(diethylamino)-3H-xanthen-3-ylidene)-N-ethylethanaminium |
13 | 6-amino-9-(2-(methoxycarbonyl)phenyl)-3H-xanthen-3-iminium |
14 | N-(9-(2-carboxy-4-(prop-2-yn-1-ylcarbamoyl)phenyl)-6-(dimethylamino)-3H-xanthen-3-ylidene)-N-methylmethanaminium |
15 | N-(9-(2-carboxy-5-isothiocyanatophenyl)-6-(dimethylamino)-3H-xanthen-3-ylidene)-N-methylmethanaminiu |
16 | N-(6-(diethylamino)-9-(2,4-disulfophenyl)-3H-xanthen-3-ylidene)-N-ethylethanaminium |
17 | 5-chlorosulfonyl-2-(3-oxa-23-aza-9-azoniaheptacyclo [17.7.1.15, 9.02, 17.04, 15.023, 27.013, 28] octacosa-1(27), 2(17), 4, 9(28), 13, 15, 18-heptaen-16-yl) benzenesulfonate |
18 | 4-(6-amino-3-imino-4,5-disulfo-3H-xanthen-9-yl) isophthalic acid |
ID | Response |
---|---|
Algae_at * | 0.01200 |
Ames_test * | Mutagen |
Carcino_Mouse * | Negative |
Carcino_Rat * | Negative |
Daphnia_at * | 0.02888 |
hERG_inhibition ** | Medium_risk |
medaka_at * | 0.00199 |
minnow_at * | 0.01048 |
TA100_10RLI ** | Negative |
TA100_NA ** | Negative |
TA1535_10RLI ** | Negative |
TA1535_NA ** | Negative |
ID | Response |
---|---|
AlogP98_value | 3477.100 |
AMolRef | 135.27950 ** |
BBB | 0.03079 |
Buffer_solubility_mg_L | 1.59686 |
CaCO2 | 54.44300 |
CYP_2C19_inhibition | Non |
CYP_2C9_inhibition | Non |
CYP_2D6_inhibition | Inhibitor |
CYP_2D6_substrate | Non |
CYP_3A4_inhibition | Inhibitor |
CYP_3A4_substrate | Substrate |
HIA | 97.53539 |
MDCK | 0.04403 |
Pgp_inhibition | Inhibitor |
Plasma_Protein_Binding | 77.61136 |
Pure_water_solubility_(mg/L) | 578.57100 |
Skin Permeability | −2.96547 |
Solvation Free Energy | −23.23000 ** |
Test | Without Air | With Air | With N2 | |
---|---|---|---|---|
Langmuir-Hinshelwood power rate equation | kapp | 0.084 ± 0.022 | 0.019 ± 0.009 | 0.022 ± 0.007 |
n | 0.566 ± 0.103 | 1.172 ± 0.182 | 1.091 ± 0.122 | |
R2 | 0.991 | 0.977 | 0.991 | |
χ2 | 0.347 | 0.708 | 0.312 | |
SSE | 3.1257 | 6.372 | 2.807 | |
Langmuir-Hinshelwood non-linear model | kapp | 0.027 ± 0.001 | 0.029 ± 0.001 | 0.0282 ± 0.001 |
R2 | 0.981 | 0.977 | 0.991 | |
χ2 | 0.781 | 0.696 | 0.296 | |
SSE | 7.806 | 6.965 | 2.960 |
Experiment | Dissolved Fe2+ (mg/L) | Dissolved Fe2+ (%) |
---|---|---|
1 | 0.25 | 0.33 |
2 | 0.15 | 0.20 |
3 | 0.20 | 0.26 |
4 | 0.10 | 0.13 |
5 | 0.07 | 0.09 |
6 | 0.20 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vizuete, G.; Santana-Romo, F.; Almeida-Naranjo, C.E. Virtual Screening of Fluorescent Heterocyclic Molecules and Advanced Oxidation Degradation of Rhodamine B in Synthetic Solutions. Water 2024, 16, 2141. https://doi.org/10.3390/w16152141
Vizuete G, Santana-Romo F, Almeida-Naranjo CE. Virtual Screening of Fluorescent Heterocyclic Molecules and Advanced Oxidation Degradation of Rhodamine B in Synthetic Solutions. Water. 2024; 16(15):2141. https://doi.org/10.3390/w16152141
Chicago/Turabian StyleVizuete, Gabriela, Fabián Santana-Romo, and Cristina E. Almeida-Naranjo. 2024. "Virtual Screening of Fluorescent Heterocyclic Molecules and Advanced Oxidation Degradation of Rhodamine B in Synthetic Solutions" Water 16, no. 15: 2141. https://doi.org/10.3390/w16152141
APA StyleVizuete, G., Santana-Romo, F., & Almeida-Naranjo, C. E. (2024). Virtual Screening of Fluorescent Heterocyclic Molecules and Advanced Oxidation Degradation of Rhodamine B in Synthetic Solutions. Water, 16(15), 2141. https://doi.org/10.3390/w16152141