High Salinity Tolerance of Zn-Rich g-C3N4 in the Photocatalytic Treatment of Chlorophenol Wastewater
Abstract
:1. Introduction
2. Materials and Method
2.1. Chemicals and Materials
2.2. Catalyst Preparation
2.3. Photocatalytic Experiment
2.4. Characterization
3. Results and Discussion
3.1. Photocatalysts Comparison
3.2. Photocatalytic Conditions Optimization
3.3. Real Wastewater Treatment
3.4. Zn-Rich g-C3N4 Characterization
3.5. Photocatalytic Mechanism Analysis
3.6. Degradation Path of 2,4-DCP
3.7. Prospectives
No. | Light | Catalyst | Experimental Condition | Rate mg L−1 min−1 | Ref. |
---|---|---|---|---|---|
1 | 300 W HID | 0.2 g L−1 g-C3N4-Cu2O | C4-CP = 1 mg L−1, 120 min | 0.008 | [34] |
2 | 300 W HID | 1.0 g L−1 porous g-C3N4 | C4-CP = 20 mg L−1, pH = 3, 120 min | 0.16 | [35] |
3 | 1 mW cm−2 UV | 0.2 g L−1 O-g-C3N4 | C4-CP = 10 mg L−1, 50 μL H2O2, 30 min | 0.33 | [36] |
4 | 50 mW cm−2 HID | 0.15 g L−1 g-C3N4-Co-MOF | C4-CP = 20 mg L−1, 80 min | 0.12 | [37] |
5 | 300 W HID | 1.0 g L−1 CeO2/g-C3N4 | C4-CP = 5 mg L−1, 300 min | 0.008 | [38] |
6 | HID | 2.5 g L−1 CuPc/g-C3N4 | C2,4-CP = 100 mg L−1, 240 min | 0.33 | [39] |
7 | 300 W HID | 1.0 g L−1 Pt/C3N4 | C5-CP = 20 mg L−1, 420 min | 0.05 | [40] |
8 | 300 W HID | 1.0 g L−1 g-C3N4/BiOI | C4-CP = 10 mg L−1, 180 min | 0.01 | [41] |
9 | 300 W HID | 0.5 g L−1 NaxSCNNTs | C4-CP = 20 mg L−1, 180 min | 0.10 | [42] |
10 | HP 365 nm | 0.1 g L−1 Zn-rich g-C3N4 | C2,4-DCP = 100 mg L−1, 120 min | 0.63 | This work |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.; Jiao, C.; Pan, L.; Zhao, T.; Liang, J.; Xiong, J.; Wang, S.; Zhu, H.; Chen, G.; Lu, L.; et al. Degradation of chlorine dioxide bleaching wastewater and response of bacterial community in the intimately coupled system of visible-light photocatalysis and biodegradation. Environ. Res. 2021, 195, 110840. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Chi, T.; Ren, H.; Li, F.; Tian, J.; Chen, L. The occurrence, distribution and removal of adsorbable organic halogens (AOX) in a typical fine chemical industrial park. Environ. Pollut. 2022, 312, 120043. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Chen, L.; Liu, R. AOX contamination status and genotoxicity of AOX-bearing pharmaceutical wastewater. J. Environ. Sci. 2017, 52, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Song, L.; Yan, R.; Li, Z.; Zhang, Z.; Sun, J.; Bian, J.; Qu, Y.; Jing, L. Valence-mixed iron phthalocyanines/(100)Bi2MoO6 nanosheet Z-scheme heterojunction catalysts for efficient visible-light degradation of 2-chlorophenol via preferential dechlorination. Chem. Eng. J. 2022, 440, 135786. [Google Scholar] [CrossRef]
- Yang, J.; Song, J.; Liang, S.; Guan, R.; Shi, Y.; Yu, W.; Zhu, S.; Fan, W.; Hou, H.; Hu, J.; et al. Synergistic effect of water content and composite conditioner of Fenton’s reagent combined with red mud on the enhanced hydrogen production from sludge pyrolysis. Water Res. 2017, 123, 378–387. [Google Scholar] [CrossRef]
- Li, T.; Su, T.; Wang, J.; Zhu, S.; Zhang, Y.; Geng, Z.; Wang, X.; Gao, Y. Simultaneous removal of sulfate and nitrate from real high-salt flue gas wastewater concentrate via a waste heat crystallization route. J. Clean. Prod. 2023, 382, 135262. [Google Scholar] [CrossRef]
- Yu, H.; Song, Y.; Zhao, B.; Lu, Y.; Zhu, S.; Qu, J.; Wang, X.; Qin, W. Efficient Electrocatalytic Degradation of 4-Chlorophenol Using a Ti/RuO2–SnO2–TiO2/PbO2–CeO2 Composite Electrode. Electrocatalysis 2018, 9, 725–734. [Google Scholar] [CrossRef]
- Melliti, E.; Touati, K.; Abidi, H.; Elfil, H. Iron fouling prevention and membrane cleaning during reverse osmosis process. Int. J. Environ. Sci. Technol. 2019, 16, 3809–3818. [Google Scholar] [CrossRef]
- Garg, S.; Xu, Q.; Moss, A.B.; Mirolo, M.; Deng, W.; Chorkendorff, I.; Drnec, J.; Seger, B. How alkali cations affect salt precipitation and CO2 electrolysis performance in membrane electrode assembly electrolyzers. Energy Environ. Sci. 2023, 16, 1631–1641. [Google Scholar] [CrossRef]
- Cui, X.; Chen, C.; Sun, S.; Zhou, D.; Ndayisenga, F.; Huo, M.; Zhu, S.; Zhang, L.; Crittenden, J.C. Acceleration of saturated porous media clogging and silicon dissolution due to low concentrations of Al(III) in the recharge of reclaimed water. Water Res. 2018, 143, 136–145. [Google Scholar] [CrossRef]
- Wu, S.; Liu, H.; Lin, Y.; Yang, C.; Lou, W.; Sun, J.; Du, C.; Zhang, D.; Nie, L.; Yin, K.; et al. Insights into mechanisms of UV/ferrate oxidation for degradation of phenolic pollutants: Role of superoxide radicals. Chemosphere 2020, 244, 125490. [Google Scholar] [CrossRef] [PubMed]
- Erhardt, C.S.; Basegio, T.M.; Capela, I.; Rodríguez, A.L.; Machado, Ê.L.; López, D.A.R.; Tarelho, L.; Bergmann, C.P. AOX degradation of the pulp and paper industry bleaching wastewater using nZVI in two different agitation processes. Environ. Technol. Innov. 2021, 22, 101420. [Google Scholar] [CrossRef]
- Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377. [Google Scholar] [CrossRef]
- Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123. [Google Scholar] [CrossRef]
- Zhu, S.; Yang, X.; Yang, W.; Zhang, L.; Wang, J.; Huo, M. Application of porous nickel-coated TiO₂ for the photocatalytic degradation of aqueous quinoline in an internal airlift loop reactor. Int. J. Environ. Res. Public Health 2012, 9, 548–563. [Google Scholar] [CrossRef]
- Sudhaik, A.; Raizada, P.; Shandilya, P.; Jeong, D.; Lim, J.; Singh, P. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J. Ind. Eng. Chem. 2018, 67, 28–51. [Google Scholar] [CrossRef]
- Ali, S.; Humayun, M.; Pi, W.; Yuan, Y.; Wang, M.; Khan, A.; Yue, P.; Shu, L.; Zheng, Z.; Fu, Q.; et al. Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2,4-dichlorophenol degradation: Insight mechanism. J. Hazard. Mater. 2020, 397, 122708. [Google Scholar] [CrossRef]
- Oh, W.D.; Chang, V.W.C.; Hu, Z.; Goei, R.; Lim, T.T. Enhancing the catalytic activity of g-C3N4 through Me doping (Me=Cu, Co and Fe) for selective sulfathiazole degradation via redox-based advanced oxidation process. Chem. Eng. J. 2017, 323, 260–269. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Jiang, Y.; Shi, M.; Bawa, M.; Wang, X.; Zhu, S. Assembly of metallophthalocyanine-polyoxometalate hybrid for highly efficient desulfurization of organic and inorganic sulfur under aerobic conditions. Fuel 2019, 241, 861–869. [Google Scholar] [CrossRef]
- Haider, M.R.; Jiang, W.; Han, J.; Mahmood, A.; Djellabi, R.; Liu, H.; Asif, M.B.; Wang, A. Boosting Hydroxyl Radical Yield via Synergistic Activation of Electrogenerated HOCl/H2O2 in Electro-Fenton-like Degradation of Contaminants under Chloride Conditions. Environ. Sci. Technol. 2023, 57, 18668–18679. [Google Scholar] [CrossRef]
- Pandiselvi, K.; Fang, H.; Huang, X.; Wang, J.; Xu, X.; Li, T. Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports. J. Hazard. Mater. 2016, 314, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.F.; Wu, W.Q.; Zhong, J.X.; Jiang, Y.; Wang, L.; Kuang, D.B. Enhanced efficacy of defect passivation and charge extraction for efficient perovskite photovoltaics with a small open circuit voltage loss. J. Mater. Chem. A 2019, 7, 9025–9033. [Google Scholar] [CrossRef]
- Panneri, S.; Ganguly, P.; Nair, B.N.; Mohamed, A.A.P.; Warrier, K.G.; Hareesh, U.N.S.; Hareesh, U.N.S. Copyrolysed C3N4-Ag/ZnO Ternary Heterostructure Systems for Enhanced Adsorption and Photocatalytic Degradation of Tetracycline. Eur. J. Inorg. Chem. 2016, 2016, 5068–5076. [Google Scholar] [CrossRef]
- Kao, P.-C.; Tzeng, J.-H.; Huang, T.-L. Removal of chlorophenols from aqueous solution by fly ash. J. Hazard. Mater. 2000, 76, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Fu, Q.S.; Li, Y.; Su, Y. Photodecomposition of 4-chlorophenol by reactive oxygen species in UV/air system. J. Hazard. Mater. 2011, 186, 491–496. [Google Scholar] [CrossRef]
- Kumar, S.; Battula, V.R.; Kailasam, K. Single molecular precursors for CxNy materials- Blending of carbon and nitrogen beyond g-C3N4. Carbon 2021, 183, 332–354. [Google Scholar] [CrossRef]
- Gaur, N.; Dutta, D.; Singh, A.; Dubey, R.; Kamboj, D.V. Recent advances in the elimination of persistent organic pollutants by photocatalysis. Front. Environ. Sci. 2022, 10, 872514. [Google Scholar] [CrossRef]
- Yang, H. A short review on heterojunction photocatalysts: Carrier transfer behavior and photocatalytic mechanisms. Mater. Res. Bull. 2021, 142, 111406. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Zhang, Y.; Mao, X.; Tan, W.; Zhang, Y.; Wang, X.; Chang, M.; Guo, R.; Xi, B. Perdisulfate-assisted advanced oxidation of 2,4-dichlorophenol by bio-inspired iron encapsulated biochar catalyst. J. Colloid Interface Sci. 2021, 592, 358–370. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Gao, X.; Yao, W.; Wei, W.; Chen, X.; Zong, R.; Zhu, Y. Core-shell g-C3N4@ZnO composites as photoanodes with double synergistic effects for enhanced visible-light photoelectrocatalytic activities. Appl. Catal. B Environ. 2017, 217, 169–180. [Google Scholar] [CrossRef]
- Máté, N.; Tünde, A.; Luca, F.; Gábor, B.; Gábor, K.; Klára, H. Wavelength Dependence of the Transformation Mechanism of Sulfonamides Using Different LED Light Sources and TiO2 and ZnO Photocatalysts. Materials 2021, 15, 49. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Zeng, H.; Gong, D.; Deng, Y.; Xiong, S.; Li, L.; Zhou, Z.; Wang, J.; Feng, C.; Tang, L. Thin-walled vesicular Triazole-CN-PDI with electronic n⟶π* excitation and directional movement for enhanced atrazine photodegradation. Chem. Eng. J. 2023, 451, 138445. [Google Scholar] [CrossRef]
- Liang, H.; Bai, J.; Xu, T.; Li, C. Enhancing photocatalytic performance of heterostructure MoS2/g-C3N4 embeded in PAN frameworks by electrospining process. Mater. Sci. Semicond. Process. 2021, 121, 105414. [Google Scholar] [CrossRef]
- Tian, Q.; Shen, X.F.; Wang, Z.J.; Zhu, B.; Osotsi, M.I.; Xie, X.J.; Jin, Y.; Chen, Z.G.; Zhang, L.S. Growth of Cu2O Spherical Superstructures on g-C3N4 as Efficient Visible-Light-Driven p-n Heterojunction Photocatalysts for Degrading Various Organic Pollutants. J. Nanosci. Nanotechnol. 2018, 18, 7355–7363. [Google Scholar] [CrossRef]
- Wei, K.; Li, K.; Zeng, Z.; Dai, Y.; Yan, L.; Guo, H.; Luo, X. Synergistic photocatalytic effect of porous g-C3N4 in a Cr(VI)/4-chlorophenol composite pollution system. Chin. J. Catal. 2017, 38, 1804–1811. [Google Scholar] [CrossRef]
- Song, Y.; She, X.; Yi, J.; Mo, Z.; Liu, L.; Xu, H.; Li, H. Single layer two-dimensional O-g-C3N4: An efficient photocatalyst for improved molecular oxygen activation ability. Phys. Status Solidi A Appl. Mater. Sci. 2016, 214, 1600704. [Google Scholar] [CrossRef]
- Humayun, M.; Shu, L.; Pi, W.; Xia, H.; Khan, A.; Zheng, Z.; Fu, Q.; Tian, Y.; Luo, W. Vertically grown CeO2 and TiO2 nanoparticles over the MIL53Fe MOF as proper band alignments for efficient H2 generation and 2,4-DCP degradation. Environ. Sci. Pollut. Res. Int. 2022, 29, 34861–34873. [Google Scholar] [CrossRef]
- Huang, L.; Li, Y.; Xu, H.; Xia, J.; Wang, K.; Li, H.; Cheng, X. Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity. RSC Adv. 2013, 3, 22269–22279. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Guo, C.; Cong, S.; Yang, X. Preparation and photocatalytic degradation of 2,4-dichlorophenol by CuPc/g-C3N4. Chem. Eng. 2020, 34, 4–6. [Google Scholar]
- Li, K.; Zeng, Z.; Luo, S.; Luo, X.; Huo, M.; Guo, Y. Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B Environ. 2015, 165, 428–437. [Google Scholar] [CrossRef]
- Humayun, M.; Zheng, Z.; Fu, Q.; Luo, W. Photodegradation of 2,4-dichlorophenol and rhodamine B over n-type ZnO/p-type BiFeO3 heterojunctions: Detailed reaction pathway and mechanism. Environ. Sci. Pollut. Res. Int. 2019, 26, 17696–17706. [Google Scholar] [CrossRef] [PubMed]
- Alalm, M.G.; Samy, M.; Ookawara, S.; Ohno, T. Immobilization of S-TiO2 on reusable aluminum plates by polysiloxane for photocatalytic degradation of 2,4-dichlorophenol in water. J. Water Process Eng. 2018, 26, 329–335. [Google Scholar] [CrossRef]
- Qu, Z.; Su, T.; Zhu, S.; Chen, Y.; Yu, Y.; Xie, X.; Yang, J.; Huo, M.; Bian, D. Stepwise extraction of Fe, Al, Ca, and Zn: A green route to recycle raw electroplating sludge. J. Environ. Manag. 2021, 300, 113700. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Wang, Y.; Zhu, S.; Wang, X.; Liu, J.; Wang, L.; Fan, W.; Yu, Y. High Salinity Tolerance of Zn-Rich g-C3N4 in the Photocatalytic Treatment of Chlorophenol Wastewater. Water 2024, 16, 2756. https://doi.org/10.3390/w16192756
Chen H, Wang Y, Zhu S, Wang X, Liu J, Wang L, Fan W, Yu Y. High Salinity Tolerance of Zn-Rich g-C3N4 in the Photocatalytic Treatment of Chlorophenol Wastewater. Water. 2024; 16(19):2756. https://doi.org/10.3390/w16192756
Chicago/Turabian StyleChen, Hongyu, Ying Wang, Suiyi Zhu, Xiaoshu Wang, Jiancong Liu, Lei Wang, Wei Fan, and Yang Yu. 2024. "High Salinity Tolerance of Zn-Rich g-C3N4 in the Photocatalytic Treatment of Chlorophenol Wastewater" Water 16, no. 19: 2756. https://doi.org/10.3390/w16192756
APA StyleChen, H., Wang, Y., Zhu, S., Wang, X., Liu, J., Wang, L., Fan, W., & Yu, Y. (2024). High Salinity Tolerance of Zn-Rich g-C3N4 in the Photocatalytic Treatment of Chlorophenol Wastewater. Water, 16(19), 2756. https://doi.org/10.3390/w16192756