Which Fish Predators Can Tell Us the Most about Changes in the Ecosystem of the Pomeranian Bay in the Southwest Baltic Proper?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
- -
- Feeding index (FI)—the coefficient that determines the fraction of empty stomachs from all stomachs examined in percentage shares (in length classes) is calculated as follows:
- -
- The frequency of prey occurrence in the stomachs of predators (N) is calculated as follows:
- -
- The percentage index of prey weight in the stomachs of predatory fish species (W) is calculated as follows:
3. Results
3.1. Analysis of All Predators Diet
Lp | Name | No. of Species | Characteristics |
---|---|---|---|
1 | Polychaetes (Polychaeta) | At least one | All taxa from this class (most often undetermined) |
Crustacea: | |||
2 | Mysids (Mysidacea) | 3 | Neomysis integer, Praunus flexuosus, Mysis mixta; Mysidacea indet *. |
3 | Isopods (Isopoda) | 1 | Idotea sp. |
4 | Amphipods (Amphipoda) | 6 | Corophium volutator, Echinogammarus ischnus, Gammarus duebeni, Gammarus locusta, Gammarus zaddachi, Pontogammarus robustoides; Amphipoda indet. |
5 | Decapods (shrimps)(Decapoda) | 3 | Crangon crangon, Palaemon elegans, Rhithropanopeus harrisii |
6 | Molluscs (Mollusca): (Bivalvia and Gastropoda) | 5 | Cerastoderma glaucum, Mytilus sp., Mya arenaria, Macoma balthica, Peringia ulvae; Mollusca indet. |
Actinopterygii: | |||
7 | Clupeids (Clupeidae) | 2 | Clupea harengus, Sprattus sprattus, and Clupeidae indet. |
8 | European smelt Osmerus eperlanus (Osmeridae) | 1 | Osmerus eperlanus |
9 | Sand eels (Ammodytidae) | 2 | Ammodytes tobianus and Hyperoplus lanceolatus |
10 | Round goby Neogobius melanostomus (Gobiidae) | 1 | Neogobius melanostomus |
11 | Flatfishes (Pleuronectidae) | 1 | Platichthys flesus and Pleuronectidae indet. |
12 | Small pelagic fishes—SPF | O. eperlanus + clupeids | |
13 | Small benthic fishes—SBF | Sand eels + N. melanostomus + flatfishes | |
Others | 4 | Very rare taxa, recorded in single samples or in single predator stomachs; not included in the analysis: Amphibalanus improvisus, Zoarces viviparus, Sander lucioperca, Pomatoschistus minutus |
3.2. Analysis of the European Perch Diet
3.3. Relationships in the Food Web among Predatory Species and Their Invasive/Alien Prey Species
4. Discussion
4.1. New Tools for Measuring Ecosystem Dynamics Using Analyses of Aquatic Predators Diet
4.2. Trophic Interactions among the Predators and Their Prey of Non-Native Origin
5. Conclusions
- The results of preliminary studies indicate that the European perch is the most suitable species for bio-monitoring faunistic changes in the coastal area of the Pomeranian Bay. Our findings suggest that in the Pomeranian Bay, annual sampling of European perch alimentary tracts offers a unique means of detecting changes in ecosystem functioning. In the current study, perch had a wide spectrum of prey, a moderate feeding index, and was present almost throughout the year in this area.
- Seven alien/invasive species were found in the stomachs of the predators studied, which created new food webs (simple or more complex) in the Pomeranian Bay. All the top predators in this study preyed upon round goby.
- The lack of sufficient information for fully understanding the life histories of species that are monitored in the Pomeranian Bay demands further research.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plesiński, K.K.; Filipczyk, J.M.; Bień, M.M.; Karadağ, M. Assessment of Migration Conditions for Fish Swimming through a Semi-Natural Fish Pass on the Nidzica River in Bronocice. J. Water Land Dev. 2023, 59, 54–65. [Google Scholar] [CrossRef]
- Holopainen, R.; Lehtiniemi, M.; Meier, H.E.M.; Albertsson, J.; Gorokhova, E.; Kotta, J.; Viitasalo, M. Impacts of Changing Climate on the Non-Indigenous Invertebrates in the Northern Baltic Sea by End of the Twenty-First Century. Biol. Invasions 2016, 18, 3015–3032. [Google Scholar] [CrossRef]
- Szymczycha, B. Submarine Groundwater Discharge to the Bay of Puck, Southern Baltic Sea and Its Possible Changes with Regard to Predicted Climate Changes. In Impact of Climate Changes on Marine Environments. GeoPlanet: Earth and Planetary Sciences; Zielinski, T., Weslawski, M., Kuliński, K., Eds.; Springer: Cham, Switzerland, 2015; pp. 61–73. [Google Scholar] [CrossRef]
- Jażdżewski, K.; Grabowski, M. Alien Crustaceans Along the Southern and Western Baltic Sea. In In the Wrong Place—Alien Marine Crustaceans: Distribution, Biology and Impacts; Galil, B.S., Clark, P.F., Carlton, J.T., Eds.; Springer: Dordrecht, Netherlands, 2011; pp. 323–344. [Google Scholar] [CrossRef]
- Almqvist, G.; Strandmark, A.K.; Appelberg, M. Has the Invasive Round Goby Caused New Links in Baltic Food Webs? Environ. Biol. Fishes 2010, 89, 79–93. [Google Scholar] [CrossRef]
- Olsson, J. Past and Current Trends of Coastal Predatory Fish in the Baltic Sea with a Focus on Perch, Pike, and Pikeperch. Fishes 2019, 4, 7. [Google Scholar] [CrossRef]
- Nasrolahi, A.; Havenhand, J.; Wrange, A.L.; Pansch, C. Population and Life-Stage Specific Sensitivities to Temperature and Salinity Stress in Barnacles. Sci. Rep. 2016, 6, 32263. [Google Scholar] [CrossRef]
- Hecky, R.; DePinto, J. Understanding Declining Productivity in the Offshore Regions of the Great Lakes. International Joint Commission. 2020. Available online: https://ijc.org/en/sab/understanding-declining-productivity-offshore-regions-great-lakes (accessed on 28 July 2024).
- Zatoń-Sieczka, K.; Błaszak, M.; Buśko, M.; Czerniejewski, P. Microorganisms’ Communities from Ballast Water Transferred into the Odra River Estuary. J. Water Land Dev. 2022, 54, 48–58. [Google Scholar] [CrossRef]
- Gollasch, S.; David, M. Ballast Water: Problems and Management. World Seas: Environ. Eval. 2019, 3, 237–250. [Google Scholar] [CrossRef]
- Adebayo, A.A.; Zhan, A.; Bailey, S.A.; Macisaac, H.J. Domestic Ships as a Potential Pathway of Nonindigenous Species from the Saint Lawrence River to the Great Lakes. Biol. Invasion 2013, 16, 793–801. [Google Scholar] [CrossRef]
- Sandström, O.; Larsson, Å.; Andersson, J.; Appelberg, M.; Bignert, A.; Ek, H.; Förlin, L.; Olsson, M. Three Decades of Swedish Experience Demonstrates the Need for Integrated Long-Term Monitoring of Fish in Marine Coastal Areas. Water Qual. Res. J. 2005, 40, 233–250. [Google Scholar] [CrossRef]
- Thoresson, G. Guidelines for Coastal Fish Monitoring; Gothenburg University: Gothenburg, Sweden, 1996. [Google Scholar]
- Vetemaa, M.; Sandström, O.; Förlin, L. Chemical Industry Effluent Impacts on Reproduction and Biochemistry in a North Sea Population of Viviparous Blenny (Zoarces viviparus). J. Aquat. Ecosyst. Stress Recovery 1997, 6, 33–41. [Google Scholar] [CrossRef]
- Jacobsson, A.; Neuman, E.; Thoresson, G. The Viviparous Blenny as an Indicator of Environmental Effects of Harmful Substances. Ambio 1986, 15, 236–238. [Google Scholar]
- Sturdevant, M.V.; Orsi, J.A.; Fergusson, E.A. Diets and Trophic Linkages of Epipelagic Fish Predators in Coastal Southeast Alaska during a Period of Warm and Cold Climate Years, 1997–2011. Mar. Coast. Fish. 2012, 4, 526–545. [Google Scholar] [CrossRef]
- Taylor, C.E.; Lauzon, R.; Davis, C.; Lee, V.; Dunlop, E.S. Regional Predatory Fish Diets Following a Regime Shift in Lake Huron. J. Great Lakes Res. 2024, 50, 102301. [Google Scholar] [CrossRef]
- Strungaru, S.A.; Nicoara, M.; Teodosiu, C.; Micu, D.; Plavan, G. Toxic Metals Biomonitoring Based on Prey-Predator Interactions and Environmental Forensics Techniques: A Study at the Romanian-Ukraine Cross Border of the Black Sea. Mar. Pollut. Bull. 2017, 124, 321–330. [Google Scholar] [CrossRef]
- Hanson, J.M.; Chouinard, G.A. Diet of Atlantic Cod in the Southern Gulf of St Lawrence as an Index of Ecosystem Change, 1959–2000. J. Fish Biol. 2002, 60, 902–922. [Google Scholar] [CrossRef]
- Durante, L.; Wing, S.; Ingram, T.; Sabadel, A.; Shima, J. Changes in Trophic Structure of an Exploited Fish Community at the Centennial Scale Are Linked to Fisheries and Climate Forces. Sci. Rep. 2022, 12, 4309. [Google Scholar] [CrossRef]
- Chapman, E.J.; Byron, C.J.; Lasley-Rasher, R.; Lipsky, C.; Stevens, J.R.; Peters, R. Effects of Climate Change on Coastal Ecosystem Food Webs: Implications for Aquaculture. Mar. Env. Res 2020, 162, 105103. [Google Scholar] [CrossRef]
- Bestion, E.; Soriano-Redondo, A.; Cucherousset, J.; Jacob, S.; White, J.; Zinger, L.; Fourtune, L.; Di Gesu, L.; Teyssier, A.; Cote, J. Altered Trophic Interactions in Warming Climates: Consequences for Predator Diet Breadth and Fitness. Proc. R. Soc. B 2019, 286, 20192227. [Google Scholar] [CrossRef]
- Dawe, E.G.; Koen-Alonso, M.; Chabot, D.; Stansbury, D.; Mullowney, D. Trophic Interactions between Key Predatory Fishes and Crustaceans: Comparison of Two Northwest Atlantic Systems during a Period of Ecosystem Change. Mar. Ecol. Prog. Ser. 2012, 469, 233–248. [Google Scholar] [CrossRef]
- Dwyer, K.S.; Buren, A.; Koen-Alonso, M. Greenland Halibut Diet in the Northwest Atlantic from 1978 to 2003 as an Indicator of Ecosystem Change. J. Sea Res. 2010, 64, 436–445. [Google Scholar] [CrossRef]
- Uzars, D. Feeding of Cod (Gadus Morhua callarias L.) in the Central Baltic in Relation to Environmental Changes. ICES Mar. Sci. Symp. 1994, 198, 612–623. [Google Scholar]
- Jacobson, P.; Bergström, U.; Eklöf, J. Size-Dependent Diet Composition and Feeding of Eurasian Perch (Perca fluviatilis) and Northern Pike (Esox lucius) in the Baltic Sea. Boreal Environ. Res. 2019, 24, 137–153. [Google Scholar]
- HELCOM. Guidelines for Coastal Fish Monitoring; Sampling Methods; HELCOM: Helsinki, Finland, 2019. [Google Scholar]
- HELCOM. Manual for Marine Monitoring in the COMBINE Programme of HELCOM; HELCOM: Helsinki, Finland, 2014. [Google Scholar]
- Neuman, E.; Sandström, O. Fish Monitoring as a Tool for Assessing the Health of Baltic Coastal Ecosystems. Bull. Sea Fish. Inst. 1996, 3, 3–11. [Google Scholar]
- Ojaveer, H.; Jaanus, A.; Mackenzie, B.R.; Martin, G.; Olenin, S.; Radziejewska, T.; Telesh, I.; Zettler, M.L.; Zaiko, A. Status of Biodiversity in the Baltic Sea. PLoS ONE 2010, 5, e12467. [Google Scholar] [CrossRef] [PubMed]
- Czugała, A.; Woźniczka, A. The River Odra Estuary-Another Baltic Sea Area Colonized by the Round Goby Neogobius Melanostomus Pallas, 1811. Aquat. Invasions 2010, 5, 61–65. [Google Scholar] [CrossRef]
- Abbas, B.; Jaszkowiak, K.; Nawrocki, A.; Junge, M.; Rohde, S.; Kulaszka, W.; Demidowicz, M.; Siwka, A.; Mazur-Chrzanowska, B.; Landsberg-Uczciwek, M.; et al. Raport o Jakości Polsko-Niemieckich Wód Granicznych 2014; Grupa Robocza W2 Ochrona Wód: Zielona Góra, Poland, 2015. [Google Scholar]
- Beszczyńska-Möller, A. Transport of the Odra River Waters and Circulation Patterns in the Pomeranian Bay* Pomeranian Bay River Odra Riverine Water Transport Circulation River Plume. Oceanologia 1999, 41, 279–309. [Google Scholar]
- Więcaszek, B.; Panicz, R.; Eljasik, P.; Tański, A.; Bushra, A.; Beata, W.; Adam, T.; Remigiusz, P.; Piotr, E.; Amin, B. Molecular and Biological Studies of Nonindigenous and Extremely Rare Fish Species from the Western Baltic Reported from the Pomeranian Bay (Southwest Baltic Proper). Folia Biol. Kraków 2023, 71, 181–194. [Google Scholar] [CrossRef]
- Lehtonen, H.; Hansson, S.; Winkler, H. Biology and Exploitation of Pikeperch, Stizostedion lucioperca (L.), in the Baltic Sea Area. Ann. Zool. Fennici 1995, 33, 525–535. [Google Scholar]
- Więcaszek, B.; Nowosielski, A.; Dąbrowski, J.; Górecka, K.; Keszka, S.; Strzelczak, A. Fish Size Effect on Sagittal Otolith Outer Shape Variability in Round Goby Neogobius melanostomus (Pallas 1814). J. Fish Biol. 2020, 97, 1520–1541. [Google Scholar] [CrossRef]
- Schmidt, W. Vergleichend Morphologische Studie Über Die Otolithen Mariner Knochenfische, 1st ed.; Archiv für Fischereiwissenschaft: Berlin, Germany, 1968. [Google Scholar]
- Fish, J.D.; Fish, S. A Student’s Guide to the Seashore, 3rd ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Hayward, P.J.; Ryland, J.S. Handbook of the Marine Fauna of North-West Europe; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Barnes, R.S.K. The Brackish-Water Fauna of Northwestern Europe; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Więcaszek, B. Analysis of Taxonomic Position of Cod Gadus Morhua, L. from the Baltic Sea Based on the Morphological, Biological and Genetical Characters of Cod Populations from Different Areas of Its Distribution; Western Pomeranian University of Technology: Szczecin, Poland, 2010. [Google Scholar]
- Kangur, P.; Kangur, A.; Kangur, K. Dietary Importance of Various Prey Fishes for Pikeperch Sander lucioperca (L.) in Large Shallow Lake Võrtsjärv (Estonia). Proc. Est. Acad. Sci. Biol. Ecol. 2007, 56, 154–167. [Google Scholar] [CrossRef]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Jędrzejewska, B.; Jędrzejewski, W. Predation in Vertebrate Communities. The Bialowieza Primeval Forest as a Case Study, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 135. [Google Scholar]
- Ruiz-Capillas, P.; Mata, C.; Fernández, B.; Fernandes, C.; Malo, J.E. Do Roads Alter the Trophic Behavior of the Mesocarnivore Community Living Close to Them? Diversity 2021, 13, 173. [Google Scholar] [CrossRef]
- Pianka, E.R. The Structure of Lizard Communities. Ann. Rev. Ecol. Syst. 1973, 4, 53–74. [Google Scholar] [CrossRef]
- Krebs, C.J. Ecology. The Experimental Analysis of Distribution and Abundance; Pearson: London, UK, 2014. [Google Scholar]
- Cottenie, K.; Nuytten, N.; Michels, E.; De Meester, L. Zooplankton Community Structure and Environmental Conditions in a Set of Interconnected Ponds. Hydrobiologia 2001, 442, 339–350. [Google Scholar] [CrossRef]
- Costello, M.J. Predator Feeding Strategy and Prey Importance: A New Graphical Analysis. J. Fish Biol. 1990, 36, 261–263. [Google Scholar] [CrossRef]
- Amundsen, P.A.; Gabler, H.M.; Staldvik, F.J. A New Approach to Graphical Analysis of Feeding Strategy from Stomach Contents Data—Modification of the Costello (1990) Method. J. Fish Biol. 1996, 48, 607–614. [Google Scholar] [CrossRef]
- Heiberger, R.M.; Holland, B. CRAN: Package RcmdrPlugin.HH. 2024. Available online: https://cran.r-project.org/web/packages/RcmdrPlugin.HH/index.html (accessed on 28 August 2024).
- Sat Bałtyk. Available online: https://www.satbaltyk.pl (accessed on 16 September 2024).
- Kassambara, A. Practical Guide to Principal Component Methods in R (Multivariate Analysis). PCA, (M)CA, FAMD, MFA, HCPC, 1st ed.; Factoextra, STDHA: Oxford, UK, 2017; Volume 2, ISBN 1975721136. [Google Scholar]
- Dudko, S.; Król, S.; Wojnar, K. Wawrzyniak W Fisheries Characteristics of Ichthyofauna in the Pomeranian Bay; Josephs’s Sons: Szczecin, Poland, 2015. [Google Scholar]
- Funk, S.; Frelat, R.; Möllmann, C.; Temming, A.; Krumme, U. The Forgotten Feeding Ground: Patterns in Seasonal and Depth-Specific Food Intake of Adult Cod Gadus Morhua in the Western Baltic Sea. J. Fish Biol. 2021, 98, 707–722. [Google Scholar] [CrossRef]
- Hazen, E.L.; Abrahms, B.; Brodie, S.; Carroll, G.; Jacox, M.G.; Savoca, M.S.; Scales, K.L.; Sydeman, W.J.; Bograd, S.J. Marine Top Predators as Climate and Ecosystem Sentinels. Front. Ecol. Environ. 2019, 17, 565–574. [Google Scholar] [CrossRef]
- Hinrichsen, H.-H.; Piatkowski, U.; Jaspers, C. Sightings of Extraordinary Marine Species in the SW Baltic Sea Linked to Saline Water Inflows. J. Sea Res. 2022, 181, 102175. [Google Scholar] [CrossRef]
- Wennhage, H.; Pihl, L. Fish Feeding Guilds in Shallow Rocky and Soft Bottom Areas on the Swedish West Coast. J. Fish Biol. 2002, 61, 207–228. [Google Scholar] [CrossRef]
- Bogstad, B.; Mehl, S. Interactions between Cod (Gadus morhua L.) and Its Prey Species in the Barents Sea. Forage Fishes in Marine Ecosystems. Proceedings of the International Symposium on the Role of Forage Fishes in Marine Ecosystems. Alsk. Sea Grant Coll. Program Rep. 1 1997, 97, 591–615. [Google Scholar]
- Załachowski, W. An Attempt to Apply Bajkov’s Formula to Estimation of Food Uptake of Cod in the Southern Baltic. Acta Ichthyol. Piscat. 1985, 15, 3–19. [Google Scholar] [CrossRef]
- EU Commission. Steps in to Protect Baltic Cod. 2019. Available online: https://www.fishsec.org/2019/08/14/eu-commission-steps-in-to-protect-baltic-cod/ (accessed on 29 July 2024).
- Rakauskas, V.; Pūtys, Ž.; Dainys, J.; Lesutienė, J.; Ložys, L.; Arbačiauskas, K. Increasing Population of the Invader Round Goby, Neogobius melanostomus (Actinopterygii: Perciformes: Gobiidae), and Its Trophic Role in the Curonian Lagoon, SE Baltic Sea. Acta Ichthyol. Piscat. 2013, 43, 95–108. [Google Scholar] [CrossRef]
- Kipp, R.; Hébert, I.; Lacharité, M.; Ricciardi, A. Impacts of Predation by the Eurasian Round Goby (Neogobius melanostomus) on Molluscs in the Upper St. Lawrence River. J. Great Lakes Res. 2012, 38, 78–89. [Google Scholar] [CrossRef]
- Hempel, M.; Neukamm, R.; Thiel, R. Effects of Introduced Round Goby (Neogobius melanostomus) on Diet Composition and Growth of Zander (Sander lucioperca), a Main Predator in European Brackish Waters. Aquat. Invasions 2016, 11, 167–178. [Google Scholar] [CrossRef]
- Imbrock, F.; Appenzeller, A.; Eckmann, R. Diel and Seasonal Distribution of Perch in Lake Constance: A Hydroacoustic Study and in Situ Observations. J. Fish Biol. 1996, 49, 1–13. [Google Scholar] [CrossRef]
- Rowiński, P.K.; Mateos-Gonzalez, F.; Sandblom, E.; Jutfelt, F.; Ekström, A.; Sundström, L.F. Warming Alters the Body Shape of European Perch Perca fluviatilis. J. Fish Biol. 2015, 87, 1234–1247. [Google Scholar] [CrossRef]
- Mustamäki, N.; Cederberg, T.; Mattila, J. Diet, Stable Isotopes and Morphology of Eurasian Perch (Perca fluviatilis) in Littoral and Pelagic Habitats in the Northern Baltic Proper. Environ. Biol. Fishes 2014, 97, 675–689. [Google Scholar] [CrossRef]
- Lappalainen, A.; Rask, M.; Koponen, H.; Vesala, S. Relative Abundance, Diet and Growth of Perch (Perca fluviatilis) and Roach (Rutilus rutilus) at Tvarminne, Northern Baltic Sea, in 1975 and 1997: Responses to Eutrophication? Boreal Environ. Res. 2001, 6, 107–118. [Google Scholar]
- Hansson, S. Local Growth Differences in Perch (Perca fluviatilis L.) in a Baltic Archipelago. Hydrobiologia 1985, 121, 3–10. [Google Scholar] [CrossRef]
- David, P.; Thébault, E.; Anneville, O.; Duyck, P.F.; Chapuis, E.; Loeuille, N. Impacts of Invasive Species on Food Webs: A Review of Empirical Data. Adv. Ecol. Res. 2017, 56, 1–60. [Google Scholar] [CrossRef]
- Grabowski, M.; Bacela, K.; Konopacka, A. How to Be an Invasive Gammarid (Amphipoda: Gammaroidea)—Comparison of Life History Traits. Hydrobiologia 2007, 590, 75–84. [Google Scholar] [CrossRef]
- Puntila-Dodd, R.; Loisa, O.; Riipinen, K.; Fowler, A.E. A Taste for Aliens: Contribution of a Novel Prey Item to Native Fishes’ Diet. Biol. Invasions 2019, 21, 2907–2917. [Google Scholar] [CrossRef]
- Crane, D.P.; Farrell, J.M.; Einhouse, D.W.; Lantry, J.R.; Markham, J.L. Trends in Body Condition of Native Piscivores Following Invasion of Lakes Erie and Ontario by the Round Goby. Freshw. Biol. 2015, 60, 111–124. [Google Scholar] [CrossRef]
- Noonburg, E.G.; Byers, J.E. More Harm Than Good: When Invader Vulnerability to Predators Enhances Impact on Native Species. Ecology 2005, 86, 2555–2560. [Google Scholar] [CrossRef]
- Sih, A.; Bolnick, D.I.; Luttbeg, B.; Orrock, J.L.; Peacor, S.D.; Pintor, L.M.; Preisser, E.; Rehage, J.S.; Vonesh, J.R. Predator–Prey Naïveté, Antipredator Behavior, and the Ecology of Predator Invasions. Oikos 2010, 119, 610–621. [Google Scholar] [CrossRef]
- Reid, A.; Seebacher, F.; Ward, A. Learning to Hunt: The Role of Experience in Predator Success. Behaviour 2010, 147, 223–233. [Google Scholar] [CrossRef]
- HELCOM. Invasive Species. 2023. Available online: https://archive.iwlearn.net/helcom.fi/environment2/biodiv/alien/en_GB/alienspecies/index.html (accessed on 29 July 2024).
- Rakauskas, V.; Šidagytė-Copilas, E.; Stakėnas, S.; Garbaras, A. Invasive Neogobius melanostomus in the Lithuanian Baltic Sea Coast: Trophic Role and Impact on the Diet of Piscivorous Fish. J. Great Lakes Res. 2020, 46, 597–608. [Google Scholar] [CrossRef]
- Morkūnė, R.; Tomczak, M.T.; Bacevičius, E.; Gasiūnaitė, Z.R. Changes in the Baltic Sea Coastal Food Web: A Case Study on the Invasion of Round Goby Neogobius melanostomus (Pallas, 1814). Estuar. Coast. Shelf Sci. 2024, 296, 108591. [Google Scholar] [CrossRef]
- Westlund, M.-H. European Perch (Perca fluviatilis) as a Possible Predator of the Invasive Round Goby (Neogobius melanostomus) in the Baltic Sea; Swedish University of Agricultural Sciences: Öregrund, Sweden, 2020. [Google Scholar]
- Liversage, K.; Nurkse, K.; Kotta, J.; Järv, L. Environmental Heterogeneity Associated with European Perch (Perca fluviatilis) Predation on Invasive Round Goby (Neogobius melanostomus). Mar. Environ. Res. 2017, 132, 132–139. [Google Scholar] [CrossRef]
- Oesterwind, D.; Bock, C.; Förster, A.; Gabel, M.; Henseler, C.; Kotterba, P.; Menge, M.; Myts, D.; Winkler, H.M. Predator and Prey: The Role of the Round Goby Neogobius melanostomus in the Western Baltic. Mar. Biol. Res. 2017, 13, 188–197. [Google Scholar] [CrossRef]
- Gruszka, P.; Więcaszek, B. Palaemon Elegans Rathke, 1837 in the Food of Baltic Cod (Gadus Morhua Callarias L., 1758) from the Gulf of Gdańsk. Mar. Biol. Res. 2011, 7, 100–105. [Google Scholar] [CrossRef]
- Bzoma, S.; Meissner, W. Some Results of Long-Term Counts of Waterbirds Wintering in the Western Part of the Gulf of Gdańsk (Poland), with Special Emphasis on the Increase in the Number of Cormorants (Phalacrocorax carbo). Acta Zool. Litu. 2005, 15, 105–108. [Google Scholar] [CrossRef]
- Smith, C.; Papadopoulou, N.; Sevastou, K.; Kiriakopoulou, N.; Teixeira, H.; Katsanevakis, S.; Piroddi, C.; Beauchard, O.; Franco, A.; Fürhaupter, K.; et al. Keystone Species Catalogue. DEVOTES WP6.1.3—List of Available Keystone Species for Possible Use in GES Assessment of Descriptors 1,2,4 and 6 of the MSFD; Report on Identification of Keystone Species and Processes across Regional Seas; Annex 2; Hellenic Centre for Marine Research: Anavyssos, Greece, 2014. [Google Scholar]
- Zaiko, A.; Olenin, S.; Daunys, D.; Nalepa, T. Vulnerability of Benthic Habitats to the Aquatic Invasive Species. Biol. Invasions 2007, 9, 703–714. [Google Scholar] [CrossRef]
- Strasser, M. Mya arenaria—An Ancient Invader of the North Sea Coast. Helgoländer Meeresunters. 1998, 52, 309–324. [Google Scholar] [CrossRef]
- Galil, B.; Gollash, S.; Minchin, D.; Olenin, S. Alien Marine Biota of Europe. In Handbook of Alien Species in Europe; DAISE; Springer: Dordrecht, Netherlands, 2009; pp. 93–104. ISBN 978-1-4020-8280-1. [Google Scholar]
- Behrends, B.; Hertweck, G.; Liebezeit, G.; Goodfriend, G. Earliest Holocene Occurrence of the Soft-Shell Clam, Mya arenaria, in the Greifswalder Bodden, Southern Baltic. Mar. Geol. 2005, 216, 79–82. [Google Scholar] [CrossRef]
- Petersen, K.; Rasmussen, K.; Heinemeier, J.; Rud, N. Clams before Columbus? Nature 1992, 359, 679. [Google Scholar] [CrossRef]
- Leppäkoski, E.; Olenin, S. Non-Native Species and Rates of Spread: Lessons from the Brackish Baltic Sea. Biol. Invasions 2000, 2, 151–163. [Google Scholar] [CrossRef]
- Grabowski, M.; Jażdżewski, K.; Konopacka, A. Alien Crustacea in Polish Waters—Amphipoda. Aquat. Invasions 2007, 2, 25–38. [Google Scholar] [CrossRef]
- Roche, D.; Torchin, M.E. Established Population of the North American Harris Mud Crab, Rhithropanopeus harrisii (Gould 1841) (Crustacea: Brachyura: Xanthidae), in the Panama Canal. Aquat. Invasions 2007, 2, 155–161. [Google Scholar] [CrossRef]
- Kotta, J.; Ojaveer, H. Rapid Establishment of the Alien Crab Rhithropanopeus harrisii (Gould) in the Gulf of Riga. Est. J. Ecol. 2012, 61, 293–298. [Google Scholar] [CrossRef]
- Luonnonvarakeskus. Vapaa-Ajankalastus 2012. 2012. Available online: https://www.luke.fi/fi/tilastot/vapaaajankalastus/vapaaajankalastus-2012 (accessed on 29 August 2024).
- Grabowski, M.; Jażdżewski, K.; Konopacka, A. Alien Crustacea in Polish Waters (Part I) Introduction and Decapoda. Oceanol. Hydrobiol. Stud. 2005, 24, 43–62. [Google Scholar]
- Via, J.D. Oxygen Consumption and Temperature Change in the Shrimp Palaemon Elegans. Mar. Ecol. Prog. Ser. 1985, 26, 199–202. [Google Scholar]
- Berglund, A. Niche Differentiation between Two Littoral Prawns in Gullmar Fjord, Sweden: Palaemon adspersus and P. squilla. Ecography 1980, 3, 111–115. [Google Scholar] [CrossRef]
- Pörtner, H.-O.; Bock, C.; Knust, R.; Lannig, G.; Lucassen, M.; Mark, F.C.; Sartoris, F.J. Physiological Analyses of Climate Effects in Marine Fishes. Clim. Res. 2008, 37, 253–270. [Google Scholar] [CrossRef]
- Więcaszek, B. Biometric Characteristics of Baltic Eelpout Zoarces viviparus (L.) from the Pomeranian Bay. Acta Ichthyol. Piscat. 1992, 22, 39–57. [Google Scholar] [CrossRef]
- Więcaszek, B. On the Morphometry and Growth Rate in the Viviparous eelpout, Zoarces viviparus (Zoarcidae) from Waters of Different Salinity. Ital. J. Zool. 1998, 65, 211–214. [Google Scholar] [CrossRef]
- Hedman, J.E.; Rüdel, H.; Gercken, J.; Bergek, S.; Strand, J.; Quack, M.; Appelberg, M.; Förlin, L.; Tuvikene, A.; Bignert, A. Eelpout (Zoarces viviparus) in Marine Environmental Monitoring. Mar. Pollut. Bull. 2011, 62, 2015–2029. [Google Scholar] [CrossRef]
Species | No. of Fishes (♂/♀/Juveniles) | TL (cm) Range | SL (cm) Range | Study Period |
---|---|---|---|---|
Baltic cod, Gadus morhua | 173 (60/84/4) | 14.0–60.8 | 12.9–57.1 | Fall 2012–fall 2014; Fall 2019 |
Pikeperch, Sander lucioperca | 143 (60/63/20) | 8.7–58 | 12.2–51.5 | Fall 2012–fall 2013 |
Round goby, Neogobius melanostomus | 75 (27/38/10) 105 | 6.3–19.6 | 5.0–17.4 | Summer 2012–summer 2013; Archival data from 2007 |
European perch, Perca fluviatilis | 467 (126/278/63) In years of this study: 2012–98; 2013–166; 2014–113; 2018–142; 2019–148 | 10.0–34.0 | 8.5–30.0 | Fall 2012–summer 2014 (9 samples); Late summer and fall 2018 (2 samples) Summer and fall 2019 (2 samples) |
Class | Baltic Cod G. morhua | Pikeperch S. lucioperca | European Perch P. fluviatilis | Round Goby N. melanostomus |
---|---|---|---|---|
(1) | 10.5–35.0 | 10.0–19.9 | 10.0–14.9 | 6.3–11.9 |
(2) | 35.1–45.0 | 20.0–29.9 | 15.0–19.9 | 12.0–15.9 |
(3) | 45.1–55.0 | 30.0–39.9 | 20.0–24.9 | 16.0–19.9 |
(4) | 55.1–65.0 | 40.0–49.9 | 25.0–29.9 | |
(5) | 50.0–59.9 | 30.0–34.9 |
Cod | Pikeperch | Perch | Round Goby | |
---|---|---|---|---|
Baltic cod | - | 0.34 | 0.65 | 0.02 |
Pikeperch | 0.34 | - | 0.22 | 0.01 |
European perch | 0.65 | 0.22 | - | 0.06 |
Species | Feeding Index (%) Mean Value | Range (%) |
---|---|---|
Baltic cod | 4.3 | 0.0–14.3 |
Pikeperch | 51.4 | 21.4–100.0 |
European perch | 35.3 Winter season—50.9 Late summer season—25.0 Early fall season—35.1 | 7.84–58.5 |
Round goby | 13.9 | 0.0–50.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowski, J.; Więcaszek, B.; Brysiewicz, A.; Czerniejewski, P. Which Fish Predators Can Tell Us the Most about Changes in the Ecosystem of the Pomeranian Bay in the Southwest Baltic Proper? Water 2024, 16, 2788. https://doi.org/10.3390/w16192788
Dąbrowski J, Więcaszek B, Brysiewicz A, Czerniejewski P. Which Fish Predators Can Tell Us the Most about Changes in the Ecosystem of the Pomeranian Bay in the Southwest Baltic Proper? Water. 2024; 16(19):2788. https://doi.org/10.3390/w16192788
Chicago/Turabian StyleDąbrowski, Jarosław, Beata Więcaszek, Adam Brysiewicz, and Przemysław Czerniejewski. 2024. "Which Fish Predators Can Tell Us the Most about Changes in the Ecosystem of the Pomeranian Bay in the Southwest Baltic Proper?" Water 16, no. 19: 2788. https://doi.org/10.3390/w16192788
APA StyleDąbrowski, J., Więcaszek, B., Brysiewicz, A., & Czerniejewski, P. (2024). Which Fish Predators Can Tell Us the Most about Changes in the Ecosystem of the Pomeranian Bay in the Southwest Baltic Proper? Water, 16(19), 2788. https://doi.org/10.3390/w16192788