Legionnaires’ Disease Surveillance and Public Health Policies in Italy: A Mathematical Model for Assessing Prevention Strategies
Abstract
:1. Introduction
1.1. Legionnaires’ Disease Is a Significant Public Health Issue in Europe and Italy (as Well as Worldwide)
1.2. Legionella as the Causative Agent of Legionnaires’ Disease
1.3. Differing Public Health Approaches to Reduce Legionnaires’ Disease Risk
1.4. Previous and New Social Economic Cost–Benefit Model Approaches
1.5. The Development of a Simulation Model to Understand the Cost–Benefit Trade-Offs of Two Legionnaires’ Disease Risk Reduction Strategies
2. Materials and Methods
2.1. Study Area
2.2. Overview of Study Design
2.3. Analytical Framework of the Model
2.4. Parameters Related to the Building Environment
2.4.1. Priority Buildings
2.4.2. Defined Action Limit
2.4.3. Building Water Temperature
- Estimated building water temperatures between 20 and 25 °C: 50% Lp/50% non-Lp;
- Estimated building water temperatures between 25 and 35 °C: 60% Lp/40% non-Lp;
- Estimated building water temperatures between 35 and 45 °C: 90% Lp/10% non-Lp;
- Unknown building water temperatures: assumed ratio of 70% Lp/30% non-Lp;
2.5. Parameters Related to the Etiological Agent Legionella
- 97% Lp/3% non-Lp;
- 95% Lp/5% non-Lp;
- 90% Lp/10% non-Lp;
- 92.5% Lp/8.5% non-Lp;
- 80% Lp/20% non-Lp.
2.6. Parameters Related to the Human Host
2.6.1. Estimation of Direct Exposure in Contaminated Buildings
2.6.2. Estimation of Community-Acquired Cases
2.6.3. Underestimation Multiplier
2.6.4. Underdiagnosis Multiplier
2.7. Estimating the Economic Burden
2.7.1. Cost of Remediation
2.7.2. Cost to Health System, Patients, and Caregivers
2.7.2.1. Hospitalization Costs
2.7.2.2. Productivity Loss
2.7.2.2.1. Patient and Caregiver Productivity
2.7.2.2.2. Building Closures
2.7.3. Legal Costs
2.8. Adjustability of Model Variables
- Percentage of buildings contaminated at action level: Users may select eight different inputs in the model, ranging from 10% to 80%. Even though data from published studies ranged from 20–70%, the model extends this range to 10% and 80% to ensure all possible scenarios are effectively considered in the model. Also, see Section 2.4.2 for more details.
- Building water temperature: Four data inputs, based on published studies, allow users to select different temperature ranges which have different repercussions for the survival of each type of Legionella. However, due to limited data on actual building water temperatures, in the base case, the temperature is described as unknown, which assumes that the Legionella that are present include 70% L. pneumophila and 30% non-pneumophila. See Section 2.4.3 on “building water temperature” for more details.
- Percent of cases caused by L. pneumophila or non-pneumophila species. Model inputs were based on virulence profiles described in Section 2.5.
3. Results
- Estimated Legionnaires’ disease cases caused by exposure in the set of class B and C1 priority buildings considered.
- Estimated direct remediation spending per Legionnaires’ disease case prevented by each Legionella monitoring and control policy option.
- Savings per Legionnaires’ disease case prevented.
3.1. Predicting Health Outcomes Based on Monitoring Strategies
3.2. Estimating the Costs Associated with Each Monitoring Strategy
3.3. Comparing Monitoring Strategies at High and Low Limits for Key Variables
3.4. Comparing Monitoring Strategies over a Range for Each Individual Variable
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Centre for Disease Prevention and Control. Legionnaires’ Disease. In Annual Epidemiological Reports for 2021; ECDC: Stockholm, Sweden, 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/legionnaires-disease-annual-epidemiological-report-2021 (accessed on 2 July 2024).
- European Centre for Disease Prevention and Control. Legionnaires’ Disease. Annual Epidemiological. Reports for 2014–2020. Available online: https://www.ecdc.europa.eu/en/publications-data/monitoring/all-annual-epidemiological-reports (accessed on 2 July 2024).
- Cassini, A.; Colzani, E.; Pini, A.; Mangen, M.J.; Plass, D.; McDonald, S.A.; Maringhini, G.; van Lier, A.; Haagsma, J.A.; Havelaar, A.H.; et al. Impact of infectious diseases on population health using incidence-based disability-adjusted life years (DALYs): Results from the Burden of Communicable Diseases in Europe study, European Union and European Economic Area countries, 2009 to 2013. Eurosurveillance 2018, 23, 17-00454. [Google Scholar] [CrossRef] [PubMed]
- Rota, M.C.; Caporali, M.G.; Giannitelli, S.; Urciuoli, R.; Scaturro, M.; Ricci, M.L. The results of the legionellosis surveillance system in 2022. Boll. Epidemiol. Naz. 2023, 4, 25–32. [Google Scholar]
- World Bank. Available online: https://data.worldbank.org/indicator/SP.POP.65UP.TO.ZS?most_recent_value_desc=true (accessed on 17 March 2024).
- Gleason, J.A.; Cohn, P.D. A review of legionnaires’ disease and public water systems—Scientific considerations, uncertainties and recommendations. Int. J. Hyg. Environ. Health 2022, 240, 113906. [Google Scholar] [CrossRef] [PubMed]
- Viasus, D.; Gaia, V.; Manzur-Barbur, C.; Carratalà, J. Legionnaires’ Disease: Update on Diagnosis and Treatment. Infect. Dis. Ther. 2022, 11, 973–986. [Google Scholar] [CrossRef] [PubMed]
- Doleans, A.; Aurell, H.; Reyrolle, M.; Lina, G.; Freney, J.; Vandenesch, F.; Etienne, J.; Jarraud, S. Clinical and Environmental Distributions of Legionella Strains in France Are Different. J. Clin. Microbiol. 2004, 42, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Priest, P.C.; Slow, S.; Chambers, S.T.; Cameron, C.M.; Balm, M.N.; Beale, M.W.; Blackmore, T.K.; Burns, A.D.; Drinković, D.; Elvy, J.A.; et al. The burden of Legionnaires’ disease in New Zealand (LegiNZ): A national surveillance study. Lancet Infect. Dis. 2019, 19, 770–777. [Google Scholar] [CrossRef] [PubMed]
- Chambers, S.T.; Slow, S.; Scott-Thomas, A.; Murdoch, D.R. Legionellosis caused by non-Legionella pneumophila species, a focus on Legionella longbeachae. Microorganisms 2021, 9, 291. [Google Scholar] [CrossRef] [PubMed]
- Kenagy, E.; Priest, P.C.; Cameron, C.M.; Smith, D.; Scott, P.; Cho, V.; Mitchell, P.; Murdoch, D.R. Risk factors for Legionella longbeachae Legionnaires’ disease. Emerg. Infect. Dis. 2017, 23, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Robert, S.; Lhommet, C.; Le Brun, C.; Garot, D.; Legras, A.; Mankikian, J.; Goudeau, A. Diagnostic performance of multiplex PCR on pulmonary samples versus nasopharyngeal aspirates in community-acquired severe lower respiratory tract infections. J. Clin. Virol. 2018, 108, 1–5. [Google Scholar] [CrossRef]
- Potts, A.; Donaghy, M.; Marley, M.; Othieno, R.; Stevenson, J.; Hyland, J.; Pollock, K.G.; Lindsay, D.; Edwards, G.; Hanson, M.F.; et al. Cluster of Legionnaires disease cases caused by Legionella longbeachae serogroup 1, Scotland, August to September 2013. Eurosurveillance 2013, 18, 20656. [Google Scholar] [CrossRef]
- Löf, E. Fellowship Report. Summary of Work Activities. 2019. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/EPIET%20Report%20-%20Summary%20of%20work%20activities%2C%20Soledad%20Colombe.pdf (accessed on 29 July 2024).
- Beauté, J.; Plachouras, D.; Sandin, S.; Giesecke, J.; Sparén, P. Healthcare-Associated Legionnaires’ Disease, Europe, 2008–2017. Emerg Infect Dis. 2020, 26, 2309–2318. [Google Scholar] [CrossRef]
- Schoonmaker-Bopp, D.; Nazarian, E.; Dziewulski, D.; Clement, E.; Baker, D.J.; Dickinson, M.C.; Saylors, A.; Codru, N.; Thompson, L.; Lapierre, P.; et al. Improvements to the Success of Outbreak Investigations of Legionnaires’ Disease: 40 Years of Testing and Investigation in New York State. Appl. Environ. Microbiol. 2021, 87, e00580-21. [Google Scholar] [CrossRef] [PubMed]
- Drinking Water Parameter Cooperation Project Support to the Revision of Annex I Council Directive 98/83/EC on the Quality of Water Intended for Human Consumption (Drinking Water Directive)—Recommendations; WHO: Geneva, Switzerland, 2017; p. ix.
- Legislative Decree n. 18, 23 February 2023. Available online: https://www.gazzettaufficiale.it/eli/gu/2023/03/06/55/sg/pdf (accessed on 2 July 2024).
- Garrison, L.E.; Kunz, J.M.; Cooley, L.A.; Moore, M.R.; Lucas, C.; Schrag, S.; Sarisky, J.; Whitney, C.G. Vital Signs: Deficiencies in Environmental Control Identified in Outbreaks of Legionnaires’ Disease—North America, 2000–2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 576–584. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Division on Earth and Life Studies; Board on Population Health and Public Health Practice; Board on Life Sciences; Water Science and Technology Board; Committee on Management of Legionella in Water Systems. Management of Legionella in Water Systems; National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Ministry of Water & Infrastructure, Letter to Parliament: “Evaluation of Regulations on the Prevention of Legionella in Tap Water: November 16, 2021. NeW/BSK-2021/285318. Available online: https://open.overheid.nl/documenten/ronl-e1a9a358-172b-4735-a75d-052e16b48f2f/pdf (accessed on 2 July 2024).
- R Régie du Bâtiment du Québec (RBQ) Safety Code, Building Chapter, Division VII Provisions Respecting the Maintenance of Water Cooling Tower Facilities. Available online: https://www.rbq.gouv.qc.ca/en/laws-regulations-and-codes/construction-code-and-safety-code/safety-code/#c20091 (accessed on 29 July 2024).
- Sylvestre, E.; Charron, D.; Lefebvre, X.; Bédard, E.; Prevost, M. Leveraging regulatory monitoring data for quantitative microbial risk assessment of Legionella pneumophila in cooling towers. medRxiv 2024. [Google Scholar] [CrossRef]
- Andrade, M.V.; Noronha, K.; Diniz, B.P.C.; Guedes, G.; Carvalho, L.R.; Silva, V.A.; Calazans, J.A.; Santos, A.S.; Silva, D.N.; Castro, M.C. The economic burden of malaria: A systematic review. Malar. J. 2022, 21, 283. [Google Scholar] [CrossRef]
- Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Dorsey, E.R.; Dahodwala, N.; Cintina, I.; Hogan, P.; et al. Current and projected future economic burden of Parkinson’s disease in the U.S. NPJ Park. Dis. 2020, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Bergion, V.; Lindhe, A.; Sokolova, E.; Rosén, L. Risk-based cost-benefit analysis for evaluating microbial risk mitigation in a drinking water system. Water Res. 2018, 132, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Collier, S.A.; Deng, L.; Adam, E.A.; Benedict, K.M.; Beshearse, E.M.; Blackstock, A.J.; Bruce, B.B.; Derado, G.; Edens, C.; Fullerton, K.E.; et al. Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerg. Infect. Dis. 2021, 27, 140–149. [Google Scholar] [CrossRef]
- Baker-Goering, M.; Roy, K.; Edens, C.; Collier, S. Economic Burden of Legionnaires’ Disease, United States, 2014. Emerg. Infect. Dis. 2021, 27, 255–257. [Google Scholar] [CrossRef]
- Armstrong, T.W.; Haas, C.N. A quantitative microbial risk assessment model for Legionnaires’ disease: Animal model selection and dose-response modeling. Risk Anal. 2007, 27, 1581–1596. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Hamilton, M.T.; Johnson, W.; Jjemba, P.; Bukhari, Z.; LeChevallier, M.; Haas, C.N.; Gurian, P.L. Risk-Based Critical Concentrations of Legionella pneumophila for Indoor Residential Water Uses. Environ. Sci. Technol. 2019, 53, 4528–4541. [Google Scholar] [CrossRef] [PubMed]
- Simmering, J.E.; Polgreen, L.A.; Hornick, D.B.; Sewell, D.K.; Polgreen, P.M. Weather-Dependent Risk for Legionnaires’ Disease, United States. Emerg. Infect. Dis. 2017, 23, 1843–1851. [Google Scholar] [CrossRef] [PubMed]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast). Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 2 July 2024).
- European Centre for Disease Prevention and Control. The European Surveillance System (TESSy). Available online: https://www.ecdc.europa.eu/en/publications-data/european-surveillance-system-tessy (accessed on 2 July 2024).
- Istituto Superiore di Sanità. Guidelines for the Assessment and Management of Risk Associated to Water Safety in Internal Plumbing Systems in Priority and Non-Priority Buildings and in Certain Vessels according to Directive (EU) 2020/2184; Ad hoc Working Group on Water Safety in Internal Water Distribution Systems in Buildings and Certain Ships: Rome, Italy, 2022; Volume xiv, 161p, ISTISAN reports 22/32. [Google Scholar]
- Statista.com. Available online: https://www.statista.com/statistics/789022/number-of-existing-non-residential-buildings-category-in-italy/ (accessed on 17 March 2024).
- Borella, P.; Montagna, M.T.; Romano-Spica, V.; Stampi, S.; Stancanelli, G.; Triassi, M.; Neglia, R.; Marchesi, I.; Fantuzzi, G.; Tatò, D.; et al. Legionella infection risk from domestic hot water [published correction appears in Emerg. Infect. Dis. 2004, 10, 1353. Emerg. Infect. Dis. 2004, 10, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Federici, E.; Meniconi, S.; Ceci, E.; Mazzetti, E.; Casagrande, C.; Montalbani, E.; Businelli, S.; Mariani, T.; Mugnaioli, P.; Cenci, G.; et al. Legionella Survey in the Plumbing System of a Sparse Academic Campus: A Case Study at the University of Perugia. Water 2017, 9, 662. [Google Scholar] [CrossRef]
- Leoni, E.; De Luca, G.; Legnani, P.P.; Sacchetti, R.; Stampi, S.; Zanetti, F. Legionella waterline colonization: Detection of Legionella species in domestic, hotel and hospital hot water systems. J. Appl. Microbiol. 2005, 98, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Marras, L.; Bertolino, G.; Sanna, A.; Carraro, V.; Coroneo, V. Legionella spp. Monitoring in the Water Supply Systems of Accommodation Facilities in Sardinia, Italy: A Two-Year Retrospective Analysis. Int. J. Environ. Res. Public Health 2023, 20, 6722. [Google Scholar] [CrossRef] [PubMed]
- Di Onofrio, V.; Pagano, M.; Santulli, M.; Rossi, A.; Liguori, R.; Di Dio, M.; Liguori, G. Contamination of Hotel Water Distribution Systems by Legionella Species: Environmental Surveillance in Campania Region, South Italy. Microorganisms 2023, 11, 1840. [Google Scholar] [CrossRef] [PubMed]
- Scaturro, M.; Del Chierico, F.; Motro, Y.; Chaldoupi, A.; Flountzi, A.; Moran-Gilad, J.; Girolamo, A.; Koutsiomani, T.; Krogulska, B.; Lindsay, D.; et al. Premise plumbing bacterial communities in four European cities and their association with Legionella. Front. Microbiomes 2023, 2, 1170824. [Google Scholar] [CrossRef]
- Aquaitalia Association Member Survey. 2023. Available online: https://www.anima.it/associazioni/elenco/aqua-italia/ (accessed on 2 July 2024).
- ECDC. Legionnaires’ Disease Annual Epidemiological Report. 2019. Available online: https://www.ecdc.europa.eu/en/publications-data/legionnaires-disease-annual-epidemiological-report-2019 (accessed on 2 July 2024).
- World Health Organization. Legionnaires’ Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/legionellosis (accessed on 2 July 2024).
- ESCMID Study Group for Legionella Infections (ESGLI). European Technical Guidelines for the Prevention, Control, and Investigation, of Infections Caused by Legionella Species. 2017. Available online: https://www.ecdc.europa.eu/en/publications-data/european-technical-guidelines-prevention-control-and-investigation-infections (accessed on 2 July 2024).
- van der Wielen, P.W.; van der Kooij, D. Nontuberculous mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in The Netherlands. Appl. Environ. Microbiol. 2013, 79, 825–834. [Google Scholar] [CrossRef]
- Mazzotta, M.; Salaris, S.; Pascale, M.R.; Girolamini, L.; Cristino, S. Occurrence of Legionella spp. in Man-Made Water Sources: Isolates Distribution and Phylogenetic Characterization in the Emilia-Romagna Region. Pathogens 2021, 10, 552. [Google Scholar] [CrossRef]
- Ricci, M.L.; Rota, M.C.; Caporali, M.G.; Girolamo, A.; Scaturro, M. A Legionnaires’ Disease Cluster in a Private Building in Italy. Int. J. Environ. Res. Public Health 2021, 18, 6922. [Google Scholar] [CrossRef]
- Riccò, M.; Peruzzi, S.; Ranzieri, S.; Giuri, P.G. Epidemiology of Legionnaires’ Disease in Italy, 2004–2019: A Summary of Available Evidence. Microorganisms 2021, 9, 2180. [Google Scholar] [CrossRef]
- Gibbons, C.L.; Mangen, M.J.; Plass, D.; Havelaar, A.H.; Brooke, R.J.; Kramarz, P.; Peterson, K.L.; Stuurman, A.L.; Cassini, A.; Fèvre, E.M.; et al. Measuring underreporting and under-ascertainment in infectious disease datasets: A comparison of methods. BMC Public Health 2014, 14, 147. [Google Scholar] [CrossRef]
- Cassell, K.; Gacek, P.; Rabatsky-Her, T.; Petit, S.; Cartter, M.; Weinberger, D.M. Estimating the True Burden of Legionnaires’ Disease. Am. J. Epidemiol. 2019, 188, 1686–1694. [Google Scholar] [CrossRef]
- Amodio, E.; Vitale, F.; D’Angela, D.; Carrieri, C.; Polistena, B.; Spandonaro, F.; Pagliaro, A.; Montuori, E.A. Increased Risk of Hospitalization for Pneumonia in Italian Adults from 2010 to 2019: Scientific Evidence for a Call to Action. Vaccines 2023, 11, 187. [Google Scholar] [CrossRef]
- von Baum, H.; Ewig, S.; Marre, R.; Suttorp, N.; Gonschior, S.; Welte, T.; Lück, C.; Competence Network for Community Acquired Pneumonia Study Group. Community-acquired Legionella pneumonia: New insights from the German competence network for community acquired pneumonia. Clin. Infect. Dis. 2008, 46, 1356–1364. [Google Scholar] [CrossRef]
- García-Fulgueiras, A.; Navarro, C.; Fenoll, D.; García, J.; González-Diego, P.; Jiménez-Buñuales, T.; Rodriguez, M.; Lopez, R.; Pacheco, F.; Ruiz, J.; et al. Legionnaires’ disease outbreak in Murcia, Spain. Emerg. Infect. Dis. 2003, 9, 915–921. [Google Scholar] [CrossRef]
- Lock, K.; Millett, C.; Heathcock, R.; Joseph, C.A.; Harrison, T.G.; Lee, J.V.; Rao, G.; Surman-Lee, S. Public health and economic costs of investigating a suspected outbreak of Legionnaires’ disease. Epidemiol. Infect. 2008, 136, 1306–1314. [Google Scholar] [CrossRef]
- Girolamini, L.; Salaris, S.; Pascale, M.R.; Mazzotta, M.; Cristino, S. Dynamics of Legionella Community Interactions in Response to Temperature and Disinfection Treatment: 7 Years of Investigation. Microb. Ecol. 2022, 83, 353–362. [Google Scholar] [CrossRef]
- Leoni, E.; Catalani, F.; Marini, S.; Dallolio, L. Legionellosis Associated with Recreational Waters: A Systematic Review of Cases and Outbreaks in Swimming Pools, Spa Pools, and Similar Environments. Int. J. Environ. Res. Public Health 2018, 15, 1612. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica (Istat), 2023, Enterprises Economic Indicators—Data Summary. 2021. Available online: https://www.istat.it/en/enterprises?data-and-indicators (accessed on 17 March 2024).
- ISO 11731:2017; Water Quality—Enumeration of Legionella. ISO: Geneva, Switzerland, 2017.
- Tolofari, D.; Bartrand, T.; Haas, C.M.; Olson, M.S.; Gurian, P.L. Disability-Adjusted Life Year Frameworks for Comparing Health Impacts Associated with Mycobacterium avium, Trihalomethanes and Haloacetic Acids in a Building Plumbing System. ACS ES&T Water 2022, 2, 1521–1531. [Google Scholar]
- Zacharias, N.; Waßer, F.; Freier, L.; Spies, K.; Koch, C.; Pleischl, S.; Girolamo, A.; Koutsiomani, T.; Krogulska, B.; Lindsay, D.; et al. Legionella in drinking water: The detection method matters. J. Water Health 2023, 21, 884–894. [Google Scholar] [CrossRef] [PubMed]
- Benin, A.L.; Benson, R.F.; Besser, R.E. Trends in legionnaires disease, 1980-1998: Declining mortality and new patterns of diagnosis. Clin. Infect. Dis. 2002, 35, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, N.; Janin, N.; Bourguignon, G.; Surgot, M.; Fleurette, J. Prevalence of anti-Legionella antibodies in a healthy population and in patients with tuberculosis or pneumonia. Pathol. Biol. 1987, 35, 353–356. [Google Scholar] [PubMed]
- Lee, H.K.; Woo, M.K.; Ju, Y.I.; Baek, S.J.; Song, H.J.; Choi, J.S.; Kweon, S.S.; Jeon, D.Y.; Kang, Y.H. Prevalence of antibodies in response to Legionella species, analysis of a healthy population from Jeollanam-do Province, Korea. J. Microbiol. 2008, 46, 160–164. [Google Scholar] [CrossRef]
- Mercante, J.W.; Winchell, J.M. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin. Microbiol. Rev. 2015, 28, 80–118. [Google Scholar] [CrossRef]
- Statens Serum Institute (SSI) Legionnaires’ Disease 2019. EPINEWS No 20 2020 [Internet]. 2020. Available online: https://en.ssi.dk/news/epi-news/2020/no-20---2020 (accessed on 6 April 2022).
- Statens Serum Institute (SSI) Legionnaires’ Disease in Denmark 2020. EPI-NEWS Nos 18 [Internet]. 2021. Available online: https://en.ssi.dk/news/epi-news/2021/no-18---2021 (accessed on 6 April 2022).
- States Serum Institute (SSI) Legionella 2020 Annual Report. [Internet] 2021. Available online: https://en.ssi.dk/surveillance-and-preparedness/surveillance-in-denmark/annual-reports-on-disease-incidence/legionella-2020-annual-report (accessed on 6 April 2022).
Legionella Control Strategy | Estimated Annual Legionnaires’ Disease Cases Prevented | Estimated YLL Prevented per 100K Population (Annual Rate) | Estimated YLD Prevented per 100K Population (Annual Rate) | Estimated DALYs Prevented per 100K Population (Annual Rate) |
---|---|---|---|---|
No additional control and monitoring | 0 | N/A | N/A | N/A |
L. pneumophila control and monitoring | 624 | 3.77 | 0.0067 | 3.77 |
Legionella spp. control and monitoring | 638 | 3.85 | 0.0068 | 3.86 |
Legionella Control Strategy | Estimated Total Direct Cost (Remediation, €’M) | Estimated Direct Cost (Remediation) per Legionnaires’ Disease Case Prevented (€’K) | Relative Cost Difference per Legionnaires’ Disease Case Prevented |
---|---|---|---|
No additional control and monitoring | N/A | ||
L. pneumophila control and monitoring | 19.0 | 30.5 | |
Legionella spp. control and monitoring | 27.2 | 42.6 | +40% higher than Lp control and monitoring |
Legionella Control Strategy | Economic Cost of LD Prevention Approach (€’M) | Total Cost of LD Prevention Approach (€’M) | Difference in Total Cost: Legionella spp. Relative to Lp Control Strategy (€’M) |
---|---|---|---|
No additional control and monitoring | 26.9 | 26.9 | N/A |
L. pneumophila control and monitoring | 27.2 | 46.2 | N/A |
Legionella spp. control and monitoring | 31.5 | 58.8 | 12.5 (+27% higher than Lp) |
Legionella Control Strategy | # of Cases Prevented | Direct Cost of LD Prevention Approach (€’M) | Economic Cost of LD Prevention Approach (€’M) | Total Cost of LD Prevention Approach (€’M) | Legionella spp. vs. Lp (€’M) |
---|---|---|---|---|---|
No additional control and monitoring | N/A | N/A | 280.5 | 280.5 | N/A |
L. pneumophila control and monitoring | 6.5K | 194.3 | 274.4 | 468.7 | N/A |
Legionella spp. control and monitoring | 6.7K | 265.8 | 295.5 | 577.5 | 109 (+23% above Lp) |
% of Buildings Contaminated with Legionella at the Action Level | % Buildings Contaminated with Lp Detected | % of Total Cases Est. Caused by Lp (All Serogroups) | ||||||
---|---|---|---|---|---|---|---|---|
Low (L) | Base (B) | High (H) | Low (L) | Base (B) | High (H) | Low (L) | Base (B) | High (H) |
10% | 40% | 80% | 50% | 70% | 90% | 80% | 95% | 97% |
LD Cases Prevented | Total Costs (Economic + Direct) | Total Cost per LD Case Avoided | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Scenarios | No Actions | Lp Control | L. spp. Control | No Actions (€’M) | Lp Control (€’M) | L. spp. Control (€’M) | L. spp. vs. Lp (%) | No actions | Lp Control (€’K) | L. spp. Control (€’K) | L. spp. vs. Lp (%) |
LLL | N/A | 94 | 117 | 5 | 9 | 14 | 57% | N/A | 93 | 116 | 25% |
LLH | N/A | 114 | 117 | 5 | 8 | 14 | 63% | N/A | 73 | 116 | 58% |
LHL | N/A | 169 | 174 | 7 | 14 | 15 | 7% | N/A | 83 | 87 | 4% |
LHH | N/A | 205 | 205 | 9 | 15 | 16 | 7% | N/A | 72 | 77 | 7% |
Base case | N/A | 624 | 638 | 27 | 46 | 59 | 27% | N/A | 74 | 92 | 24% |
HLL | N/A | 751 | 938 | 40 | 69 | 109 | 57% | N/A | 93 | 116 | 25% |
HLH | N/A | 910 | 938 | 40 | 67 | 109 | 63% | N/A | 73 | 116 | 58% |
HHL | N/A | 1351 | 1389 | 59 | 112 | 120 | 7% | N/A | 83 | 87 | 4% |
HHH | N/A | 1638 | 1644 | 69 | 118 | 127 | 7% | N/A | 72 | 77 | 7% |
LD cases prevented at different building contamination levels | ||||||||||||
% of buildings contaminated at action level | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | |
No actions | - | - | - | - | - | - | - | - | - | - | - | |
Lp strategy | 78 | 156 | 312 | 468 | 624 | 780 | 936 | 1092 | 1248 | 1404 | 1560 | |
Lspp. strategy | 80 | 160 | 319 | 479 | 638 | 798 | 957 | 1117 | 1276 | 1436 | 1595 | |
LD cases prevented at different % of contaminated buildings with Lp detected | ||||||||||||
% of building water contaminated by Lp | 5% | 10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100% | |
No actions | - | - | - | - | - | - | - | - | - | - | - | |
Lp strategy | 45 | 89 | 178 | 267 | 357 | 446 | 535 | 624 | 713 | 802 | 891 | |
Lspp. strategy | 89 | 131 | 216 | 300 | 385 | 469 | 554 | 638 | 723 | 807 | 891 | |
LD cases prevented at different % of total LD cases est. caused by Lp (all serogroups) | ||||||||||||
Lp % total incidence of cases | 60% | 70% | 80% | 90% | 95% | 100% | ||||||
No actions | - | - | - | - | - | - | ||||||
Lp strategy | 394 | 460 | 525 | 591 | 624 | 657 | ||||||
Lspp. strategy | 507 | 544 | 582 | 619 | 638 | 657 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano Spica, V.; Borella, P.; Bruno, A.; Carboni, C.; Exner, M.; Hartemann, P.; Gianfranceschi, G.; Laganà, P.; Mansi, A.; Montagna, M.T.; et al. Legionnaires’ Disease Surveillance and Public Health Policies in Italy: A Mathematical Model for Assessing Prevention Strategies. Water 2024, 16, 2167. https://doi.org/10.3390/w16152167
Romano Spica V, Borella P, Bruno A, Carboni C, Exner M, Hartemann P, Gianfranceschi G, Laganà P, Mansi A, Montagna MT, et al. Legionnaires’ Disease Surveillance and Public Health Policies in Italy: A Mathematical Model for Assessing Prevention Strategies. Water. 2024; 16(15):2167. https://doi.org/10.3390/w16152167
Chicago/Turabian StyleRomano Spica, Vincenzo, Paola Borella, Agnese Bruno, Cristian Carboni, Martin Exner, Philippe Hartemann, Gianluca Gianfranceschi, Pasqualina Laganà, Antonella Mansi, Maria Teresa Montagna, and et al. 2024. "Legionnaires’ Disease Surveillance and Public Health Policies in Italy: A Mathematical Model for Assessing Prevention Strategies" Water 16, no. 15: 2167. https://doi.org/10.3390/w16152167
APA StyleRomano Spica, V., Borella, P., Bruno, A., Carboni, C., Exner, M., Hartemann, P., Gianfranceschi, G., Laganà, P., Mansi, A., Montagna, M. T., De Giglio, O., Platania, S., Rizzo, C., Spotti, A., Ubaldi, F., Vitali, M., van der Wielen, P., & Valeriani, F. (2024). Legionnaires’ Disease Surveillance and Public Health Policies in Italy: A Mathematical Model for Assessing Prevention Strategies. Water, 16(15), 2167. https://doi.org/10.3390/w16152167