Towards Hydraulic Design Optimization of Shaft Hydropower Plants: A 3D-CFD Application Based on Physical Models
Abstract
:1. Introduction
- Replicating the flow conditions observed at the SHPP prototype intake by calibrating numerical parameters and validating them through quantitative comparison with physical results.
- Applying the calibrated settings to analyze modified geometrical configurations with a one-sided approach flow while determining relevant hydraulic parameters for assessing flow patterns and subsequent hydraulic design optimization.
2. Materials and Methods
2.1. Physical Model Testing
- (1)
- Experimental setup 01 (E01) is referred to when we describe observations with the basic hydraulic configuration of the prototype with a three-sided upstream approach flow.
- (2)
- Experimental setup 02 (E02) is referred to when we describe observations with a modified configuration of the prototype with a one-sided upstream approach flow.
- (3)
- The overall arrangement of the prototype facility is displayed in Figure 2.
2.2. Numerical Model Testing
- Simulation set M01 refers to all simulations we conducted to generate a calibrated and validated numerical model of the experimental setup E01 with a three-sided upstream approach flow.
- In simulation set M02 we used the calibrated and validated model of the set M01 and added lateral guide walls in accordance with experimental setup E02 with a one-sided up-stream approach flow.
- Finally, in simulation set M03, we conducted three further simulations with a one-sided upstream approach flow and additionally varying one relevant design parameter during each of them in order to determine their relevance and for subsequent hydraulic design optimization according to the second objective of our study.
2.2.1. Simulation Set M01—SHPP with a Three-Sided Approach Flow
2.2.2. Simulation Set M02—SHPP with a One-Sided Approach Flow
2.2.3. Simulation Set M03—One-Sided Approach Flow and Modified Design Parameters
- DP01 = The length of the shaft intake (i.e., trash rack length). It is assumed that increasing the length and, therefore, the horizontal inlet area will lead to decreased z-velocities with more homogeneous, low-loss inflow conditions.
- DP02 = The flow depth in the approach channel and above the shaft inlet. It is assumed that increasing the flow depth and, therefore, the cross-section of the channel will lead to reduced x-velocities and, therefore, more homogeneous, low-loss inflow conditions.
- DP03 = The overflow height (and therefore discharge) over the front gate. It is assumed that increasing the permanent overflow height at the gate will lead to a decreased risk of vortex formation above the intake due to increased x-velocities in the surface near water layers towards the gate. This assumption is based on the findings during the experimental development of the initial three-sided approach flow variant, where the developers resumed that a permanent overflow over the spill gate contributes to a vortex-free inflow into the shaft [5].
- Head loss [m]—a lower value indicates optimized inflow conditions;
- Average z-velocity above the trash rack vz-mean [m/s]—a lower value indicates optimized inflow conditions;
- The share of the inlet area with z-velocities vz below a benchmark value [%]—a higher percentage indicates optimized inflow conditions;
- Qualitative visual classification with a focus on the tendency for vortex formation.
3. Results
3.1. Comparison of Simulated and Physically Determined Head Losses in Set M01
3.2. Qualitative Validation and Analysis of the Flow Fields with a One-Sided Approach Flow
3.3. Assessment of Alternative Geometry Configurations for One-Sided Approach Flow
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNIDO; ICSHP. World Small Hydropower Development Report 2022. Available online: https://www.unido.org/sites/default/files/unido-publications/2024-04/Global-WSHPDR-consolidated.pdf (accessed on 10 August 2024).
- Abbasi, T.; Abbasi, S. Small hydro and the environmental implications of its extensive utilization. Renew. Sustain. Energy Rev. 2011, 15, 2134–2143. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Fijko, R.; Diaconu, D.C.; Remeňáková, I. Environmental Impact of Small Hydro Power Plant—A Case Study. Environments 2018, 5, 12. [Google Scholar] [CrossRef]
- Alp, A.; Akyüz, A.; Kucukali, S. Ecological impact scorecard of small hydropower plants in operation: An integrated approach. Renew. Energy 2020, 162, 1605–1617. [Google Scholar] [CrossRef]
- Sepp, A.; Geiger, F.; Rutschmann, P. Schachtkraftwerk—Konzept und Funktionskontrollen. Korresp. Wasserwirtsch. 2016, 9, 619–626. [Google Scholar] [CrossRef]
- Sepp, A.; Rutschmann, P. Ecological Hydroelectric Concept “Shaft Power Plant”. 2015. Available online: https://hydroshaft.com/wp-content/uploads/2019/10/Ecological-hydrolelectric-concept-Shaft-power-plant_2014.pdf (accessed on 10 August 2024).
- Schäfer, S.; Geiger, F.; Rutschmann, P. Monitoring of Downstream Passage of Small Fish at the TUM-Hydro Shaft Power Plant Prototype: Test Report 429. Institute of Hydraulic and Water Resources Engineering, Technical University Munich. 2016. Available online: https://www.cee.ed.tum.de/fileadmin/w00cbe/wb/Versuchsanstalt_Obernach/Modellversuche_und_Forschung/V429_schlussbericht-fischabstieg-skw-vao.pdf (accessed on 7 August 2024).
- Geiger, F.; Cuchet, M.; Rutschmann, P. Experimental investigation of fish downstream passage and turbine related fish mortality at an innovative hydro power setup. Houille Blanche 2016, 102, 44–47. [Google Scholar] [CrossRef]
- Alapfy, B.; Reisenbüchler, M. Hydroshaft Power Plant: A Sustainable and Simple Design Solution for Existing as Well as New Lateral Structures. World Small Hydropower Development Report 2022. Available online: www.unido.org/WSHPDR2022 (accessed on 10 August 2024).
- Alapfy, B. The Hydroshaft concept—Eco-friendly, scalable and economic hydropower. Energetyka Wodna 2022, 41, 24–27. [Google Scholar]
- Alapfy, B.; Klotz, M.; Böttger, F. Schachtkraftwerk Dietenheim. Wasserwirtschaft 2022, 112, 69–70. [Google Scholar] [CrossRef]
- Rutschmann, P.; Sepp, A.; Hackl, C. First Experiences With a 420 kW TUM Hydroshaft Power Plant in the Bavarian Alps. 2019. Available online: https://hydroshaft.com/wp-content/uploads/2019/10/First-Experience-with-a-420kW-TUM-Hydroshaft-Power-Plant-in-the-Bavarian-Alps_2019.pdf (accessed on 10 August 2024).
- Waldy, D.M.; Gabl, R.; Seibl, D.J.; Aufleger, M. Alternative Methoden für die Implementierung von Rechenverlusten in die 3D-numerische Berechnung mit FLOW-3D. Österr. Wasser-Abfallwirtsch. 2015, 67, 64–69. [Google Scholar] [CrossRef]
- Lee, M.M.; Bui, M.D. Hydrodynamic Modelling of a Horizontal Rack in a Shaft Power Plant: Alternative Approach. Moosbacher Doktorandenkolloquium—Band 1. 2016. Available online: https://www.mosbach.dhbw.de/fileadmin/user_upload/dhbw/ressorts/forschung/dokumente/Schriftenreihe-Band-1_Doktorandenkolloquium.pdf (accessed on 10 August 2024).
- Rojas-Solorzano, L.; Arevalo, A.; Montilla, G.; Reyes, M.; Marín, J.C. CFD Modeling of Porous Media in the Study of the Flow at Penstock Intake of a 1:30 Model of Guri Hydro-Powerhouse. Unpublished. 2006. Available online: http://rgdoi.net/10.13140/2.1.4711.1201 (accessed on 10 August 2024).
- Zöschg, H.; Dobler, W.; Aufleger, M.; Zeiringer, B. Evaluation of Hydraulics and Downstream Fish Migration at Run-of-River Hydropower Plants with Horizontal Bar Rack Bypass Systems by Using CFD. Water 2023, 15, 1042. [Google Scholar] [CrossRef]
- Kratz, A. Wirkungsgradmessungen am Schachtkraftwerk. Master’s Thesis, Technical University Munich, Munich, Germany, 2015. Unpublished. [Google Scholar]
- Drexler, M. Geschwindigkeitsmessungen und Wirkungs-Gradüberprüfung bei Modifizierter Einlaufform am Schachtkraftwerk. Bachelor’s Thesis, Technical University Munich, Munich, Germany, 2017. Unpublished. [Google Scholar]
- Flow Science, Inc. FLOW-3D® Version 2023R1 Users Manual. Santa Fe, NM, USA, 2023. Available online: https://www.flow3d.com/ (accessed on 7 August 2024).
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Lucino, C.; Liscia, S.; Duró, S. Vortex Detection in Pump Sumps by Means of CFD. Laboratorio de Hidromecánica—Área Departamental Hidráulica—Facultad de Ingeniería—Universidad Nacional de La Plata, Argentina, Punta del Este, Uruguay. November 2010. Available online: https://www.flow3d.com/wp-content/uploads/2014/08/Vortex-Detection-in-Pump-Sumps-by-Means-of-CFD.pdf (accessed on 20 September 2024).
- Alapfy, B.; Siegfried, T.; Zeiringer, B.; Hayes, D.; Roth, M.; Schwedhelm, H.; Verhelst, P.; Coeck, J.; Rüther, N. Nachhaltige Kleinwasserkraft-Entwicklung in Zentralasien—Hydro4U in der Planungsphase. Wallgau, Germany. 29 June 2023. Available online: https://www.cee.ed.tum.de/wb/veranstaltungen/symposium-wallgau-2023/ (accessed on 10 August 2024).
Simulation | Mesh Configuration (c/f) | Cell Count | Porosity Configuration (β/B) |
---|---|---|---|
M01-mesh01-por01 | 10 cm/5 cm | 659,900 | 1.8/22.5 |
M01-mesh02-por01 | 8 cm/4 cm | 1,283,880 | 1.8/22.5 |
M01-mesh03-por01 | 6 cm/3 cm | 3,033,732 | 1.8/22.5 |
M01-mesh02-por02 | 8 cm/4 cm | 1,283,880 | 0.95/11.875 |
M01-mesh02-por03 | 8 cm/4 cm | 1,283,880 | 0.1/1.25 |
Simulation | Turbine Discharge | Overflow Height at Gate | Discharge Over Gate |
---|---|---|---|
M02-C01-mesh02-por02 | 1.27 m3/s | 7.3 cm | 0.08 m3/s |
M02-C02-mesh02-por02 | 1.5 m3/s | 7.3 cm | 0.08 m3/s |
Simulation | DP01 Flow Depth | DP02 Trash Rack Length | DP03 Gate Overflow Height |
---|---|---|---|
M02-mesh02-por02 | 0.9 m | 2.1 m | 7.3 cm |
M03-C01-mesh02-por02 | 1.35 m | 2.1 m | 7.3 cm |
M03-C01-mesh02-por02 | 0.9 m | 3.15 m | 7.3 cm |
M03-C01-mesh02-por02 | 0.9 m | 2.1 m | 11.0 cm |
Simulation | Computational Time | Head Loss |
---|---|---|
M01-mesh01-por01 | 2:15 h | 4.6 cm |
M01-mesh02-por01 | 6:25 h | 4.4 cm |
M01-mesh03-por01 | 20:34 h | 4.4 cm |
M01-mesh02-por02 | 6:47 h | 4.1 cm |
M01-mesh02-por03 | 8:44 h | 3.6 cm |
Simulation | Standard Deviation | MAE | R2 | NSE |
---|---|---|---|---|
M01-mesh02-por01 | ||||
x-velocity | 0.140 | −0.044 | 0.775 | 0.633 |
y-velocity | 0.096 | −0.014 | 0.903 | 0.900 |
z-velocity | 0.094 | −0.031 | 0.863 | 0.814 |
M01-mesh02-por02 | ||||
x-velocity | 0.127 | −0.031 | 0.818 | 0.707 |
y-velocity | 0.097 | −0.015 | 0.901 | 0.898 |
z-velocity | 0.094 | −0.030 | 0.857 | 0.816 |
M01-mesh02-por03 | ||||
x-velocity | 0.129 | −0.027 | 0.806 | 0.703 |
y-velocity | 0.100 | −0.017 | 0.894 | 0.891 |
z-velocity | 0.098 | −0.029 | 0.829 | 0.804 |
Simulation | Head Loss | vz Mean | vz Min | % of Inlet Area with vz < −0.5 m/s | Vortex Formation Tendency |
---|---|---|---|---|---|
M01-mesh02-por02 | 4.1 | −0.38 | −0.62 | 6% | None |
M02-mesh02-por02 | 7.9 | −0.34 | −0.68 | 14% | Medium |
M03-C01-mesh02-por02 | 5.2 | −0.32 | −0.81 | 7% | Weak |
M03-C01-mesh02-por02 | 7.4 | −0.21 | −0.53 | 1% | Strong |
M03-C01-mesh02-por02 | 8.2 | −0.34 | −0.69 | 14% | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alapfy, B.; Gamarra, N.F.; Rüther, N. Towards Hydraulic Design Optimization of Shaft Hydropower Plants: A 3D-CFD Application Based on Physical Models. Water 2024, 16, 2790. https://doi.org/10.3390/w16192790
Alapfy B, Gamarra NF, Rüther N. Towards Hydraulic Design Optimization of Shaft Hydropower Plants: A 3D-CFD Application Based on Physical Models. Water. 2024; 16(19):2790. https://doi.org/10.3390/w16192790
Chicago/Turabian StyleAlapfy, Bertalan, Nicolas Francisco Gamarra, and Nils Rüther. 2024. "Towards Hydraulic Design Optimization of Shaft Hydropower Plants: A 3D-CFD Application Based on Physical Models" Water 16, no. 19: 2790. https://doi.org/10.3390/w16192790
APA StyleAlapfy, B., Gamarra, N. F., & Rüther, N. (2024). Towards Hydraulic Design Optimization of Shaft Hydropower Plants: A 3D-CFD Application Based on Physical Models. Water, 16(19), 2790. https://doi.org/10.3390/w16192790