The Potential to Save Agrestal Plant Species in an Intensively Managed Agricultural Landscape through Organic Farming—A Case Study from Northern Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation Sampling
2.3. Statistical Analyses
3. Results
3.1. Agrestal Flora above Ground
3.2. Agrestal Flora Seed Bank
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brondizio, E.S.; Settele, J.; Díaz, S.; Ngo, H.T. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- Storkey, J.; Meyer, S.; Still, K.S.; Leuschner, C. The impact of agricultural intensification and land-use change on the European arable flora. Proc. R. Soc. B Boil. Sci. 2011, 279, 1421–1429. [Google Scholar] [CrossRef] [PubMed]
- Frieben, B.; Prolingheuer, U.; Wildung, M.; Meyerhoff, E. Aufwertung der Agrarlandschaft durch ökologischen Landbau—Eine Möglichkeit der produktionsintegrierten Kompensation? Naturschutz und Landschaftsplanung 2012, 44, 108–114. [Google Scholar]
- Robinson, R.A.; Sutherland, W.J. Post-war changes in arable farming and biodiversity in Great Britain. J. Appl. Ecol. 2002, 39, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Köhler, E. Moderne Landwirtschaft und Herbizide/Modern Agriculture and Herbicides. Zeitschrift für Naturforschung C 1979, 34, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, D.E.; Fuller, R.J.; Bunce, R.G.H.; Duckworth, J.C.; Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 2000, 37, 771–788. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAOSTAT: Food and Agriculture Data. 2017. Available online: http://www.fao.org/faostat/en/#data//RP (accessed on 28 October 2017).
- Lu, C.C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.; Brown, V.; Boatman, N.; Lutman, P.; Squire, G. The Impact of Herbicides on Weed Abundance and Biodiversity; DEFRA review PN0940; Rothamsted Research: Hertfordshire, UK, 2001; p. 147. [Google Scholar]
- Metzing, D.; Hofbauer, N.; Ludwig, G.; Matzke-hajek, G. Rote Liste gefährdeter Tiere, Pflanzen und Pilze Deutschlands. Band 7: Pflanzen. Naturschutz und Biologische Vielfalt 2018, 70, 1–784. [Google Scholar]
- Meyer, S.; Bergmeier, E.; Becker, T.; Wesche, K.; Krause, B.; Leuschner, C. Detecting long-term losses at the plant community level—Arable fields in Germany revisited. Appl. Veg. Sci. 2015, 18, 432–442. [Google Scholar] [CrossRef]
- Mierwald, U.; Romahn, K.S. Die Farn-und Blütenpflanzen Schleswig-Holsteins: Rote Liste. Schriftenreihe LANU SH 2006, 18, 1–1212006. [Google Scholar]
- Ellenberg, H.; Leuschner, C. Vegetation Mitteleuropas mit den Alpen. In Ökologischer, Dynamischer und Historischer Sicht; UTB: Stuttgart, Germany, 2010; p. 1357. [Google Scholar]
- Meyer, S.; Hilbig, W.; Steffen, K.; Schuch, S. Ackerwildkrautschutz—Eine Bibliographie. Bundesamt für Naturschutz. BfN-Skripten 2013, 351, 1–224. [Google Scholar]
- Gerhards, R.; Dieterich, M.; Schumacher, M. Rückgang von Ackerunkräutern in Baden-Württemberg—ein Vergleich von vegetationskundlichen Erhebungen in den Jahren 1948/49, 1975–1978 und 2011 im Raum Mehrstetten—Empfehlungen für Landwirtschaft und Naturschutz. Gesunde Pflanzen 2013, 65, 151–160. [Google Scholar] [CrossRef]
- Meyer, S.; Wesche, K.; Krause, B.; Leuschner, C. Dramatic losses of specialist arable plants in Central Germany since the 1950s/60s—A cross-regional analysis. Divers. Distrib. 2013, 19, 1175–1187. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Storkey, J. A functional group approach to the management of UK arable weeds to support biological diversity. Weed Res. 2006, 46, 513–522. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity—Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Sukopp, H.; Schneide, C.; Sukopp, U. Biologisch-ökologische Grundlagen für den Schutz gefährdeter Segetalpflanzen. Naturschutz und Landschaftspflege in Brandenburg Sonderheft 1994, 1, 14–16. [Google Scholar]
- Meyer, S.; Wesche, K.; Leuschner, C.; Van Elsen, T.; Metzner, J. Schutzbemühungen für die Segetalflora in Deutschland—Das Projekt “100 Äcker für die Vielfalt”. Treffpunkt Biologische Vielfalt 2010, 9, 58–64. [Google Scholar]
- Schumacher, W. Schutz und Erhaltung gefährdeter Ackerwildkräuter durch Integration von landwirtschaftlicher Nutzung und Naturschutz. Natur und Landschaft 1980, 55, 447–453. [Google Scholar]
- Sommer, M. Schutz der Ackerwildkrautflora in Bayern—Geschichte und Empfehlungen zum nachhaltigen Schutz auf Grundlage aktueller Erfassungen. ANLiegen Nat. 2014, 36, 19–28. [Google Scholar]
- Andreasen, C.; Andresen, L.C. Managing farmland flora to promote biodiversity in Europe. Plant Sci. Rev. 2012, 199–205. [Google Scholar] [CrossRef]
- Lang, M.; Albrecht, H.; Kollmann, J.; Van Elsen, T.; Gärtner, A.; Hotze, C.; Wiesinger, K. Naturschutzleistungen des Ökologischen Landbaus: Wiederansiedlung Seltener und Gefährdeter Ackerwildpflanzen Naturräumlicher Herkünfte auf Ökobetrieben; University of Kassel: Kassel, Germany, 2016; p. 160. [Google Scholar]
- Hole, D.G.; Perkins, A.J.; Wilson, J.D.; Alexander, I.H.; Grice, P.V.; Evans, A.D. Does organic farming benefit biodiversity? Biol. Conserv. 2005, 122, 113–130. [Google Scholar] [CrossRef]
- Kay, S.; Gregory, S. Rare Arable Flora Survey 1999; Northmoor Trust: Abingdon Oxfordshire, UK, 1999. [Google Scholar]
- Rydberg, N.T.; Milberg, P. A Survey of Weeds in Organic Farming in Sweden. Biol. Agric. Hortic. 2000, 18, 175–185. [Google Scholar] [CrossRef]
- Frieben, B.; Köpke, U. Effects of farming systems on biodiversity. In Organic Farming in Land Use Systems. Proceedings of the First ENOF (The European Network for Scientific Research Co-Ordination in Organic Farming) Workshop; ENOF: Bonn, Germany, 1995; pp. 11–21. [Google Scholar]
- Gabriel, D.; Roschewitz, I.; Tscharntke, T.; Thies, C. Beta diversity at different spatial scales: Plant communities in organic and conventional agriculture. Ecol. Appl. 2006, 16, 2011–2021. [Google Scholar] [CrossRef]
- Gabriel, D.; Sait, S.M.; Kunin, W.E.; Benton, T.G. Food production vs. biodiversity: Comparing organic and conventional agriculture. J. Appl. Ecol. 2013, 50, 355–364. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: Cambridge, MA, USA, 2014; p. 1586. [Google Scholar]
- Hawes, C.; Squire, G.; Hallett, P.; Watson, C.; Young, M. Arable plant communities as indicators of farming practice. Agric. Ecosyst. Environ. 2010, 138, 17–26. [Google Scholar] [CrossRef]
- Rotchés-Ribalta, R.; Armengot, L.; Mäder, P.; Mayer, J.; Sans, F.X. Long-Term Management Affects the Community Composition of Arable Soil Seedbanks. Weed Sci. 2016, 65, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Schröter, L.; Irmler, U. Lauf- und Kurzflügelkäfer der Ackerflächen. Faunistisch-Ökologische Mitteilungen. Supplement 2008, 35, 145–158. [Google Scholar]
- Deutscher Wetterdienst. Climate Data Center CDC. 2018. Available online: https://www.dwd.de (accessed on 16 December 2018).
- Reiss, S.; Bork, H.R.; Hoernes, U.; Rinker, A.; Mitusov, A. Die Verbreitung der Böden auf den Ackerflächen von Hof Ritzerau. Faunistisch-Ökologische Mitteilungen 2008, 35, 59–73. [Google Scholar]
- Burbaum, B.; Filipinski, M. Die Böden Schleswig-Holsteins: Entstehung, Verbreitung, Nutzung, Eigenschaften und Gefährdung; Landesamt für Landwirtschaft, Umwelt und Ländliche Räume Schleswig-Holstein: Flintbek, Germany, 2012; p. 108.
- Richter, F.; Fleige, H.; Horn, R. Verteilung von Bodentypen, Subtypen und Varietäten in einer Jungmoränenlandschaft Schleswig-Holsteins. Mitteilungen Deutschen Bodenkundlichen Gesellschaft 2004, 103, 153–154. [Google Scholar]
- Neumann, H.; Loges, R.; Roweck, H.; Taube, F. Naturschutz und ökologischer Landbau—Rahmenbedingungen, Stand der Forschung und Konzeption des Projektes, Hof Ritzerau. Faunistisch-Ökologische Mitteilungen 2008, 35, 7–19. [Google Scholar]
- Brüggemann, C.; Hack, D.; Thode, U. Der Lämmerhof. Historie. 2017. Available online: https://www.laemmerhof.de/ (accessed on 11 November 2017).
- Van Elsen, T. Ackerwildkraut-Bestände im Randbereich und im Bestandesinnern unterschiedlich bewirtschafteter Halm- und Hackfruchtäcker. Veröff. Bundesanst. Agrarbiol. 1990, 20, 21–39. [Google Scholar]
- Thompson, K.; Bakker, J.P.; Bekker, R.M. The soil seed Banks of North West Europe: Methodology, Density and Longevity; Cambridge University Press: Cambridge, UK, 1997; p. 276. [Google Scholar]
- Hennekens, S.M.; Schaminée, J.H.J. TURBOVEG, a comprehensive data base management system for vegetation data. J. Veg. Sci. 2001, 12, 589–591. [Google Scholar] [CrossRef]
- Ellenberg, H.; Weber, H.E.; Dull, R.; Wirth, V.; Werner, W.; Paulißen, D. Zeigerwerte von Pflanzen in Mitteleuropa. Scr. Geobot. 1991, 18, 1–248. [Google Scholar]
- Diekmann, M. Species indicator values as an important tool in applied plant ecology–a review. Basic Appl. Ecol. 2003, 4, 493–506. [Google Scholar] [CrossRef]
- Silvertown, J.; Dodd, M.; Gowing, D.; Lawson, C.; McConway, K. Phylogeny and the Hierarchical organization of plant diversity. Ecology 2006, 87, S39–S49. [Google Scholar] [CrossRef]
- McCune, B.; Mefford, M.J. PC-ORD. Multivariate Analysis of Ecological Data; Version 7.03; MjM Software Design: Gleneden Beach, OR, USA, 2016; p. 273. [Google Scholar]
- Kenkel, N.C.; Burchill, C.E. Rigid rotation of nonmetric multidimensional scaling axes to environmental congruence. Abstr. Bot. 1990, 109–119. [Google Scholar]
- Klotz, S.; Kühn, I.; Durka, W. BIOFLOR–a database on biological and ecological traits of vascular plants in Germany. Schriftenreihe für Vegetationskunde 2002, 38, 1–334. [Google Scholar]
- Verbeke, G.; Molenberghs, G. Linear mixed models for longitudinal data. Linear Mixed Models in Practice. Lect. Notes Stat. 2009, 126, 63–153. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing (Version 3.4.2); R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- LLUR (Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein). Kartieranleitung und Biotoptypenschlüssel für die Biotopkartierung Schleswig-Holstein mit Hinweisen zu den gesetzlich geschützten Biotopen sowie den Lebensraumtypen gemäß Anhang I der FFH-Richtlinie-Kartieranleitung, Biotopenschlüssel und Standardliste, 5th ed.; LLUR: Flintbek, Germany, 2019; p. 386.
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.R. nlme: Linear and Nonlinear Mixed Effects Models; R Package Version 3.1-141; 2019; Available online: http://cran.r-project.org/web/packages/nlme/index.html (accessed on 21 February 2021).
- Schaarschmidt, F.; Vaas, L. Analysis of Trials with Complex Treatment Structure Using Multiple Contrast Tests. HortScience 2009, 44, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Seifert, C.; Leuschner, C.; Meyer, S.; Culmsee, H. Inter-relationships between crop type, management intensity and light transmissivity in annual crop systems and their effect on farmland plant diversity. Agric. Ecosyst. Environ. 2014, 195, 173–182. [Google Scholar] [CrossRef]
- Fried, G.; Petit, S.; Dessaint, F.; Reboud, X. Arable weed decline in Northern France: Crop edges as refugia for weed conservation? Biol. Conserv. 2009, 142, 238–243. [Google Scholar] [CrossRef]
- Hautier, Y.; Niklaus, P.A.; Hector, A. Competition for light causes plant biodiversity loss after eutrophication. Science 2009, 324, 636–638. [Google Scholar] [CrossRef] [Green Version]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemüller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect-Pollinated Plants in Britain and the Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, e0185809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, J.D.; Morris, A.J.; Arroyo, B.E.; Clark, S.C.; Bradbury, R.B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 1999, 75, 13–30. [Google Scholar] [CrossRef]
- Stewart, W.D.P. Nitrogen Fixation in Plants; Athlone Press: London, UK, 1966; p. 168. [Google Scholar]
- Burmeier, S.; Eckstein, R.L.; Otte, A.; Donath, T.W. Spatially-restricted plant material application creates colonization initials for flood-meadow species. Biol. Conser. 2011, 144, 212–219. [Google Scholar] [CrossRef]
- Schmiede, R.; Donath, T.W.; Otte, A. Seed bank development after the restoration of alluvial grassland via transfer of seed-containing plant material. Biol. Conserv. 2009, 142, 404–413. [Google Scholar] [CrossRef]
- Albrecht, H. Development of arable weed seedbanks during the 6 years after the change from conventional to organic farming. Weed Res. 2005, 45, 339–350. [Google Scholar] [CrossRef]
- Simmering, D.; Waldhardt, R.; Otte, A. Erfassung und Analyse der Pflanzenartenvielfalt in der “Normallandschaft”—Ein Beispiel aus Mittelhessen. Berichte der Reinhard-Tüxen-Gesellschaft 2013, 25, 73–94. [Google Scholar]
- Bakker, J.P.; Poschlod, P.; Strykstra, R.J.; Bekker, R.M.; Thompson, K. Seed banks and seed dispersal: Important topics in restoration ecology. Acta Bot. Neerlandica 1996, 45, 461–490. [Google Scholar] [CrossRef]
- Bossuyt, B.; Honnay, O. Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. J. Veg. Sci. 2008, 19, 875–884. [Google Scholar] [CrossRef]
- Wilson, P.J.; Aebischer, N.J. The Distribution of Dicotyledonous Arable Weeds in Relation to Distance from the Field Edge. J. Appl. Ecol. 1995, 32, 295. [Google Scholar] [CrossRef]
- Marshall, E.J.P.; Brown, V.K.; Boatman, N.D.; Lutman, P.J.W.; Squire, G.R.; Ward, L.K. The role of weeds in supporting biological diversity within crop fields. Weed Res. 2003, 43, 77–89. [Google Scholar] [CrossRef] [Green Version]
Field Assessment Scale | Transformed Analysis Scale |
---|---|
1 | 1 |
2–5 | 3 |
6–10 | 8 |
11–50 | 30 |
51–100 | 75 |
101–500 | 300 |
501–1000 | 750 |
1001–5000 | 3000 |
>5000 | 7500 |
pseudo R2 | pseudo R2 | Land Use Type | Position | Land Use Type × Position | ||
---|---|---|---|---|---|---|
Indicators | Transformation | Marginal | Conditional | p-Value | p-Value | p-Value |
Vegetation | ||||||
Diversity | ||||||
Richness | 0.41 | 0.83 | <0.001 | <0.001 | 0.018 | |
Shannon | 0.46 | 0.66 | <0.001 | <0.001 | 0.005 | |
Evenness | 0.47 | 0.66 | <0.001 | <0.001 | 0.005 | |
No. of individuals | log (x + 1) | 0.51 | 0.86 | <0.001 | <0.001 | <0.001 |
Ellenberg | ||||||
L-value | 0.02 | 0.56 | 0.634 | 0.896 | 0.159 | |
T-value | 0.12 | 0.29 | 0.001 | 0.712 | 0.113 | |
N-value | 0.10 | 0.40 | 0.024 | 0.687 | 0.190 | |
F-value | 0.07 | 0.42 | 0.908 | 0.012 | 0.008 | |
R-value | 0.10 | 0.42 | 0.051 | 0.256 | 0.824 | |
Ecosystem | ||||||
Abundance insect pollination | log (x + 1) | 0.50 | 0.85 | <0.001 | <0.001 | <0.001 |
Abundance HNV species | log (x + 1) | 0.64 | 0.83 | <0.001 | <0.001 | <0.001 |
Abundance RL species | log (x + 1) | 0.28 | 0.62 | 0.001 | 0.550 | 0.024 |
Seed bank | ||||||
Diversity | ||||||
Richness | 0.71 | 0.82 | <0.001 | 0.403 | 0.750 | |
Shannon | 0.53 | 0.53 | 0.001 | 0.737 | 0.596 | |
Evenness | 0.53 | 0.53 | 0.001 | 0.693 | 0.597 | |
Seed density | sqrt | 0.35 | 0.48 | 0.002 | 0.301 | 0.689 |
Ellenberg | ||||||
L-value | 0.11 | 0.62 | 0.271 | 0.256 | 0.909 | |
T-value | 0.81 | 0.84 | <0.001 | 0.369 | 0.141 | |
N-value | 0.09 | 0.25 | 0.098 | 0.331 | 0.917 | |
F-value | 0.19 | 0.22 | 0.007 | 0.215 | 0.906 | |
R-value | box-cox | 0.35 | 0.41 | 0.011 | 0.196 | 0.448 |
Ecosystem | ||||||
Abundance insect pollination | log (x + 1) | 0.26 | 0.30 | 0.006 | 0.632 | 0.361 |
Abundance HNV species | log (x + 1) | 0.19 | 0.23 | 0.034 | 0.02 | 0.330 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Görzen, E.; Diekötter, T.; Meyerink, M.; Kretzschmar, H.; Donath, T.W. The Potential to Save Agrestal Plant Species in an Intensively Managed Agricultural Landscape through Organic Farming—A Case Study from Northern Germany. Land 2021, 10, 219. https://doi.org/10.3390/land10020219
Görzen E, Diekötter T, Meyerink M, Kretzschmar H, Donath TW. The Potential to Save Agrestal Plant Species in an Intensively Managed Agricultural Landscape through Organic Farming—A Case Study from Northern Germany. Land. 2021; 10(2):219. https://doi.org/10.3390/land10020219
Chicago/Turabian StyleGörzen, Eugen, Tim Diekötter, Maike Meyerink, Helen Kretzschmar, and Tobias W. Donath. 2021. "The Potential to Save Agrestal Plant Species in an Intensively Managed Agricultural Landscape through Organic Farming—A Case Study from Northern Germany" Land 10, no. 2: 219. https://doi.org/10.3390/land10020219
APA StyleGörzen, E., Diekötter, T., Meyerink, M., Kretzschmar, H., & Donath, T. W. (2021). The Potential to Save Agrestal Plant Species in an Intensively Managed Agricultural Landscape through Organic Farming—A Case Study from Northern Germany. Land, 10(2), 219. https://doi.org/10.3390/land10020219