Lake Trafford Nutrients Budget and Influxes After Organic Sediment Dredging (South Florida, USA)
Abstract
:1. Introduction
1.1. Historical Background
1.2. Pre-Dredging Nutrient Loading and Sediment Accumulation
1.3. Objectives and Research Hypothesis
2. Material and Methods
2.1. Site Description
2.2. Water Budget
2.3. Nutrient Budget
2.3.1. Nutrient Budget Computation
2.3.2. Lake Trafford Groundwater
2.3.3. Lake Trafford Water
2.3.4. Water from the Five Canals Leading to Lake Trafford
2.3.5. Dry and Wet Deposition
2.3.6. Nutrients Analyses
2.3.7. Nutrient Budget Modeling
2.3.8. Data Handling and Statistics
3. Results
3.1. Water Budget Results
3.2. Nutrient Concentrations Measured in Groundwater
3.3. Nutrients Measured in Surface Water Inflow
3.4. Nutrients Measured in Dry and Wet Deposition
3.5. Water Quality in Lake Trafford—TN, TP, Total Organic Carbon (TOC), pH, Conductivity and Temperature
3.6. Nutrient Budget for Lake Trafford
4. Discussion
4.1. Nutrients in Groundwater Inflow
4.2. Nutrients in Canal Discharge into the Lake
4.3. Nutrients in Dry and Wet Deposition
4.4. Nutrient Loading Compared to the TMDL Study
4.5. In-Lake Processes and the Impact of Dredging of Organic Sediment
4.6. Future Remedial Work Required to Improve Water Quality in Lake Trafford
4.7. Future Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, S.; Lucius, M.A.; Kim, J.-Y.; Everham, E.M.; Dettmar, D.L.; Missimer, T.M. Water Budget for Lake Trafford, a Natural Subtropical Lake in South Florida: An Example of Enhanced Groundwater Influx in a Subtropical Lake Subsequent to Organic Sediment Dredging. Water 2024, 16, 1188. [Google Scholar] [CrossRef]
- Ferlita, J.A. JA Ecological Indicators of Restoration Success: Zooplankton as Indicators of Lake Change in a Dredged Southwest Florida Lake. Master’s Thesis, Florida Gulf Coast University, Fort Myers, FL, USA, 2014. [Google Scholar]
- Ceilley, D.W.; Thomas, S.; Everham, E.M. Lake Trafford Management Action Plan. Lake Trafford Management Action Team; South Florida Water Management District (SFWMD): West Palm Beach, FL, USA, 2013.
- Sutton, D.L.; Portier, K.M. Density of tubers and turions of hydrilla in South Florida. J. Aquat. Plant Manag. 1985, 23, 64–67. [Google Scholar]
- Haller, W.T.; Sutton, D.L. Community structure and competition between Hydrilla and Vallisneria. Hyacinth Control. J. 1975, 13, 48–50. [Google Scholar]
- Canfield, D.; Langeland, K.A.; Linda, S.B.; Haller, W.T. Relations between water transparency and maximum depth of macrophyte colonization in lakes. J. Aquat. Plant Manag. 1985, 23, 25–28. [Google Scholar]
- Søndergaard, M.; Jensen, J.P.; Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 2003, 506, 135–145. [Google Scholar] [CrossRef]
- Scheffer, M.; Hosper, S.H.; Meijer, M.L.; Moss, B.; Jeppesen, E. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 1993, 8, 275–279. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- ART Engineering. Lake Trafford Critical Restoration Project—Aquascan Radar Survey Report; ART Engineering: Tampa, FL, USA, 2004; Available online: https://www.art-engineering.com/Projects/Lake-Trafford-Report.pdf (accessed on 5 November 2024).
- Kang, W.J.; Gilbert, D. TMDL Report: Nutrient, Un-Ionized Ammonia, and DO TMDLs for Lake Trafford (WBID 3259W); Florida Department of Environmental Protection: Tallahassee, FL, USA, 2008.
- Peterson, S.A. Sediment Removal as a Lake Restoration Technique; Office of Water Regulations and Standards, U.S. Environmental Protection Agency: Corvallis, OR, USA, 1981. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=2000I8NB.TXT (accessed on 5 November 2024).
- Moss, B.; Balls, H.; Irvine, K.; Stansfield, J. Restoration of Two Lowland Lakes by Isolation from Nutrient-Rich Water Sources With and Without Removal of Sediment. J. Appl. Ecol. 1986, 23, 391–414. [Google Scholar] [CrossRef]
- Kleeberg, A.; Kohl, J.-G. Assessment of the long-term effectiveness of sediment dredging to reduce benthic phosphorus release in shallow Lake Müggelsee (Germany). Hydrobiologia 1999, 394, 153–161. [Google Scholar] [CrossRef]
- Wu, Z.; Yu, Z.; Sheng, H.; Xu, J.; Han, Y.; Xu, Y.; Feng, N.; Yao, J. Ecological effects of the dredging in the West Lake, Hangzhou. J. Lake Sci. 2008, 20, 277–284. [Google Scholar] [CrossRef]
- Björk, S.; Pokorný, J.; Hauser, V. Restoration of Lakes Through Sediment Removal, with Case Studies from Lakes Trummen, Sweden and Vajgar, Czech Republic. In Restoration of Lakes, Streams, Floodplains, and Bogs in Europe: Principles and Case Studies; Eiseltová, M., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 101–122. ISBN 978-90-481-9265-6. [Google Scholar]
- Dement’ev, V.A. Removal of organic sediments from reservoirs and lakes and their processing. Power Technol. Eng. 2010, 44, 289–292. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Q.; Xu, D.; Lin, J.; Cheng, S.; Wu, Z. Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake. J. Environ. Sci. 2010, 22, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhong, J.; Wang, J.; Zhang, L.; Fan, C. Fifteen-year study of environmental dredging effect on variation of nitrogen and phosphorus exchange across the sediment-water interface of an urban lake. Environ. Pollut. 2016, 219, 639–648. [Google Scholar] [CrossRef]
- Fan, C.; Zhang, L.; Wang, J.; Zheng, C.; Gao, G.; Wang, S. Processes and mechanism of effects of sludge dredging on internal source release in lakes. Chin. Sci. Bull. 2004, 49, 1853–1859. [Google Scholar] [CrossRef]
- Jing, L.; Bai, S.; Li, Y.; Peng, Y.; Wu, C.; Liu, J.; Liu, G.; Xie, Z.; Yu, G. Dredging project caused short-term positive effects on lake ecosystem health: A five-year follow-up study at the integrated lake ecosystem level. Sci. Total Environ. 2019, 686, 753–763. [Google Scholar] [CrossRef]
- Zhong, J.; Fan, C. Advance in the study on the effectiveness and environmental impact of sediment dredging. J. Lake Sci. 2007, 19, 1–10. [Google Scholar]
- Zhong, J.; Wen, S.; Zhang, L.; Wang, J.; Liu, C.; Yu, J.; Zhang, L.; Fan, C. Nitrogen budget at sediment–water interface altered by sediment dredging and settling particles: Benefits and drawbacks in managing eutrophication. J. Hazard. Mater. 2021, 406, 124691. [Google Scholar] [CrossRef]
- Spalding, R.F.; Exner, M.E. Occurrence of Nitrate in Groundwater—A Review. J. Environ. Qual. 1993, 22, 392–402. [Google Scholar] [CrossRef]
- Burkart, M.R.; Simpkins, W.W.; Morrow, A.J.; Gannon, J.M. Occurrence of total dissolved phosphorus in unconsolidated aquifers and aquitards in Iowa. J. Am. Water Resour. Assoc. 2004, 40, 827–834. [Google Scholar] [CrossRef]
- Tomer, M.D.; Schilling, K.E.; Cambardella, C.A.; Jacobson, P.; Drobney, P. Groundwater nutrient concentrations during prairie reconstruction on an Iowa landscape. Agric. Ecosyst. Environ. 2010, 139, 206–213. [Google Scholar] [CrossRef]
- de Wit, M.; Behrendt, H.; Bendoricchio, G.; Bleuten, W.; van Gaans, P. The contribution of agriculture to nutrient pollution in three European rivers, with reference to the European Nitrates Directive. Eur. Water Manag. Online 2002, 19. Available online: https://www.ewa-online.eu/files/downloads/publications/E-Water_Journal/90_2002_02.pdf (accessed on 5 November 2024).
- Everham, E.M. Lake Trafford Limnological and Biological Assessment and Lake Management Coordination. Final Report; Technical Report; South Florida Water Management District: West Palm Beach, FL, USA, 2015.
- Genereux, D.; Bandopadhyay, I. Numerical investigation of lake bed seepage patterns: Effects of porous medium and lake properties. J. Hydrol. 2001, 241, 286–303. [Google Scholar] [CrossRef]
- Wallace, K.M. Watershed Delineation in a Flat Landscape with Competing Topographic and Hydraulic Controls and Its Implications for TMDL and BMAP Development. Master’s Thesis, University of Florida, Gainesville, FL, USA, 2017. [Google Scholar]
- Kirk, J.A.; Wise, W.R.; Delfino, J.J. Water budget and cost-effectiveness analysis of wetland restoration alternatives: A case study of Levy Prairie, Alachua County, Florida. Ecol. Eng. 2004, 22, 43–60. [Google Scholar] [CrossRef]
- Dolan, D.M.; Yui, A.K.; Geist, R.D. Evaluation of River Load Estimation Methods for Total Phosphorus. J. Great Lakes Res. 1981, 7, 207–214. [Google Scholar] [CrossRef]
- Belanger, T.V.; Mikutel, D.F. On the use of seepage meters to estimate groundwater nutrient loading to lakes. J. Am. Water Resour. Assoc. 1985, 21, 265–272. [Google Scholar] [CrossRef]
- Amodio, M.; Catino, S.; Dambruoso, P.R.; de Gennaro, G.; Di Gilio, A.; Giungato, P.; Laiola, E.; Marzocca, A.; Mazzone, A.; Sardaro, A.; et al. Atmospheric Deposition: Sampling Procedures, Analytical Methods, and Main Recent Findings from the Scientific Literature. Adv. Meteorol. 2014, 2014, 161730. [Google Scholar] [CrossRef]
- Anderson, K.A.; Downing, J.A. Dry and wet atmospheric deposition of nitrogen, phosphorus and silicon in an agricultural region. Water Air Soil Pollut. 2006, 176, 351–374. [Google Scholar] [CrossRef]
- Gales, M.E., Jr.; Julian, E.C.; Kroner, R.C. Method for Quantitative Determination of Total Phosphorus in Water. J.-Am. Water Work. Assoc. 1966, 58, 1363–1368. [Google Scholar] [CrossRef]
- Trussell, R.P. The Percent Un-Ionized Ammonia in Aqueous Ammonia Solutions at Different pH Levels and Temperatures. J. Fish. Res. Board. Can. 1972, 29, 1505–1507. [Google Scholar] [CrossRef]
- Belanger, T.V.; Mikutel, D.F.; Churchill, P.A. Groundwater seepage nutrient loading in a Florida Lake. Water Res. 1985, 19, 773–781. [Google Scholar] [CrossRef]
- Harper, H.H. Evaluation of Hydrologic and Nutrient Loadings from Groundwater Seepage to Lake Jesup; Environmental Research & Design, Inc.: Orlando, FL, USA, 2013; Available online: http://erd.org/ERD%20Publications/Eval%20of%20Hydrologic-Nutrient%20Loadings%20from%20Groundwater%20Seepage%20to%20Lake%20Jesup-July%202013.pdf (accessed on 5 November 2024).
- Thomas, S.; Lucius, M. Groundwater seepage nutrient loading in a recently dug wet detention stormwater pond. Fla. Sci. 2016, 79, 132–146. [Google Scholar]
- Keerthan, L.; RamyaPriya, R.; Elango, L. Geogenic and anthropogenic contamination in river water and groundwater of the lower Cauvery Basin, India. Front. Environ. Sci. 2023, 27, 1001052. [Google Scholar] [CrossRef]
- South Florida Water Management District (SFWMD). 2023 South Florida Environmental Report—Volume I: The South Florida Environment; South Florida Water Management District (SFWMD): West Palm Beach, FL, USA, 2023.
- Xia, Y.; Zhang, M.; Tsang, D.C.W.; Geng, N.; Lu, D.; Zhu, L.; Igalavithana, A.D.; Dissanayake, P.D.; Rinklebe, J.; Yang, X.; et al. Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: Current practices and future prospects. Appl. Biol. Chem. 2020, 63, 8. [Google Scholar] [CrossRef]
- Kęsicka, B.; Kozłowski, M.; Stasik, R.; Pińskwar, I. Controlled Drainage Effectiveness in Reducing Nutrient Outflow in Light of Climate Changes. Appl. Sci. 2023, 13, 9077. [Google Scholar] [CrossRef]
- Lintern, A.; McPhillips, L.; Winfrey, B.; Duncan, J.; Grady, C. Best Management Practices for Diffuse Nutrient Pollution: Wicked Problems Across Urban and Agricultural Watersheds. Environ. Sci. Technol. 2020, 54, 9159–9174. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Lovett, G.M.; Baevsky, Y.H. Atmospheric deposition and watershed nitrogen export along an elevational gradient in the Catskill Mountains, New York. Biogeochemistry 2000, 50, 21–43. [Google Scholar] [CrossRef]
- Poor, N.; Pribble, R.; Greening, H. Direct wet and dry deposition of ammonia, nitric acid, ammonium and nitrate to the Tampa Bay Estuary, FL, USA. Atmos. Environ. 2001, 35, 3947–3955. [Google Scholar] [CrossRef]
- Barcan, R.; Kassis, Z.R.; Teaf, C.M.; Danley-Thomson, A.; Covert, D.J.; Missimer, T.M. Dry and Wet Atmospheric Deposition Composition in Southwest Florida: Environmental and Health Implications. Atmosphere 2023, 14, 102. [Google Scholar] [CrossRef]
- Nowell, H.K.; Wirks, C.; Val Martin, M.; van Donkelaar, A.; Martin, R.V.; Uejio, C.K.; Holmes, C.D. Impacts of Sugarcane Fires on Air Quality and Public Health in South Florida. Environ. Health Perspect. 2022, 130, 087004. [Google Scholar] [CrossRef]
- Chen, S.; Chen, L.; Liu, X.; Pan, Y.; Zhou, F.; Guo, J.; Huang, T.; Chen, F.; Shen, Z. Unexpected nitrogen flow and water quality change due to varying atmospheric deposition. J. Hydrol. 2022, 609, 127679. [Google Scholar] [CrossRef]
- Lewandowski, J.; Meinikmann, K.; Krause, S. Groundwater–Surface Water Interactions: Recent Advances and Interdisciplinary Challenges. Water 2020, 12, 296. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Yan, Z.; Chao, C.; Yu, H.; Yu, D.; Liu, C. Effectiveness of dredging on internal phosphorus loading in a typical aquacultural lake. Sci. Total Environ. 2020, 744, 140883. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Li, F. Effects of sediment dredging on freshwater system: A comprehensive review. Environ. Sci. Pollut. Res. 2023, 30, 119612–119626. [Google Scholar] [CrossRef]
- Li, J.; Sellner, K.; Place, A.; Cornwell, J.; Gao, Y. Mitigation of CyanoHABs Using Phoslock(®) to Reduce Water Column Phosphorus and Nutrient Release from Sediment. Int. J. Environ. Res. Public Health 2021, 18, 13360. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Cui, J.; Ding, S.; Gong, M.; Ren, M.; Tsang, D.C.W. Successful control of internal phosphorus loading after sediment dredging for 6 years: A field assessment using high-resolution sampling techniques. Sci. Total Environ. 2018, 616–617, 927–936. [Google Scholar] [CrossRef]
- Yu, J.; Fan, C.; Zhong, J.; Zhang, L.; Zhang, L.; Wang, C.; Yao, X. Effects of sediment dredging on nitrogen cycling in Lake Taihu, China: Insight from mass balance based on a 2-year field study. Environ. Sci. Pollut. Res. 2016, 23, 3871–3883. [Google Scholar] [CrossRef]
Budget Component | Sample Type | TP | SRP | TKN | NOx | NH4 | TOC |
---|---|---|---|---|---|---|---|
Groundwater | Grab (well) | x | x | x | x | x | x |
Canal (flow weighed) | Composite | x | x | x | x | ||
Canal (grab) | Grab | x | x | x | x | x | x |
Rainfall | Composite | x | x | x | |||
Dry deposition | Composite | x | x | x | |||
Lake water | Integrated water column | x | x | x | x | x |
Event | Date Bracket | TN Load in (kg d−1) | TN Load out (kg d−1) | TP Load in (kg d−1) | TP Load out (kg d−1) |
---|---|---|---|---|---|
1 | 1 October 2015–14 October 2015 | 274.44 | −0.10 | 14.91 | −0.01 |
2 | 15 October 2015–26 October 2015 | 261.59 | −0.07 | 12.58 | −0.04 |
3 | 26 October 2015–11 November 2015 | 169.49 | −0.07 | 8.53 | 0.00 |
4 | 12 November 2015–23 November 2015 | 88.97 | −2.93 | 4.33 | −0.18 |
5 | 23 November 2015–7 December 2015 | 74.33 | −0.35 | 5.50 | −0.02 |
6 | 8 December 2015–21 December 2015 | 82.33 | −0.14 | 5.86 | 0.00 |
7 | 22 December 2015–4 January 2016 | 13.95 | −7.00 | 2.28 | −0.56 |
8 | 5 January 2016–18 January 2016 | 13.74 | −2.42 | 0.53 | −0.08 |
9 | 19 January 2016–1 February 2016 | 36.91 | −0.43 | 3.47 | −0.02 |
10 | 2 February 2016–16 February 2016 | 108.51 | −0.06 | 6.17 | −0.25 |
11 | 17 February 2016–1 March 2016 | 28.13 | −1.74 | 1.40 | −0.14 |
12 | 2 March 2016–14 March 2016 | 89.31 | −0.10 | 5.77 | 0.00 |
13 | 15 March 2016–28 March 2016 | 139.27 | −0.07 | 10.75 | −0.01 |
14 | 29 March 2016–11 April 2016 | 103.05 | −1.41 | 6.94 | −0.11 |
15 | 12 April 2016–26 April 2016 | 132.50 | −0.08 | 8.14 | 0.00 |
16 | 27 April 2016–9 May 2016 | 60.10 | −0.16 | 4.06 | −0.01 |
17 | 10 May 2016–23 May 2016 | 187.85 | −0.17 | 9.58 | −0.01 |
18 | 24 May 2016–11 June 2016 | 127.51 | 0.00 | 6.59 | 0.00 |
19 | 12 June 2016–22 June 2016 | 158.28 | −0.06 | 11.22 | 0.00 |
20 | 23 June 2016–6 July 2016 | 42.68 | −1.69 | 1.63 | −0.06 |
21 | 7 July 2016–19 July 2016 | 53.62 | −0.58 | 4.54 | −0.03 |
22 | 20 July 2016–2 August 2016 | 35.48 | −0.64 | 2.84 | −0.55 |
23 | 2 August 2016–16 August 2016 | 104.11 | −0.33 | 8.17 | −0.06 |
24 | 17 August 2016–29 August 2016 | 127.46 | −3.49 | 10.71 | −0.13 |
25 | 30 August 2016–12 September 2016 | 461.50 | −4.23 | 22.76 | −0.12 |
26 | 13 September 2016–26 September 2016 | 179.56 | −1.26 | 11.28 | −0.06 |
27 | 27 September 2016–10 October 2016 | 115.78 | −0.07 | 6.43 | −0.01 |
28 | 11 October 2016–25 October 2016 | 23.06 | −0.77 | 2.38 | −0.03 |
Mean | 117.63 | −1.09 | 7.12 | −0.30 | |
SD | 95.75 | 1.63 | 4.80 | 1.16 |
Canal | TP (mg L−1) | TP Daily Load (kg) | TN (mg L−1) | TN Daily Load (kg) | N:P Ratio |
---|---|---|---|---|---|
1 | 0.28 | 8.92 | 2.07 | 57.06 | 7.3:1 |
2 | 0.19 | 0.40 | 2.82 | 5.13 | 15.1:1 |
3 | 0.13 | −0.01 | 2.23 | −0.23 | 15.1:1 |
4 | 0.14 | 0.56 | 2.47 | 10.35 | 17.7:1 |
5 | 0.09 | 0.45 | 2.05 | 8.99 | 21.9:1 |
Total | 10.32 | 81.31 | 7.9:1 |
N | Lake TN Conc. (mg L−1) | GW in (kg d−1) | GW out (kg d−1) | Canals TN (kg d−1) | Atmospheric Deposition (kg d−1) | Sheet Flow (kg d−1) | In-Lake Processes (kg d−1) |
---|---|---|---|---|---|---|---|
Mean | 2.43 | 117.5 | −1.1 | 81.3 | 41.4 | −105.4 | −61.26 |
Std | 0.64 | 93.7 | 1.6 | 75.1 | 33.4 | 199.9 | 73.5 |
Min | 0.46 | 13.7 | −7.0 | −45.4 | 8.4 | −661.6 | −279.1 |
Max | 3.56 | 461.5 | 0.0 | 426.3 | 167.4 | 1010.6 | 84.2 |
P | Lake TP Conc. (mg L−1) | GW in (kg d−1) | GW out (kg d−1) | Canals TN (kg d−1) | Atmospheric Deposition (kg d−1) | Sheet Flow (kg d−1) | In-Lake Processes (kg d−1) |
Mean | 0.13 | 7.1 | −0.3 | 10.3 | 4.1 | −4.9 | −7.6 |
Std | 0.03 | 4.7 | 1.2 | 14.0 | 2.8 | 16.3 | 9.8 |
Min | 0.07 | 0.5 | −6.2 | −14.3 | 1.1 | −35.0 | −48.2 |
Max | 0.24 | 22.8 | 0.0 | 122.4 | 14.0 | 136.7 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, S.; Lucius, M.A.; Kim, J.-Y.; Everham, E.M., III; Missimer, T.M. Lake Trafford Nutrients Budget and Influxes After Organic Sediment Dredging (South Florida, USA). Water 2024, 16, 3258. https://doi.org/10.3390/w16223258
Thomas S, Lucius MA, Kim J-Y, Everham EM III, Missimer TM. Lake Trafford Nutrients Budget and Influxes After Organic Sediment Dredging (South Florida, USA). Water. 2024; 16(22):3258. https://doi.org/10.3390/w16223258
Chicago/Turabian StyleThomas, Serge, Mark A. Lucius, Jong-Yeop Kim, Edwin M. Everham, III, and Thomas M. Missimer. 2024. "Lake Trafford Nutrients Budget and Influxes After Organic Sediment Dredging (South Florida, USA)" Water 16, no. 22: 3258. https://doi.org/10.3390/w16223258
APA StyleThomas, S., Lucius, M. A., Kim, J. -Y., Everham, E. M., III, & Missimer, T. M. (2024). Lake Trafford Nutrients Budget and Influxes After Organic Sediment Dredging (South Florida, USA). Water, 16(22), 3258. https://doi.org/10.3390/w16223258