The Content of Polyarenes in Soils of Antarctica: Variability across Landscapes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Waterhouse, E.J. (Ed.) Ross Sea Region 2001: A State of the Environment Report for the Ross Sea Region of Antarctica, 1st ed.; New Zealand Antarctic Institute: Christchurch, New Zealand, 2001. [Google Scholar]
- United Nations. Protocol on Environmental Protection to the Antarctic Treaty. 1991. Available online: https://treaties.un.org/Pages/showDetails.aspx?objid=080000028006ab63&clang=_en (accessed on 26 August 2021).
- Bargagli, R. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 2008, 400, 212–226. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Abakumov, E.; Polyakov, V.; Xie, X.; Dongyang, W. The ecological impact of mineral exploitation in the Russian Arctic: A field-scale study of polycyclic aromatic hydrocarbons (PAHs) in permafrost-affected soils and lichens of the Yamal-Nenets autonomous region. Environ. Pollut. 2019, 255, 113239. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Abakumov, E.; Polyakov, V. Assessments of pollution status and human health risk of heavy metals in permafrost-affected soils and lichens: A case-study in Yamal Peninsula, Russia Arctic. Hum. Ecol. Risk Assess. 2019, 25, 2142–2159. [Google Scholar] [CrossRef]
- Ji, X.; Abakumov, E.; Xie, X. Atmosphere-ocean exchange of heavy metals and polycyclic aromatic hydrocarbons in the Russian Arctic Ocean. Atmos. Chem. Phys. 2019, 19, 13789–13807. [Google Scholar] [CrossRef] [Green Version]
- AMAP. Arctic Pollution Issues: A State of the Arctic Environment Report. Arctic Monitoring and Assessment Programme (AMAP); AMAP: Oslo, Norway, 1997; 188p. [Google Scholar]
- Martins, C.C.; Bicego, M.C.; Rose, N.L.; Taniguchi, S.; Lourenco, R.A.; Figueira, R.C.L.; Mahiques, M.M.; Montone, R.C. Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica. Environ. Pollut. 2010, 158, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Grondahl, F.; Sidenmark, J.; Thomsen, A. Survey of waste water disposal practices at Antarctic research stations. Polar Res. 2008, 28, 298–306. [Google Scholar] [CrossRef]
- Montone, R.C.; Martins, C.C.; Bicego, M.C.; Taniguchi, S.; Silva, D.A.M.; Campos, L.S.; Weber, R.R. Distribution of sewage input in marine sediments around a maritime Antarctic research station indicated by molecular geochemical indicators. Sci. Total Environ. 2010, 408, 4665–4671. [Google Scholar] [CrossRef]
- IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Polynuclear Aromatic Compounds, Part 1, Chemical, Environmental and Experimental Data, 1st ed.; International Agency for Research on Cancer: Lyon, France, 1983; 477p. [Google Scholar]
- U.S. Environmental Protection Agency. Method 3550b: Ultrasonic Extraction; Office of Health and Environmental Assessment: Washington, DC, USA, 1996; Revision 2. [Google Scholar]
- U.S. Environmental Protection Agency. Method 3630c: Silica Gel Cleanup; Office of Health and Environmental Assessment: Washington, DC, USA, 1996; Revision 3. [Google Scholar]
- U.S. Environmental Protection Agency. Method 8310: Polynuclear Aromatic Hydrocarbons; Office of Health and Environmental Assessment: Washington, DC, USA, 1996; Revision 0. [Google Scholar]
- U.S. Environmental Protection Agency. Evaluation and Estimation of Potential Carcinogenic Risks of Polynuclear Aromatic Hydrocarbons: Carcinogen Assessment Group; Office of Health and Environmental Assessment: Washington, DC, USA, 1985. [Google Scholar]
- Bouloubassi, I.; Saliot, A. Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanol. Acta 1993, 1, 145–161. [Google Scholar]
- Gennadiev, A.N.; Pikovsky, Y.I.; Florovskaya, V.N.; Alekseeva, T.A.; Kozin, I.S.; Ogloblina, A.I.; Ramenskaya, M.E.; Teplitskaya, T.A.; Shurubor, E.I. Geochemistry of Polycyclic Aromatic Hydrocarbons in Rocks and Soils, 1st ed.; Gennadiev, A.N., Pikovsky, Y.I., Eds.; Moscow University Publ.: Moscow, Russia, 1996; 192p. [Google Scholar]
- Na, G.; Gao, Y.; Li, R.; Gao, H.; Hou, C.; Ye, J.; Jin, S.; Zhang, Z. Occurrence and Sources of Polycyclic Aromatic Hydrocarbons in Atmosphere and Soil from 2013 to 2019 in the Fildes Peninsula, Antarctica. Mar. Pollut. Bull. 2020, 156, 111173. [Google Scholar] [CrossRef] [PubMed]
- Yunker, M.B.; Macdonald, R.W. Alkane and PAH depositional history, sources and fluxes in sediments from Fraser River basin and Strait of Georgia, Canada. Org. Geochem. 2004, 34, 1429–1454. [Google Scholar] [CrossRef]
- Pelletier, E.; Delille, D.; Delille, B. Crude oil bioremediation in sub-Antarctic intertidal sediments: Chemistry and toxicity of oiled residues. Mar. Environ. Res. 2004, 57, 311–327. [Google Scholar] [CrossRef] [PubMed]
- UNEP (United Nations Environment Programme Chemicals). Regionally Based Assessment of Persistent Toxic Substances. Antarctic Regional Report, 1st ed.; Global Environment Facility: Geneva, Switzerland, 2002. [Google Scholar]
- Young, L.Y.; Cerniglia, C.E. Microbial Transformation and Degradation of Toxic Organic Chemicals, 1st ed.; Wiley-Liss, Inc.: New York, NY, USA, 1995; 654p. [Google Scholar]
- Abakumov, E.V. The sources and composition of humus in some soils of west Antarctica. Eurasian Soil Sci. 2010, 5, 499–508. [Google Scholar] [CrossRef]
- Coulon, F.; Pelletier, E.; Gourhant, L.; Delille, D. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil. Chemosphere 2005, 58, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Abakumov, E.; Lupachev, A.; Andreev, M.; Wang, W.; Ji, X. The influence of brown and south polar skua on the content of plant nutrient in the soils from the Fildes Peninsula (King George Island, West Antarctica). Chem. Ecol. 2021, 37, 185–199. [Google Scholar] [CrossRef]
- Lupachev, A.V.; Abakumov, E.V.; Goryachkin, S.V.; Veremeeva, A.A. Soil cover of the Fildes Peninsula (King George Island, West Antarctica). Catena 2020, 193, 104613. [Google Scholar] [CrossRef]
- Lupachev, A.V.; Gubin, S.V.; Abakumov, E.V. Levels of biogenic-abiogenic interaction and structural organization of soils and soil-like bodies in Antarctica. Lect. Notes Earth Sys. Sci. 2020, 481–500. [Google Scholar] [CrossRef]
- PND F 16.1:2:2.2:3.62-09; Quantitative Chemical Analysis of Soils. Technique for Measuring the Mass Fraction of Polycyclic Aromatic Hydrocarbons in Soils, Bottom Sediments, Sewage Sludge and Industrial Waste by High Performance Liquid Chromatography, 1st ed.; FGA Federal Center for Analysis and Assessment of Technogenic Impact: Moscow, Russia, 2009; 23p. (In Russian)
- Gabov, D.N.; Beznosikov, V.A.; Kondrateno, B.M. Polycyclic aromatic hydrocarbons in background podzolic and gleyic peat-podzolic soils. Eurasian Soil Sci. 2007, 40, 256–264. [Google Scholar] [CrossRef]
- Gabov, D.N.; Beznosikov, V.A.; Kondratenok, B.M.; Yakovleva, E.V. Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils. Eurasian Soil Sci. 2008, 41, 1180–1188. [Google Scholar] [CrossRef]
- Budzinski, H.; Jones, I.; Bellocq, J.; Pierard, C.; Garrigues, P. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar. Chem. 1997, 58, 85–97. [Google Scholar] [CrossRef]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namiesnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.K.; Patel, K.S.; Lenicek, J. Polycyclic aromatic hydrocarbons: Need for assessment of health risks in India? Study of an urban-industrial location in India. Environ. Monit. Assess. 1999, 59, 287–319. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; Lagoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Abakumov, E.; Nizamutdinov, T.; Yaneva, R.; Zhiyanski, M. Polycyclic aromatic hydrocarbons and potentially toxic elements in soils of the vicinity of the Bulgarian Antarctic station St. Kliment Ohridski (Antarctic Peninsula). Front. Environ. Sci. 2021, 9, 656271. [Google Scholar] [CrossRef]
- Shamilishvili, G.; Abakumov, E. Organic and inorganic contaminants in urban soils of St. Petersburg (Russia). In Proceedings of the International Congress on Soils of Urban, Industrial, Traffic, Mining and Military Areas, Moscow, Russia, 21–26 May 2017; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- GN 2.1.7.2041-06; Hygienic Standards. Maximum Permissible Concentration (MPC) of Chemical Substances in the Soil, 1st ed.; Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2006; 15p. (In Russian)
- Martins, C.C.; Bícego, M.C.; Taniguchi, S.; Montone, R.C. Aliphatic and Polycyclic Aromatic Hydrocarbons in Surface Sediments in Admiralty Bay, King George Island, Antarctica. Antartic Sci. 2004, 16, 117–122. [Google Scholar] [CrossRef]
- Aislabie, J.; Balks, M.; Astori, N.; Stevenson, G.; Symons, R. Polycyclic Aromatic Hydrocarbons in Fuel-Oil Contaminated Soils, Antarctica. Chemosphere 2004, 39, 2201–2207. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, X.; Na, G.; Lin, Z.; Ding, Q.; Yao, Z. Correlations between Physicochemical Properties of PAHs and Their Distribution in Soil, Moss and Reindeer Dung at Ny-Ålesund of the Arctic. Environ. Pollut. 2009, 157, 3132–3136. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Gabov, D.N.; Chukov, S.N. Polycyclic aromatic hydrocarbons in soils of Vasilievsky Island (St. Petersburg). Eurasian Soil Sci. 2008, 41, 1321–1326. [Google Scholar] [CrossRef]
Subject of Research | NAPH 1 (2 2) | FLU (3) | PHEN (3) | ANTH (3) | FLUOR (4) | PYR (4) | BaANTH (4) | CHRY (4) |
---|---|---|---|---|---|---|---|---|
Non-disturbed soils | ||||||||
Moses | n/d 3 | n/d | 2.0 ± 0.8 | 14 ± 6 | n/d | 4.0 ± 1.6 | 6.0 ± 2.1 | 0.30 ± 0.12 |
Maish | 13 ± 5 | n/d | 1.8 ± 0.7 | 14 ± 6 | n/d | 9 ± 4 | n/d | 1.3 ± 0.5 |
Haswell | n/d | n/d | 2.2 ± 0.9 | 11 ± 5 | 1.6 ± 0.6 | 2.9 ± 1.2 | 2.6 ± 0.9 | 1.2 ± 0.5 |
Polluted soils | ||||||||
Bellingshausen near airport | 60 ± 25 | n/d | 6.0 ± 2.5 | 70 ± 14 | 2.5 ± 1.0 | 3.9 ± 1.6 | 25 ± 9 | 3.1 ± 1.3 |
Druzhnaya 4 | 21 ± 9 | n/d | 3.0 ± 1.2 | 28 ± 6 | 1.5 ± 0.6 | 13 ± 5 | 28 ± 10 | 3.0 ± 1.3 |
Mirniy | 19 ± 8 | n/d | 4.5 ± 1.8 | 40 ± 8 | 1.3 ± 0.5 | 8 ± 3 | 8.0 ± 2.8 | 1.7 ± 0.9 |
Former agrosoils | ||||||||
Russkaya | 47 ± 20 | 30 ± 10 | 48 ± 20 | 700 ± 140 | 120 ± 40 | 1500 ± 230 | 1300 ± 220 | 700 ± 170 |
Leningradskaya | n/d | n/d | 4.6 ± 1.8 | 70 ± 14 | 10 ± 4 | 150 ± 60 | 120 ± 26 | 70 ± 30 |
Subject of Research | BbFLUOR (5) | BkFLUOR (5) | BаPYR (5) | DBahANTH (5) | BghiPER (6) | IPYR (6) | ∑PAH | |
Non-disturbed soils | ||||||||
Moses | 0.7 ± 0.3 | n/d | 0.31 ± 0.12 | 0.60 ± 0.24 | n/d | n/d | 28 ± 11 | |
Maish | n/d | n/d | 0.42 ± 0.16 | n/d | n/d | n/d | 40 ± 16 | |
Haswell | 1.3 ± 0.5 | n/d | 0.34 ± 0.14 | n/d | n/d | n/d | 23 ± 9 | |
Polluted soils | ||||||||
Bellingshausen near airport | 6.0 ± 2.4 | n/d | 1.8 ± 0.8 | 3.0 ± 1.2 | n/d | 7.0 ± 2.6 | 190 ± 40 | |
Druzhnaya 4 | 19 ± 8 | 10 ± 4 | 2.0 ± 0.8 | 4.3 ± 1.7 | n/d | 8 ± 3 | 141 ± 28 | |
Mirniy | 5.0 ± 2.0 | 2.7 ± 1.1 | 1.0 ± 0.4 | 1.1 ± 0.4 | n/d | n/d | 92 ± 18 | |
Former agrosoils | ||||||||
Russkaya | 700 ± 150 | 800 ± 160 | 370 ± 70 | 600 ± 150 | 110 ± 22 | 650 ± 130 | 8100 ± 1600 | |
Leningradskaya | 70 ± 24 | 80 ± 30 | 36 ± 15 | 100 ± 25 | 9 ± 3 | 65 ± 24 | 820 ± 160 |
Subject of Research | PHEN/ ANTH | ANTH/(ANTH + PHEN) | BаANTH/ (BаANTH + CHRY) | BаPYR/ BghiPER | ||||
---|---|---|---|---|---|---|---|---|
Value | Genesis | Value | Genesis | Value | Genesis | Value | Genesis | |
Non-disturbed soils | ||||||||
Moses | 0.14 | Pyro 1 | 0.88 | Pyro | 0.95 | Pyro | n/d | n/d |
Maish | 0.13 | Pyro | 0.89 | Pyro | n/d 2 | n/d | n/d | n/d |
Haswell | 0.20 | Pyro | 0.83 | Pyro | 0.68 | Pyro | n/d | n/d |
Polluted soils | ||||||||
Bellingshausen near airport | 0.09 | Pyro | 0.92 | Pyro | 0.89 | Pyro | n/d | n/d |
Druzhnaya 4 | 0.11 | Pyro | 0.90 | Pyro | 0.90 | Pyro | n/d | n/d |
Mirniy | 0.11 | Pyro | 0.90 | Pyro | 0.82 | Pyro | n/d | n/d |
Former Agrosoils | ||||||||
Russkaya | 0.07 | Pyro | 0.94 | Pyro | 0.65 | Pyro | 3.36 | Trans 3 |
Leningradskaya | 0.07 | Pyro | 0.94 | Pyro | 0.63 | Pyro | 4.00 | Trans |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodygin, E.; Abakumov, E.; Nizamutdinov, T. The Content of Polyarenes in Soils of Antarctica: Variability across Landscapes. Land 2021, 10, 1162. https://doi.org/10.3390/land10111162
Lodygin E, Abakumov E, Nizamutdinov T. The Content of Polyarenes in Soils of Antarctica: Variability across Landscapes. Land. 2021; 10(11):1162. https://doi.org/10.3390/land10111162
Chicago/Turabian StyleLodygin, Evgeny, Evgeny Abakumov, and Timur Nizamutdinov. 2021. "The Content of Polyarenes in Soils of Antarctica: Variability across Landscapes" Land 10, no. 11: 1162. https://doi.org/10.3390/land10111162
APA StyleLodygin, E., Abakumov, E., & Nizamutdinov, T. (2021). The Content of Polyarenes in Soils of Antarctica: Variability across Landscapes. Land, 10(11), 1162. https://doi.org/10.3390/land10111162