The objective of this study was to investigate the application of constructed wetlands as a mean to manage olive mill wastewater (OMW). Two free water surface (FWS) constructed wetlands, one without (CW1) and one with effluent recirculation (CW2), were operated for a two-year
[...] Read more.
The objective of this study was to investigate the application of constructed wetlands as a mean to manage olive mill wastewater (OMW). Two free water surface (FWS) constructed wetlands, one without (CW1) and one with effluent recirculation (CW2), were operated for a two-year period with diluted OMW (1:10) and evaluated in terms of the removal of COD, TSS, TKN, NH
4+-N, NO
3−-N, TP and total phenols. The organic loading rate of CWs was adjusted to 925 kg BOD/ha·d. In CW1 the removal efficiency averaged 80%, 83%, 78%, 80%, and 74% for COD, TSS, TKN, TP, and total phenols, respectively, during the operation period. Effluent recirculation further improved the treatment efficiency which approached 90%, 98%, 87%, 85%, and 87% for COD, TSS, TKN, TP, and total phenols, respectively. Constructed wetlands also showed high removal efficiency for NH
4+-N. Nitrate concentration maintained low in both CWs basins, probably due to the prevalence of high denitrification rates that efficiently removed the NO
3--N produced by NH
4+-N oxidation. Despite the increased removal percentages, pollutant concentration in effluent exceeded the allowable limits for discharge in water bodies, suggesting that additional practices, including enhanced pre-application treatment and/or higher dilution rates, are required to make this practice effective for OMW management.
Full article