Current State of Advances in Quantification and Modeling of Hydrological Droughts
Abstract
:1. Introduction to Hydrological Droughts
1.1. Time Scales of Hydrological Droughts
1.2. Parameters of Hydrological Droughts
1.3. A Note on the Choice of Truncation Level for Identification of Hydrological Droughts
1.4. Indices of Hydrological Droughts
2. Hydrological Drought Modeling—Relevant Preliminaries
2.1. Identification of the Probability Distribution of Streamflow Sequence as a Drought Variable
2.2. Identification of Dependence Structure in the Streamflow Sequence
2.3. A Note on the Theory of Runs as Used in Drought Modeling
3. Major Modeling Methodologies
3.1. Empirical or Frequency Analysis of the Historical Drought Data
3.2. Experimental or Time Series Simulation by Monte Carlo Method
3.3. Probability-Based Analytical Methodologies
3.3.1. Extreme Number Theorem-Based Method
3.3.2. Markov Chain-Based Method
3.3.3. Copula-Based Method
3.3.4. Entropy-Based Method
3.3.5. Wavelet Transform (WT) Method
3.4. Machine Learning-Based Methods
3.4.1. ANN-Based Method
3.4.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
3.4.3. Support Vector Machine
3.4.4. Data Sources, Data Pre-Processing Techniques, and Validation Methods for Assessing the Accuracy and Reliability of Models
4. Forecasting of Hydrological Droughts
5. Challenges in Hydrological Drought Research—Some Future Directions
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yevjevich, V. An Objective Approach to Definitions and Investigations of Continental Hydrologic Drought; Hydrology Paper 23; Colorado State University: Fort Collins, CO, USA, 1967. [Google Scholar]
- Tallaksen, L.; van Lanen, H. Hydrological drought. In Processes and Estimation Methods for Streamflow and Groundwater; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Millan, J.; Yevjevich, V. Probabilities of Observed Droughts; Hydrology Paper 50; Colorado State University: Fort Collins, CO, USA, 1971. [Google Scholar]
- Salazar, P.G.; Yevjevich, V. Analysis of Drought Characteristics by the Theory of Runs; Hydrology Paper 80; Colorado State University: Fort Collins, CO, USA, 1975. [Google Scholar]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G., Jr. On identification of droughts. Water Resour. Res. 1980, 16, 289–296. [Google Scholar] [CrossRef]
- Sen, Z. Statistical analysis of hydrological critical droughts. J. Hydraul. Eng. 1980, 106, 99–115. [Google Scholar]
- Guven, O. A simplified semi-empirical approach to the probability of extreme hydrological droughts. Water Resour. Res. 1983, 19, 441–453. [Google Scholar] [CrossRef]
- Yevjevich, V. Methods for determining statistical properties of droughts. In Coping with Droughts; Yevjevich, V., da Cunha, L., Vlachos, E., Eds.; Water Resources Publications: Littleton, CO, USA, 1983; pp. 22–43. [Google Scholar]
- Lee, K.S.; Sadeghipour, J.; Dracup, J.A. An approach for frequency analysis of multiyear drought durations. Water Resour. Res. 1986, 22, 655–662. [Google Scholar] [CrossRef]
- Horn, D.R. Characteristics and spatial variability of droughts in Idaho. J. Irrig. Drain. Eng. 1989, 115, 111–124. [Google Scholar] [CrossRef]
- Fernandez, B.; Sales, J.D. Return period and risk of hydrologic events. II. applications. J. Hydrol. Eng. 1999, 4, 308–316. [Google Scholar] [CrossRef]
- Sharma, T.C. Drought parameters in relation to truncation level. Hydrol. Proc. 2000, 14, 1279–1288. [Google Scholar] [CrossRef]
- Salas, J.; Fu, C.; Cancelliere, A.; Dustin, D.; Bode, D.; Pineda, A.; Vincent, E. Characterizing the severity and risk of droughts of the Poudre River, Colorado. J. Water Resour. Plan. Manag. 2005, 131, 383–393. [Google Scholar] [CrossRef]
- Panu, U.S.; Sharma, T.C. Analysis of annual hydrologic droughts: A case of the northwest Ontario, Canada. Hydrol. Sci. J. 2009, 54, 29–42. [Google Scholar] [CrossRef]
- Akyuz, D.E.; Bayazit, M.; Onoz, B. Markov chain models for hydrological drought characteristics. J. Hydrometeorl. 2012, 13, 298–309. [Google Scholar] [CrossRef]
- Sen, Z. Applied Drought Modelling, Prediction and Mitigation; Elsevier Inc.: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Burn, D.H.; Wychreschul, J.; Bonin, D.V. An integrated approach to the estimation of streamflow drought quantiles. Hydrol. Sci. J. 2004, 49, 1011–1024. [Google Scholar] [CrossRef]
- Shiau, J.T.; Feng, S.; Nadarajah, S. Assessment of hydrological droughts for the Yellow River China using copulas. Hydrol. Proc. 2007, 21, 2157–2163. [Google Scholar] [CrossRef]
- Lopez-Moreno, J.I.; Vicente-Serrano, S.M.; Beguria, S.; Garcia-Ruiz, J.M.; Portela, M.M.; Almeida, A.B. Dam effects on drought magnitude and duration in a transboundary basin: The lower River Tagus, Spain and Portugal. Water Resour. Res. 2009, 45, W02405. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Vicente-Serrano, S.M.; Gonzalez-Hidalgo, J.C.; Lopez-Moreno, J.I.; Cortesi, N. Hydrological drought response to meteorological drought in the Iberian Peninsula. Clim. Res. 2013, 58, 117–131. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Lopez-Moreno, J.I.; Beguria, S.; Lorenzo-Lacruz, J.; AzorinMolin, C.; Moran-Tejeda, E. Accurate computation of streamflow drought index. J. Hydrol. Eng. 2012, 17, 318–322. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Dominguez-Castro, D.C.; McVicar, T.R.; Thomas-Burguera, M.; Pena-Gallardo, M.; Noguera, M.; Lopez-Moreno, J.I.; Pena, D.; Kenaway, A.E. Global characterization of hydrological and meteorological droughts under future climate change: The importance of time scale, vegetation-CO2 feedbacks and change to distribution functions. Int. J. Clim. 2020, 40, 2557–2567. [Google Scholar] [CrossRef]
- Sung, J.H.; Chung, E.-S. Development of streamflow drought severity-duration-frequency curves using the threshold level method. Hydrol. Earth Syst. Sci. 2014, 18, 3341–3351. [Google Scholar] [CrossRef]
- Sharma, T.C.; Panu, U.S. Modeling of hydrological droughts: Experiences on Canadian streamflows. J. Hydrol. Reg. Stud. 2014, 1, 92–106. [Google Scholar] [CrossRef]
- Sharma, T.C.; Panu, U.S. A drought magnitude-based method for reservoir sizing: A case of annual and monthly flows from Canadian rivers. J. Hydrol. Reg. Stud. 2021, 36, 100829. [Google Scholar] [CrossRef]
- Rad, A.M.; Ghahraman, B.; Khalili, D.; Ghabremani, Z.; Ardakani, S.A. Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning in semi-arid regions. Adv. Water Resour. 2017, 107, 336–353. [Google Scholar] [CrossRef]
- Wu, J.; Chen, X.; Love, C.A.; Yao, H.; Chen, X.; AghaKouchak, A. Determination of water required to recover from hydrological drought: Perspective for drought propagation and non-standardized indices. J. Hydrol. 2020, 590, 125227. [Google Scholar] [CrossRef]
- Zalokar, L.; Kobold, M. Investigation on spatial and temporal variability of hydrological droughts in Slovenia using SSI. Water 2021, 13, 3197. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; dewit, J.P.; Ncongwane, K.P.; Murambadoro, M.; Barasa, P.M.; Adelo, A.M. Hydrological drought assessment based on the standardized streamflow index: A case study of the three cape provinces of South Africa. Water 2021, 13, 3498. [Google Scholar] [CrossRef]
- Sharma, T.C.; Panu, U.S. A procedure for estimating drought duration and magnitude at a uniform cutoff of streamflow: A case of weekly flows from Canadian rivers. Hydrology 2022, 9, 109. [Google Scholar] [CrossRef]
- Gurrapu, S.; Sauchyan, D.J.; Hodder, K.R. Assessment of hydrological drought risk in Calgary, Canada using weekly river flows of the past millennium. J. Water Clim. Chang. 2022, 13, 1920–1935. [Google Scholar] [CrossRef]
- Zelenhasic, E.; Salvai, A. A method of streamflow drought analysis. Water Resour. Res. 1987, 23, 156–168. [Google Scholar] [CrossRef]
- Tallaksen, L.M.; Madsen, S.; Clausen, B. On definition and modelling of streamflow deficits and volume. Hydrol. Sci. J. 1997, 42, 15–33. [Google Scholar] [CrossRef]
- Kjeldsen, T.R.; Lundroff, A.; Rosbjberg, D. Use of two-component exponential distribution in partial duration modelling of hydrological droughts in Zimbabwean rivers. Hydrol. Sci. J. 2000, 45, 285–298. [Google Scholar] [CrossRef]
- Tate, E.I.; Freeman, S.N. Three modelling approaches for seasonal streamflow droughts in southern Africa: The use of censored data. Hydrol. Sci. J. 2000, 45, 27–42. [Google Scholar] [CrossRef]
- Demuth, S.; Stahl, K. (Eds.) ARIDE-Assessment of the Regional Impact of Droughts in Europe; A Final Report; Institute of Hydrology, University of Freiburg: Freiburg im Breisgau, Germany, 2001. [Google Scholar]
- Zaidman, M.D.; Rees, H.G.; Young, A.R. Spatio-temporal development of streamflow droughts in northwestern Europe. Hydrol. Earth Syst. Sci. 2002, 6, 733–751. [Google Scholar] [CrossRef]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Demuth, S. A global evaluation of streamflow drought characteristics. Hydrol. Earth Syst. Sci. 2006, 10, 532–552. [Google Scholar] [CrossRef]
- Fleig, A.K.; Tallaksen, L.M.; Hisdal, H.; Hannah, D.M. Regional hydrological drought in north-western Europe: Linking a new regional drought area index with the weather type. Hydrol. Proc. 2011, 25, 1163–1179. [Google Scholar] [CrossRef]
- van Huijgevoort, M.H.J.; Hazenburg, P.; van Lanen, H.A.J.; Uijlenhoet, R. A generic method for hydrological drought identification across different climate regions. Hydrol. Earth Syst. Sci. 2012, 16, 2437–2451. [Google Scholar] [CrossRef]
- van Loon, A.F.; Laaha, G. Hydrological drought severity explained by climate and catchment characteristics. J. Hydrol. 2015, 26, 3–14. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesen, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- McKee, T.B.; Doesen, N.J.; Kleist, J. Drought monitoring with multiple time scales. In Proceedings of the 9th conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995; pp. 233–236. [Google Scholar]
- Heim, H.M., Jr. A review of twentieth-century drought indices used in the United States. Bul. Am. Meteorol. Soc. 2002, 83, 1149–1165. [Google Scholar] [CrossRef]
- Timilsena, J.; Piechota, T.C.; Hidalgo, H.; Tootle, G. Five hundred years of hydrological drought in the upper Colorado River basin. J. Am. Water Resour. Asso. 2007, 43, 798–812. [Google Scholar] [CrossRef]
- Palmer, W.C. Meteorological Droughts; Paper No. 45; Weather Bureau, U.S. Dept. of Commerce: Washington, DC, USA, 1965; pp. 1–58. [Google Scholar]
- McMahon, T.A.; Adeloye, A.J. Water Resources Yield; Water Resources Publications: Littleton, CO, USA, 2005. [Google Scholar]
- Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm. J. Am. Water Resour. Asso. 1999, 30, 311–322. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs); Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2: Geneva, Switzerland, 2016. [Google Scholar]
- Shafer, B.A.; Dezman, E.A. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in the snowpack runoff area. In Proceedings of the 50th Annual Western Snow Conference; Colorado State University: Fort Collins, CO, USA, 1982; pp. 164–175. [Google Scholar]
- Dosken, N.J.; Garen, D. Drought monitoring in the western United States using a surface water supply index. In Proceedings of the Seventh Conference on Applied Climatology, Salt Lake City, UT, USA, 10–13 September 1991; American Meteorological Society: Boston, MA, USA, 1991; pp. 266–269. [Google Scholar]
- Garen, D.C. Revised surface water supply index for the western United States. J. Water Resour. Plan. Manag. 1993, 119, 437–454. [Google Scholar] [CrossRef]
- Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of indices. Bul. Am. Meteorol. Soc. 2002, 83, 1167–1180. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.F. Use of standardized runoff index for characterizing hydrologic drought. Geophys. Res. Let. 2008, 35, L02405. [Google Scholar] [CrossRef]
- Nalbantis, I.; Tsakris, G. Assessment of hydrological drought revisited. Water Resour. Manag. 2009, 23, 881–897. [Google Scholar] [CrossRef]
- Tabari, H.; Nikbakht, J.; Talaee, P.H. Hydrological drought assessment in northeastern Iran based on streamflow drought index (SDI). Water Resour. Manag. 2013, 27, 137–151. [Google Scholar] [CrossRef]
- Yeh, C.F.; Wang, J.; Yeh, H.F.; Lee, C.H. SDI and Markov chain for regional drought characteristics. Sustainability 2015, 7, 10789–10808. [Google Scholar] [CrossRef]
- Tijdeman, E.; Stahl, K.; Tallaksen, L.M. Drought characteristics derived based on the standardized streamflow index: Large sample comparison for parametric and non-parametric methods. Water Resour. Res. 2020, 5610, 20119WR026315. [Google Scholar] [CrossRef]
- Teutschbein, C.; Montano, B.Q.; Todorovic, A.; Grabs, T. Streamflow droughts in Sweden: Spatiotemporal patterns emerging from six decades of observations. J. Hydrol. Reg. Stud. 2022, 42, 101171. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis, Forecasting and Control, 5th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Loucks, D.P.; Beck, E.; Stedinger, J.R.; Dijkman, J.P.M.; Villars, M.T. Water Resources Systems Planning and Management: An Introduction to Methods, Models, and Application; UNESCO: London, UK, 2005. [Google Scholar]
- Fiering, M.B. Streamflow Synthesis; Harvard University Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Ochoa-Riveria, J.C.; Garcia-bartal, R.; Andreau, J. Multivariate synthetic streamflow generation using a hybrid model based on artificial neural network. Hydrol. Earth Syst. Sci. 2002, 6, 641–654. [Google Scholar] [CrossRef]
- Ahmad, J.A.; Sarma, A.K. Artificial neural network model for synthetic streamflow generation. Water Resour. Manag. 2007, 21, 1015–1029. [Google Scholar] [CrossRef]
- Prairie, J.; Nowak, K.; Rajagopalan, B.; Lall, U.; Fulp, T. A stochastic nonparametric approach for streamflow generation combining observational and paleo-constructed data. Water Resour. Res. 2008, 44, w06423. [Google Scholar] [CrossRef]
- Salas, J.D.; Lee, T. Non-parametric simulation of single site seasonal streamflows. J. Hydrol. Eng. 2010, 15, 284–296. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Single site monthly streamflow simulation using entropy theory. Water Resour. Res. 2011, 47, W09528. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Entropy-copula method for single site monthly streamflow simulation. Water Resour. Res. 2012, 48, 1–8. [Google Scholar] [CrossRef]
- Chung, C.; Salas, J.D. Drought occurrence probabilities and risk of dependent hydrologic processes. J. Hydrol. Eng. 2000, 5, 259–268. [Google Scholar] [CrossRef]
- Loaiciga, H.A. On the probability of droughts: The compound renewal model. Water Resour. Res. 2005, 41, 41W01009. [Google Scholar] [CrossRef]
- Sen, Z. Critical drought analysis by second-order Markov chain. J. Hydrol. 1990, 120, 183–202. [Google Scholar] [CrossRef]
- Yang, J.; Wang, Y.; Chang, J.; Huang, Q. Integrated assessment for hydro-meteorological drought based on Markov chain model. Nat. Hazard 2016, 84, 1137–1160. [Google Scholar] [CrossRef]
- Paulo, A.A.; Ferreira, E.; Coelho, C.; Pereira, L.S. Drought class transition analysis through Markov and log-linear models, an approach to early warning. Agric. Water Manag. 2005, 17, 59–81. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Hu, R. Hydrological drought class transition using SPI and SRI time series by log-linear regression. Water Resour. Manag. 2015, 30, 669–684. [Google Scholar] [CrossRef]
- Kuo, S.C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134. [Google Scholar] [CrossRef]
- Song, S.; Singh, V.P. Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stoch. Environ. Res. Risk Assess. 2010, 24, 783–805. [Google Scholar] [CrossRef]
- Lu, C.; Singh, V.P.; Guo, S.; Mishra, A.K.; Guo, J. Drought analysis using Copula. J. Hydrol. Eng. 2012, 18, 797–808. [Google Scholar] [CrossRef]
- Borgomeo, E.; Pflug, G.; Hall, J.W.; Hochrainer-Stigler, S. Assessing water resources system vulnerability to understand hydrological drought using copulas to characterize drought duration and deficit. Water Resour. Res. 2015, 51, 8927–8948. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, M.; Singh, V.P.; Chen, X. Copula based risk evaluation of hydrologic droughts in the East River basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 1397–1406. [Google Scholar] [CrossRef]
- Dodangeh, E.; Shahedi, K.; Shiau, J.T.; Mirakbari, M. Spatial hydrological characteristics in Karkheh basin, southwest Iran using copula. J. Earth Syst. Sci. 2017, 126, 80. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. Drought modelling—A review. J. Hydrol. 2011, 403, 157–175. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Entropy-based method for bivariate drought analysis. J. Hydrol. Eng. 2013, 18, 780–786. [Google Scholar] [CrossRef]
- Bacanli, U.G.; Baran, T.; Dikbas, F. Identification of drought parameters through the use of entropy. Int. J. Res. Earth Environ. Sci. 2016, 4, 1–13. [Google Scholar]
- Zuo, D.; Hao, W.; Hu, J. An entropy-based investigation into bivariate drought analysis in China. Water 2017, 9, 632. [Google Scholar] [CrossRef]
- Yang, X.; Li, P.; Huang, P.H. A maximum entropy copula-based frequency analysis method for assessing bivariate drought risk: A case study of Kaidu River Basin. Water Clim. Chang. 2022, 13, 175–189. [Google Scholar] [CrossRef]
- AghaKouchak, A. Entropy-copula in hydrology and climatology. J. Hydromet. 2014, 15, 2176–2189. [Google Scholar] [CrossRef]
- Ozger, M.; Mishra, A.K.; Singh, V.P. Long lead time drought forecasting using a wavelet and fuzzy logic combination model: A case study in Texas. J. Hydromet. 2012, 13, 284–297. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J.; Khalil, B.; Ozga-zielinski, B. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet network and wavelet support vector regression models. J. Hydrol. 2014, 508, 418–429. [Google Scholar] [CrossRef]
- Das, P.; Naganna, S.R.; Deka, P.S.; Puspraj, J. Hybrid wavelet packet machine learning approaches for drought modelling. Environ. Earth Sci. 2020, 79, 221. [Google Scholar] [CrossRef]
- Katipoglu, O.K. Prediction of streamflow index for short-term hydrological drought in semi-arid Yesilirmak basin using wavelet transform and artificial intelligence techniques. Sustainibility 2023, 15, 1109. [Google Scholar] [CrossRef]
- Shamshirband, S.; Hashemi, S.; Salimi, H.; Samadianfard, S.; Asadi, E.; Shadkarni, S.; Kargar, K.; Mosavi, A.; Nabipour, N.; Chau, K.-W. Predicting standardized streamflow index for hydrological drought using machine learning model. Eng. Appl. Comput. Fluid Mech. 2020, 14, 339–350. [Google Scholar] [CrossRef]
- Nandgude, N.; Singh, T.P.; Nandgude, S.; Tiwari, M. Drought prediction: A comprehensive review of different drought prediction models and adopted technologies. Sustainability 2023, 15, 11684. [Google Scholar] [CrossRef]
- Shin, H.; Salas, J.D. Regional drought analysis based on neural network. J. Hydrol. Eng. 2000, 5, 145–155. [Google Scholar] [CrossRef]
- Morid, S.; Smakhtin, V.; Bagherzadeh, K. Drought forecasting using artificial neural networks and time series of drought indices. Int. J. Clim. 2007, 27, 2103–2111. [Google Scholar] [CrossRef]
- Rezaeianzadeh, M.; Stein, A.; Cox, J.P. Drought forecasting using Markov chain model and artificial neural networks. Water Resour. Manag. 2016, 30, 2245–2259. [Google Scholar] [CrossRef]
- Fung, K.F.; Huang, Y.F.; Kao, C.H.; Soh, Y.W. Drought forecasting: A review of modelling approaches. J. Water Clim. Chang. 2020, 11, 3. [Google Scholar] [CrossRef]
- Bacanli, U.G.; Firat, M.; Dikbas, F. Adaptive neuro-fuzzy inference system for drought forecasting. Stoch. Environ. Res. Risk Assess. 2009, 23, 1143–1154. [Google Scholar] [CrossRef]
- Jahanzaib, M.; Idrees, M.B.; Kim, D.; Kim, T.-W. Comprehensive evaluation of machine learning techniques for hydrological drought forecasting. J. Irrig. Drain. Eng. 2021, 147, 04021022. [Google Scholar] [CrossRef]
- Achite, M.; Jehanzaib, M.; Elashaboury, N.; Kim, T.-W. Evaluation of machine learning techniques for hydrological drought modelling: A case study of the Wadi Ouahrane basin in Algeria. Water 2022, 14, 431. [Google Scholar] [CrossRef]
- Liang, Z.; Su, X.; Feng, K. Drought propagation and construction of a comprehensive drought index based on the Soil and Water Assessment Tool (SWAT) and empirical Kendall distribution function (Kc’): A case study for the Jinta River basin in north-eastern China. Nat. Hazards Earth Syst. Sci. 2021, 21, 1323–1335. [Google Scholar] [CrossRef]
- Alwasi, M.A.; Zubaidi, S.L.; Al-Bdairi, N.B.; Al-Ansari, N.; Hasim, K. Drought forecasting a review and assessment of the hybrid techniques and data pre-processing. Hydrology 2022, 9, 115. [Google Scholar] [CrossRef]
- Sundararajan, K.; Garg, L.; Srinivasan, K.; Bashir, A.K.; Kaliappan, J.; Ganapathy, G.P.; Selvaraj, S.K.; Thiruvadi, M. A contemporary review on drought modelling using machine learning approaches. Comput. Model. Eng. Sci. 2021, 128, 447–487. [Google Scholar] [CrossRef]
- Modarres, R. Streamflow drought time series forecasting. Stoch. Environ. Res. Risk Assess. 2007, 21, 223–233. [Google Scholar] [CrossRef]
- Cordery, I.; McCall, M.A. A model for forecasting drought from teleconnections. Water Resour. Res. 2000, 36, 763–768. [Google Scholar] [CrossRef]
- Pichota, T.C.; Dracup, J.A. Drought and regional hydrologic variation in the United States: Association with the El-Nino-Southern Oscillation. Water Resour. Res. 1996, 32, 1359–1373. [Google Scholar] [CrossRef]
- Pongracz, R.; Bogardi, I.; Duckstein, L. Climatic forcing of droughts: A central European example. Hydrol. Sci. J. 2003, 48, 39–50. [Google Scholar] [CrossRef]
- Bonsal, D.R.; Wheaton, E.L.; Chipangi, A.C.; Lin, C.; Sauchyn, D.J.; Lei, W. Drought research in Canada: A review. Atmosphere-Ocean 2011, 49, 303–319. [Google Scholar] [CrossRef]
- Hosseinzadeh Talee, P.; Tabari, H.; Ardakani, S.A. Hydrological drought in the west of Iran and possible association with large-scale atmospheric circulation patterns. Hydrol. Proc. 2014, 28, 763–773. [Google Scholar] [CrossRef]
- Abdelkander, M.; Yerddelen, C. Hydrological drought variability and its teleconnections with climate indices. J. Hydrol. 2022, 605, 127290. [Google Scholar] [CrossRef]
- Harpold, A.; Dettinger, M.; Rajagopal, S. Defining snow drought and why it matters. Eos Trans. Amer. Geophys. Union 2017, 98, 15–17. [Google Scholar] [CrossRef]
- Saavedra, F.; Musolff, A.; Freyberg, J.A.; Merz, R.; Knoller, K.; Muller, C.; Brunner, M.; Tarasova, L. Winter post-droughts amplify extreme concentrations in German rivers. Environ. Res. Lett. 2024, 19, 024007. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought: A Global Assessment; Routledge: London, UK, 2000; Volume 1. [Google Scholar]
- Panu, U.S.; Sharma, T.C. Challenges in drought research: Some perspectives and future directions. Hydrol. Sci. J. 2002, 47, S19–S30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, T.C.; Panu, U.S. Current State of Advances in Quantification and Modeling of Hydrological Droughts. Water 2024, 16, 729. https://doi.org/10.3390/w16050729
Sharma TC, Panu US. Current State of Advances in Quantification and Modeling of Hydrological Droughts. Water. 2024; 16(5):729. https://doi.org/10.3390/w16050729
Chicago/Turabian StyleSharma, Tribeni C., and Umed S. Panu. 2024. "Current State of Advances in Quantification and Modeling of Hydrological Droughts" Water 16, no. 5: 729. https://doi.org/10.3390/w16050729
APA StyleSharma, T. C., & Panu, U. S. (2024). Current State of Advances in Quantification and Modeling of Hydrological Droughts. Water, 16(5), 729. https://doi.org/10.3390/w16050729