Hedgerows and Enclosures in Rural Areas: Traditional vs. Modern Land Use in Mediterranean Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Defining Hedgerow and Enclosures
2.2.2. Photointerpretation, GIS Integration and Land Use Change
2.2.3. Kernel Density Estimation (kde)
3. Results
3.1. 70 Years of Changes in Land Use
3.2. Transformation Dynamics of Land Parcels Taking into Consideration Their Configuration and Density
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mosquera-Losada, M.R.; McAdam, J.H.; Romero-Franco, R.; Santiago-Freijanes, J.J.; Rigueiro-Rodróguez, A. Definitions and components of agroforestry practices in Europe. In Agroforestry in Europe; Rigueiro-Rodríguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 3–19. [Google Scholar]
- Plieninger, T.; Munoz-Rojas, J.; Buck, L.E.; Scherr, S.J. Agroforestry for sustainable landscape management. Sustain. Sci. 2020, 15, 1255–1266. [Google Scholar] [CrossRef]
- Flinzberger, L.; Zinngrebe, Y.; Plieninger, T. Labelling in Mediterranean agroforestry landscapes: A Delphi study on relevant sustainability indicators. Sustain. Sci. 2020, 15, 1369–1382. [Google Scholar] [CrossRef] [Green Version]
- Centeri, C.; Renes, H.; Roth, M.; Kruse, A.; Eiter, S.; Kapfer, J.; Slámová, M. Wooded grasslands as part of the European agricultural heritage. In Biocultural Diversity in Europe. Environmental History; Agnoletti, M., Emanueli, F., Eds.; Springer: Cham, Switzerland, 2016; Volume 5, pp. 75–103. [Google Scholar]
- Rois-Díaz, M.; Mosquera-Losada, R.; Rigueiro-Rodríguez, A. Biodiversity Indicators on Silvopastoralism across Europe; EFI Technical Report 21; European Forest Institute: Joensuu, Finland, 2006; 66p. [Google Scholar]
- Baudry, J.; Bunce, R.G.H.; Burel, F. Hedgerows: An international perspective on their origin, function and management. J. Environ. Manag. 2000, 60, 7–22. [Google Scholar] [CrossRef]
- Van der Zanden, E.H.; Verburg, P.H.; Muncher, C.A. Modelling the spatial distribution of linear landscape elements in Europe. Ecol. Indic. 2013, 27, 125–136. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Baudry, J. Hedgerows and hedgerow networks in Landscape Ecology. Environ. Manag. 1984, 8, 499–510. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Maudsley, M.J. A review of the ecology and conservation of hedgerow invertebrates in Britain. J. Environ. Manag. 2000, 60, 65–76. [Google Scholar] [CrossRef]
- Burel, F.; Baudry, J. Social, aesthetic and ecological aspects of hedgerows in rural landscapes as a framework for greenways. Landsc. Urban. Plan. 1995, 33, 327–340. [Google Scholar] [CrossRef]
- Antrop, M. Why landscapes of the past are important for the future. Landsc. Urban. Plan. 2005, 70, 21–34. [Google Scholar] [CrossRef]
- Sanz Herráiz, C.; López Estébanez, N.; Molina Holgado, P. Los campos cercados de las depresiones y piedemontes de las Sierras de Guadarrama y Somosierra (Sistema Central). In Proceedings of the Comunicaciones/III Congreso Español de Biogeografía, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Urdaibai, Spain, 20–24 September 2006; pp. 419–426. [Google Scholar]
- Sanz Herráiz, C.; Molina Holgado, P.; López Estébanez, N. Patrimonio cultural y medio ambiental en paisajes rurales. In XV Coloquio de Geografía Rural. Geografía y Desarrollo Rural. Territorio, Paisaje y Patrimonio Rural; Leco, F., Pérez, A., Mateos, A.B., Eds.; Universidad de Extremadura-Servicio de Publicaciones: Cáceres, Spain, 2010; pp. 585–597. [Google Scholar]
- Gomez-Mediavilla, G.; López-Estébanez, N.; Allende Álvarez, F. Las fresnedas trasmochadas del piedemonte del Sistema Central en Madrid (España): Cambios y usos actuals. Estud. Rural. 2016, 6, 32–47. [Google Scholar]
- Altieri, M.A. Biodiversity and Pest Management in Agroecosystems; Haworth Press: New York, NY, USA, 1994; 185p. [Google Scholar]
- Harvey, C.A.; Villanueva, C.; Villacis, J.; Chacón, M.; Muñoz, D.; López, M.; Ibrahim, M.; Gomez, R.; Taylor, R.; Martínez, J.; et al. Contribución de las cercas vivas a la productividad e integridad ecológica de los paisajes agrícolas en América Central. Agroforestería Am. 2003, 10, 30–39. [Google Scholar]
- Useche Rodriguez, D.C. Diseño de Redes Ecológicas de Conectividad Para la Conservación y Restauración del Paisaje en Nicaragua, Centroamérica. Ph.D. Thesis, Tropical Agricultural Research and Higher Education Center, Turrialba, Costa Rica, 2006. [Google Scholar]
- Berninger, F.; Salas, E. Biomass dynamics of Erythrina lanceolada as influenced by shoot-pruning intensity in Costa Rica. Agrofor. Syst. 2003, 57, 19–29. [Google Scholar]
- Hinsley, S.A.; Bellamy, P.E. The influence of hedge structure, management and landscape context on the value of hedgerows to birds: A review. J. Environ. Manag. 2000, 60, 33–49. [Google Scholar] [CrossRef]
- Allende Álvarez, F.; Gomez-Mediavilla, G.; López-Estébanez, N. Environmental, demographic, and policy drivers in the conservation of mediterranean hedgerow landscape (Spain). Land Use Policy. in press.
- Riesco Chueca, P. Formas del parcelario: Su huella en la toponimia menor. Ería: Rev. Cuatrimest. De Geogr. 2014, 94, 183–205. [Google Scholar]
- Fernández García, F. La representación gráfica de los paiajes rurales: Cuestiones de método. Ería Rev. Cuatrimest. Geogr. 2010, 83, 237–259. [Google Scholar]
- Skaloš, J.; Engstová, B. Methodology for mapping non-forest wood elements using historic cadastral maps and aerial photographs as a basis for management. J. Environ. Manag. 2010, 91, 831–843. [Google Scholar] [CrossRef]
- Šťastná, M.; Vaishar, A.; Vavrouchová, H.; Ševelová, M.; Kozlovská, S.; Doskočilová, V.; Lincová, H. Changes of a rural landscape in Czech areas of different types. Eur. Countrys. 2015, 7, 111–133. [Google Scholar] [CrossRef] [Green Version]
- Lausch, A.; Blaschke, T.; Haasec, D.; Herzog, F.; Syrbee, R.; Tischendorff, L.; Walz, U. Understanding and quantifying landscape structure—A review on relevant process characteristics, data models and landscape metrics. Ecol. Model. 2015, 295, 31–41. [Google Scholar] [CrossRef]
- AEMET. Available online: https://datosclima.es/Aemethistorico (accessed on 5 May 2020).
- Spain MDE from USGS Shuttle Radar Topography. 2004. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects (accessed on 5 October 2020).
- National Geographic Institute 1:200.000. Archive of Topographic Info. MTN200 Section. Available online: http://www.ign.es/csw-inspire/srv/eng/main.home (accessed on 5 October 2020).
- Spanish National Geographic Institute (IGN). National Air Orthophotography Programme (PNOA). PNOA Section. Available online: http://www.ign.es/csw-inspire/srv/eng/main.home (accessed on 20 October 2020).
- Spanish National Geographic Institute (IGN). Archive of Historical Air Photography. Historical Orthophotography Section. Available online: http://www.ign.es/csw-inspire/srv/eng/main.home (accessed on 20 October 2020).
- Spanish Rustic Cadastre. Available online: http://ovc.catastro.meh.es/Cartografia/WMS (accessed on 30 September 2020).
- European Space Agency. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 10 June 2018).
- Allende Álvarez, F.; Gomez-Mediavilla, G.; López-Estébanez, N. Classification of Mediterranean Hedgerows: A methodological approximation. Methods. in press.
- Dayyani, L.; Pourtaheri, M.; Eftekhari, A.R.; Ahmadi, H. The identification and zoning of areas having rural det.eriorated textures in the Tehran province by using KDE and GIS. Hum. Ecol. Risk Assess. Int. J. 2019, 25, 475–504. [Google Scholar] [CrossRef]
- Zahran, E.-S.M.M.; Shams, S.; Said, S.N.B.M. Validation of forest fire hotspot analysis in GIS using forest fire contributory factors. Syst. Rev. Pharm. 2020, 11, 249–255. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Chapman and Hall: New York, NY, USA, 1986. [Google Scholar]
- Bonnier, A.; Finné, M.; Weiberg, E. Examining Land-Use through GIS-Based Kernel Density Estimation: A Re-Evaluation of Legacy Data from the Berbati-Limnes Survey. J. Field Archeol. 2019, 44, 70–83. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Ma, X.; Zhou, W. Kernel density regression. J. Stat. Plan. Inference 2020, 205, 318–325. [Google Scholar] [CrossRef]
- Weglarczyk, S. Kernel density estimation and its application. In ITM Web of Conferences, 23, Proceedings of the XLVIII Seminar of Applied Mathematics, Boguszów-Gorce, Poland, 9–11 September 2018; Zielinski, W., Kuchar, L., Michalski, A., Kazmierczak, B., Eds.; EDP Sciences: Ulis, France, 2018. [Google Scholar]
- ESRI Help Reference Guide. Available online: https://pro.arcgis.com/en/pro-app/sdk/api-reference/#topic1.html (accessed on 6 June 2020).
- Gomez-Mediavilla, G.; López Estébanez, N.; Allende Álvarez, F. Evolución del paisaje cultural de los campos cercados en las depresiones del piedemonte del Sistema Central (Madrid, España): Modificaciones en las relaciones del espacio urbano -rural. In Proceedings of the Actas del XXV Congreso de la Asociación de Geógrafos Españoles. Naturaleza, Territorio y Ciudad en un Mundo Global, Madrid, Spain, 25–27 October 2017; pp. 172–180. [Google Scholar]
- Vandermotten, C.; Dézert, B. L’identité de l’Europe: Histoire et Géographie d’une Quête D’unité; Armand Colin: Paris, France, 2008. [Google Scholar]
- Allende Álvarez, F.; Gomez-Mediavilla, G.; López-Estébanez, N.; Sobrino García, J. Podas y trasmochos en las Ordenanzas forestales del Sistema Central español y su impronta en el paisaje forestal actual. Cuad. Soc. Esp. Cienc. For. 2003, 38, 35–42. [Google Scholar]
- Samanes, A.F. Campos cercados y abertales en la España atlántica. In Los Paisajes Rurales de España; Asociación de Geógrafos Españoles: Madrid, Spain, 1980; pp. 13–22. [Google Scholar]
- Sanjuán, Y.; Arnáez, J.; Beguería, S.; Lana-Renault, N.; Lasanta, T.; Gómez-Villar, A.; García-Ruiz, J.M. Woody plant encroachment following grazing abandonment in the subalpine belt: A case study in northern Spain. Reg. Environ. Chang. 2018, 18, 1103–1115. [Google Scholar] [CrossRef]
- Terres, J.M.; Scacchiafichi, L.N.; Wania, A.; Ambar, M.; Anguiano, E.; Buckwell, A.; Strijker, D. Farmland abandonment in Europe: Identification of drivers and indicators, and development of a composite indicator of risk. Land Use Policy 2015, 49, 20–34. [Google Scholar] [CrossRef]
- Poschlod, P.; Braun-Reichert, R. Small natural features with large ecological roles in ancient agricultural landscapes of Central Europe-history, value, status, and conservation. Biol. Conserv. 2017, 211, 60–68. [Google Scholar] [CrossRef]
- Lasanta, T.; Arnáez, J.; Pascual, N.; Ruiz-Flaño, P.; Errea, M.P.; Lana-Renault, N. Space–time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Fuster Morell, M.; Espelt, R. A Framework to Assess the Sustainability of Platform Economy: The Case of Barcelona Ecosystem. Sustainability 2019, 11, 6450. [Google Scholar] [CrossRef] [Green Version]
- Romero, J.; Melo, C. La Ordenación y Gestión de las Huertas Mediterráneas Españolas. El Tiempo de La(s) Política(S). In Paisaje, Cultura Territorial y Vivencia de La Geografía; Vera, M., Olcina, J.F., Hernández, J.Y., Eds.; Universidad de Alicante: Alicante, Spain, 2016; p. 362. [Google Scholar]
- Noureddin, D.; Hmid, A.; Bilali, H.; Lipinska, I.; Berjan, S. Agri-Food Logistics in the Mediterranean Region: Challenges and Opportunities. In Proceedings of the International Forum on Agri-Food Logistics II, Poznań, Poland, 9–13 September 2014. [Google Scholar]
- Bevan, A.; Conolly, J. Terraced fields and Mediterranean landscape structure: An analytical case study from Antikythera, Greece. Ecol. Model. 2011, 222, 1303–1314. [Google Scholar] [CrossRef]
- Andlar, G.; Šrajer, F.; Trojanović, A. Discovering cultural landscape in Croatia: History and classification of Croatian Adriatic enclosed landscape. Ann. Ser. Hist. Sociol 2018, 28, 760–778. [Google Scholar]
- Errea Abad, M.P.; Lasanta, T. Cambios en la cubierta vegetal de campos abandonados en función de los modelos de campos en Cameros Viejo (Sistema Ibérico). In Geoecología, Cambio Ambiental y Paisaje; Arnáez, J., González-Sampériz, P., Lasanta, T., Valero-Garcés, B.L., Eds.; Homenaje al Profesor José María García Ruiz, Instituto Pirenaico de Ecología (CSIC)—Universidad de La Rioja: Arnedo, Spain, 2014; pp. 383–393. [Google Scholar]
- Peña-Angulo, D.; Khorchani, M.; Errea, P.; Lasanta, T.; Martínez-Arnáiz, M.; Nadal-Romero, E. Factors explaining the diversity of land cover in abandoned fields in a Mediterranean mountain area. Catena 2019, 181, 104064. [Google Scholar] [CrossRef]
- Tatoni, T.; Roche, P. Comparison of old-field and forest revegetation dynamics in Provence. J. Veg. Sci. 1994, 5, 295–302. [Google Scholar] [CrossRef]
- Tzanopoulos, J.; Mitchley, J.; Pantis, J.D. Vegetation dynamics in abandoned crop fields on a Mediterranean island: Development of succession model and estimation of disturbance thresholds. Agric. Ecosyst. Environ. 2007, 83, 83–94. [Google Scholar] [CrossRef]
- Krčmářová, J.; Arnold, M. Traditional Agriculture as Cultural Heritage. Forgotten Agroforestry Practices Recorded in Textual Part of Nineteenth Century Tax Records. In Biocultural Diversity in Europe. Environmental History; Agnoletti, M., Emanueli, F., Eds.; Springer: Cham, Switzerland, 2016; Volume 5, pp. 211–231. [Google Scholar]
- Rigueiro-Rodríguez, A.; Fernández-Núñez, E.; González-Hernández, P.; McAdam, J.H.; Mosquera-Losada, M.R. Agroforestry systems in Europe: Productive, ecological and social perspectives. In Agroforestry in Europe; Rigueiro-Rodríguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 43–65. [Google Scholar]
- González, P.; Marey-Perez, M.; Álvarez-López, C. Evaluation of productive rural land patterns with joint regard to the size, shape and dispersion of plots. Agric. Syst. 2007, 92, 52–62. [Google Scholar] [CrossRef]
- Schneider, J.; Ruda, A.; Venzlů, M. Development of the rural landscape: The Dačice Region case study, Czechia. Geogr. Tech. 2019, 14, 84–96. [Google Scholar] [CrossRef] [Green Version]
- Ferrás, C.; Macía, X.; García, M.; Armas, F. El minifundio sostenible como un nuevo escenario para la economía gallega. Rev. Galega De Econ. 2004, 13, 1–25. [Google Scholar]
- European Environment Agency. LANDSCAPE Fragmentation in Europe—Joint EEA-FOEN Report. 2011, p. 87. Available online: https://www.eea.europa.eu/publications/landscape-fragmentation-in-europe (accessed on 27 April 2020).
- López-Estébanez, N.; Allende Álvarez, F.; Gomez-Mediavilla, G.; Molina Holgado, P. Génesis y gestión de los campos cercados en el centro de la península Ibérica. Estud. Geogr. in press.
- Hunter, M.L., Jr.; Acuña, V.; Bauer, D.M.; Bell, K.P.; Calhoun, A.J.; Felipe-Lucia, M.R.; Lundquist, C.J. Conserving small natural features with large ecological roles: A synthetic overview. Biol. Conserv. 2017, 211, 88–95. [Google Scholar] [CrossRef]
- Carlier, J.; Moran, J. Hedgerow typology and condition analysis to inform greenway design in rural landscapes. J. Environ. Manag. 2019, 247, 790–803. [Google Scholar] [CrossRef] [PubMed]
- Gullino, P.; Devecchi, M.; Larcher, F. How can different stakeholders contribute to rural landscape planning policy? The case study of Pralormo municipality (Italy). J. Rural Stud. 2018, 57, 99–109. [Google Scholar] [CrossRef]
- Barbera, G.; Cullotta, S. The Traditional Mediterranean Polycultural Landscape as Cultural Heritage: Its Origin and Historical Importance, Its Agro-Silvo-Pastoral Complexity and the Necessity for Its Identification and Inventory. In Biocultural Diversity in Europe. Environmental History; Agnoletti, M., Emanueli, F., Eds.; Springer: Cham, Switzerland, 2016; Volume 5, pp. 21–48. [Google Scholar]
- Demková, K.; Hais, M.; Edwards-Jonášová, M. Cross-Border Comparison of Non-Forest Woody Vegetation in the White Carpathians (Central Europe) Over Last 65 Years. J. Landsc. Ecol. 2019, 12, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Pantera, A.; Papadopoulos, A.; Papanastasis, V.P. Valonia oak agroforestry systems in Greece: An overview. Agrofor. Syst. 2018, 92, 921–931. [Google Scholar] [CrossRef]
- Paris, P.; Camilli, F.; Rosati, A.; Mantino, A.; Mezzalira, G.; Dalla Valle, C.; Franca, A.; Seddaiu, G.; Pisanelli, A.; Lauteri, M.; et al. What is the future for agroforestry in Italy? Agrofor. Syst. 2019, 93, 2243–2256. [Google Scholar] [CrossRef] [Green Version]
- European Commission. The Post-2020 Common Agricultural Policy: Environmental Benefits and Simplification. 2020. Available online: https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/key_policies/documents/cap-post-2020-environ-benefits-simplification_en.pdf (accessed on 5 June 2020).
- Grando, S.; Brunori, G.; Pinto-Correia, T.; Sutherland, L.A. Small Farming and the Food System. In Innovation for Sustainability: Small Farmers Facing New Challenges in the Evolving Food Systems; Brunori, G., Grando, S., Eds.; Emerald Publishing Limited: Bingley, UK, 2020; Volume 25, pp. 9–18. [Google Scholar]
- Den Herder, M.; Burgess, P.J.; Mosquera-Losada, M.R.; Herzog, F.; Hartel, T.; Upson, M.; Viholainen, I.; Rosati, A. Preliminary Stratification and Quantification of Agroforestry in Europe. Milestone Report 1.1 for EU FP7 Research Project: AGFORWARD 613520. 22 April 2015, p. 57. Available online: https://www.agforward.eu/index.php/es/preliminary-stratification-and-quantification-of-agroforestry-in-europe-copie-copie.html?file=files/agforward/documents/M1_Stratification%20of%20agroforestry.pdf (accessed on 24 April 2020).
- Den Herder, M.; Moreno, G.; Mosquera-Losada, R.M.; Palma, J.H.N.; Sidiropoulou, A.; Santiago Freijanes, J.J.; Crous-Duran, J.; Paulo, J.A.; Tomé, M.; Pantera, A.; et al. Current extent and stratification of agroforestry in the European Union. Agric. Ecosyst. Environ. 2017, 241, 121–132. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Commission Communication to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. 2013. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:21b27c38-21fb-11e3-8d1c-01aa75ed71a1.0022.01/DOC_1&format=PDF (accessed on 15 May 2020).
- Mosquera-Losada, M.R.; Santiago-Freijanes, J.J.; Rois-Díaz, M.; Moreno, G.; Den Herder, M.; Aldrey-Vázquez, J.A.; Rigueiro-Rodríguez, A. Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy 2018, 78, 603–613. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Himanshu, P.; Sharmistha, P. Livestock and Aquaculture Management for Climate-Smart Agriculture. In Climate Smart Agriculture. Green Energy and Technology; Bhattacharyya, P., Himanshu, P., Sharmistha, P., Eds.; Springer: Singapore, 2020; pp. 113–127. [Google Scholar]
Cases | Physiographic Characteristics |
---|---|
Case 1. Somosierra | Linearity associated with plate tectonics. |
Small, compartmentalized and well-defined valley bottom. | |
Dispersed land parcels that occupy both slopes of the mountain pass, better developed on the southern slope, higher, with less steeper slopes and with a more favourable climate. | |
Massif slopes with lax and sometimes poorly defined enclosure boundaries. | |
Middle-lower slopes enclosed by solifluid fronts with natural vegetation. | |
Case 2. Bustarviejo (Arroyo del Valle) | Alteration alveolar on granite materials with subalve moisture and abundant runoff from the slope. |
Fertile area concentrated in the central sector of the alveole. | |
Valley bottom and low slopes occasionally covered by colluvium and alluvial fans | |
Middle slopes with steep slopes. | |
High density enclosed parcels arranged concentrically. | |
Case 3. Rascafría | A rift valley of triangular morphology drained by the Lozoya river (Tagus river basin). |
Flat, wide and wet valley bottom. | |
Fertile floodplain of the Lozoya River and fluvio-torrential cones in the tributary streams. | |
Moderate slopes in a succession of structural landings | |
High-density of land parcels, concentrated in the valley bottom and immediate slopes, which entity and density are progressively lost as the slopes ascend. |
Code | Use in 1956 | Use in 2019 |
---|---|---|
1 | Grassland (Festuca, Poa, Agrostis) | Grassland (Festuca, Poa, Agrostis) |
2 | Sloping wet pastures (Nardus, Festuca) | Sloping wet pastures (Nardus, Festuca) |
3 | Valley Floor wet pasture (Arrhenatherum, Agrostis, Poa, Cynosurus) | Valley bottom wet pasture (Arrhenatherum, Agrostis, Poa, Cynosurus) |
4 | Dryland farming (Secale, Triticum) | - |
5 | Fruit and vegetable crops (Junglans, Malus, Pyrus, Linum, Brassica, Triticum, Hordeum) | Fruit and vegetable crops (Junglans, Malus, Pyrus, Hordeum) |
6 | Woodland with pasture (Quercus, Fraxinus, Juniperus, Salix, Agrostis, Poa) | Woodland with pasture (Quercus, Fraxinus, Juniperus, Salix, Agrostis, Poa) |
7 | Scrubland with pastures (Genista, Cytisus, Agrostis) | Scrubland with pastures (Genista, Cytisus, Rosa, Rubus, Prunus, Agrostis) |
8 | - | Woodland, scrubland and grassland (Quercus, Fraxinus, Genista, Cytisus, Agrostis, Poa) |
9 | - | Urban land |
10 | - | Roads and infrastructures |
11 | - | Enclosed wasteland (Quercus, Fraxinus, Genista, Cytisus) |
2019 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | ||
1956 | 1 | 38.63 | 0.66 | 25.84 | 8.87 | 2.04 | 7.27 | 12.06 | ||||
2 | 142.57 | 69.68 | 11.33 | 22.02 | 1.21 | 4.54 | 60.37 | |||||
3 | 420.48 | 2.21 | 64.59 | 1.81 | 4.88 | 53.13 | 0.70 | 27.94 | ||||
4 | 122.71 | 68.33 | 215.35 | 15.10 | 124.81 | 16.43 | 21.28 | 13.13 | 4.51 | 407.47 | ||
5 | 1.58 | 8.19 | 20.75 | 3.09 | 2.32 | 0.40 | 0.75 | 14.90 | 1.74 | 6.59 | ||
6 | 1.80 | 5.33 | 1.14 | 0.15 | 46.32 | 7.40 | 0.72 | 26.52 | ||||
7 | 0.39 | 3.83 | 1.13 | 7.31 | 2.62 | 3.18 | 1.09 | 0.10 | 16.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Álvarez, F.A.; Gómez-Mediavilla, G.; López-Estébanez, N.; Holgado, P.M.; Barajas, J.A. Hedgerows and Enclosures in Rural Areas: Traditional vs. Modern Land Use in Mediterranean Mountains. Land 2021, 10, 57. https://doi.org/10.3390/land10010057
Álvarez FA, Gómez-Mediavilla G, López-Estébanez N, Holgado PM, Barajas JA. Hedgerows and Enclosures in Rural Areas: Traditional vs. Modern Land Use in Mediterranean Mountains. Land. 2021; 10(1):57. https://doi.org/10.3390/land10010057
Chicago/Turabian StyleÁlvarez, Fernando Allende, Gillian Gómez-Mediavilla, Nieves López-Estébanez, Pedro Molina Holgado, and Judith Ares Barajas. 2021. "Hedgerows and Enclosures in Rural Areas: Traditional vs. Modern Land Use in Mediterranean Mountains" Land 10, no. 1: 57. https://doi.org/10.3390/land10010057
APA StyleÁlvarez, F. A., Gómez-Mediavilla, G., López-Estébanez, N., Holgado, P. M., & Barajas, J. A. (2021). Hedgerows and Enclosures in Rural Areas: Traditional vs. Modern Land Use in Mediterranean Mountains. Land, 10(1), 57. https://doi.org/10.3390/land10010057