Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies
Abstract
:1. Introduction
2. Cause and Type of Salt-Affected Soils
3. Extent and Distribution of Saline and Sodic Soils in Ethiopia
4. Influence of Salt Affected Soils on Crop Production and Soil Productivity
4.1. Influence of Salt-Affected Soils on Crop Production
4.2. Influence of Salt-Affected Soils on Soil Productivity
5. Effects of Salt-Affected Soils on Crop Production
6. Reclamation and Management Strategies
6.1. Chemical Approach
6.2. Biological Approaches
6.3. Physical Approach
7. Way Forward for Future Management
7.1. Short Term
7.2. Long-Term, Future Research Directions
8. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. Status of the World’s Soil Resources (SWSR)–Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015; 650p. [Google Scholar]
- Mustafa, M.A. Desertification Processes; UNESCO Chair of Desertification/University of Khartoum: Khartoum, Sudan, 2007. [Google Scholar]
- Levy, G.J.; Goldstein, D.; Mamedov, A.I. Saturated Hydraulic Conductivity of Semiarid Soils: Combined Effects of Salinity, Sodicity, and Rate of Wetting. Soil Sci. Soc. Am. J. 2005, 69, 653–662. [Google Scholar] [CrossRef]
- Sileshi, A.A.; Kibebew, K. Status of Salt Affected Soils, Irrigation Water Quality and Land suitability of Dubti/Tendaho Area, Northeastern Ethiopia. Doctoral Thesis, Haramaya University, Haramaya, Ethiopia, 2016. [Google Scholar]
- Qureshi, A.S.; Tesfaye, E.M.; Melese, M.G. Extent Characterization and Management Strategies for the Salt Affected Soils in Ethiopia; Project Report, No. 2; Dubai, United Arab Emirates, 2020; p. 94. Available online: https://www.researchgate.net/publication/340362011_EXTENT_CHARACTERIZATION_AND_MANAGEMENT_STRATEGIES_FOR_THE_SALT-AFFECTED_SOILS_IN_ETHIOPIA?channel=doi&linkId=5e84cf8ca6fdcca789e641b0&showFulltext=true (accessed on 6 December 2021).
- Abrol, I.P.; Yadav, J.S.P.; Massoud, F.I. Soil Resources, Management and Conservation Service. In Salt-Affected Soils and Their Management; FAO: Rome, Italy, 1988; Volume 5, p. 14. [Google Scholar]
- Halcrow, W. Water management manual. Amibara irrigation project. In Water Resource Development in Ethiopia; Forum for Social Studies: Addis Ababa, Ethiopia, 1983. [Google Scholar]
- Chatterjee, A.; Geaumont, B.; DeSutter, T.; Hopkins, D.G.; Rakkar, M. Rapid shifts in soil organic carbon mineralization within sodic landscapes. Arid L. Res. Manag. 2015, 29, 255–263. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brady, N.C.; Weil, R.R.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2008; Volume 13. [Google Scholar]
- Wondim, G.B.; Daba, A.W.; Qureshi, A.S. Effects of Salinity on Producers’ Livelihoods and Socio-economic Conditions; the Case of Afar Region, Northeastern Ethiopia. J. Sustain. Agric. Sci. 2020, 46, 35–46. [Google Scholar] [CrossRef]
- Abebe, F.; Alamirew, T.; Abegaz, F. Appraisal and mapping of soil salinity problem in amibara irrigation Farms, middle awash basin, Ethiopia. Int. J. Innov. Sci. Res. 2015, 13, 298–314. [Google Scholar]
- Mandal, S.; Raju, R.; Kumar, A.; Kumar, P.; Sharma, P.C. Current status of research, technology response and policy needs of salt-affected soils in India–A review. J. Indian Soc. Coast. Agric. Res 2018, 36, 40–53. [Google Scholar]
- Franceschini, F.; Signorini, R. Seawater intrusion via surface water vs. deep shoreline salt-wedge: A case history from the Pisa coastal plain (Italy). Groundw. Sustain. Dev. 2016, 2, 73–84. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z. Environmental salinisation processes: Detection, implications & solutions. Sci. Total Environ. 2020, 754, 142432. [Google Scholar]
- Biggs, A.J.W.; Watling, K.M.; Cupples, N.; Minehan, K. Salinity risk assessment for the Queensland Murray–Darling Region. Queensl. Dep. Environ. Resour. Manag. Toowoomba 2010, 3, 125. [Google Scholar]
- Gebrekidan, H. Investigation on Salt Affected Soils and Irrigation Water Quality in Melka Sedi-Amibara Plain, Rift Valley Zone of Ethiopia. Master’s Thesis, Addis Ababa University, Addis Ababa, Ethiop, 1985; 132p. [Google Scholar]
- Gebrekidan, H. Problems and Prospects of Salt Affected Soils in Ethiopia (Summary Literature Survey Report); AUA, Department of Plant Science: Iera Odos, Greece, 1987; 17p. [Google Scholar]
- Gebrekidan, H. Evaluation of the Potential Use of Langbeinite (K2SO4. 2MgSO4) as a Reclaiming Material for Sodic and Saline Sodic Soils. Ph.D. Thesis, The University of Arizona, Tucson, AZ, USA, 1995. [Google Scholar]
- Gebrekidan, H.; Mishra, B.B. Salt Affected Soils of Middle Awash River Basin of Ethiopia: Appraisal, Characterization and Classification. Geoderma 2005, 15, 7–15. [Google Scholar]
- Shahid, S.A.; Abdelfattah, M.A.; Omar, S.A.S.; Harahsheh, H.; Othman, Y.; Mahmoudi, H. Mapping and Monitoring of Soil Salinization Remote Sensing, GIS, Modeling, Electromagnetic Induction and Conventional Methods–Case Studies. In Proceedings of the International Conference on Soils and Groundwater Salinization in Arid Countries, Muscat, Oman, 11–14 January 2010; Volume 59, p. 97. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Gharaibeh, M.A.; Eltaif, N.I.; Albalasmeh, A.A. Reclamation of highly calcareous saline sodic soil using Atriplex halimus and by-product gypsum. Int. J. Phytoremediation 2011, 13, 873–883. [Google Scholar] [CrossRef]
- Zaman, M.; Shahid, S.A.; Heng, L. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer Nature: Basingstoke, UK, 2018; ISBN 331996190X. [Google Scholar]
- Gupta, M.; Srivastava, P.K.; Niranjan, A.; Tewari, S.K. Use of a bioaugmented organic soil amendment in combination with gypsum for Withania somnifera growth on sodic soil. Pedosphere 2016, 26, 299–309. [Google Scholar] [CrossRef]
- Mishra, V.K.; Jha, S.K.; Damodaran, T.; Singh, Y.P.; Srivastava, S.; Sharma, D.K.; Prasad, J. Feasibility of coal combustion fly ash alone and in combination with gypsum and green manure for reclamation of degraded sodic soils of the Indo-Gangetic Plains: A mechanism evaluation. L. Degrad. Dev. 2019, 30, 1300–1312. [Google Scholar] [CrossRef]
- Worku, A.; Bedadi, B. Studies on soil physical properties of salt affected soil in Amibara area, central rift valley of Ethiopia. Int. J. Agric. Sci. Nat. Resour. 2016, 3, 8–17. [Google Scholar]
- Asfaw, K.G.; Itanna, F. Screening some tef [Eragrostis tef (Zucc.) Trotter] accessions/varieties for salt tolerance during germination and seedling stage. Momona Ethiop. J. Sci. 2009, 1, 17–29. [Google Scholar] [CrossRef] [Green Version]
- Tsegaye, G. Surface Water-Groundwater Interactions and Effects of Irrigation on Water and Soil Resources in the Awash Valley; AAU Institutional Repository: Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Mohammed, H.; Mishra, B.B. Soils of Jijiga and Gode Research Centers; AAU Institutional Repository: Addis Ababa, Ethiopia, 2005. [Google Scholar]
- Mesfin, A. Irrigation for Sustainable Agricultural Development in Ethiopia, Ethiop. J. Agric. Sci. 2015, 25, 31–44. [Google Scholar]
- Mintesinot, D. Salt Affected Soils in Dire Dawa, Ethiopia. A Characterization and Classification MSc; Haramaya University: Haramaya, Ethiopia, 2020. [Google Scholar]
- Ganjegunte, G.K.; Sheng, Z.; Clark, J.A. Soil salinity and sodicity appraisal by electromagnetic induction in soils irrigated to grow cotton. L. Degrad. Dev. 2014, 25, 228–235. [Google Scholar] [CrossRef]
- Nekir, B. Effect of Organic Matter on Rice Nitrogen and Phosphorus Use Efficiency Under Calcareous Sodic Soil of Amibara District, Ethiopia. J. Agric. Crop. 2019, 5, 178–185. [Google Scholar] [CrossRef]
- Beakal, T.; Hussein, M.; Alemayehu, A. The effect of salinity on germination, vegetative and final growth stage of different rice (Oryza sativa L.) genotypes. J. Anim. Plant Sci. 2016, 29, 4651–4664. [Google Scholar]
- Fageria, N.K.; Gheyi, H.R.; Moreira, A. Nutrient bioavailability in salt affected soils. J. Plant Nutr. 2011, 34, 945–962. [Google Scholar] [CrossRef]
- Fallovo, C.; Rouphael, Y.; Rea, E.; Battistelli, A.; Colla, G. Nutrient solution concentration and growing season affect yield and quality of Lactuca sativa L. var. acephala in floating raft culture. J. Sci. Food Agric. 2009, 89, 1682–1689. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Jagendorf, A.; Zhu, J. Understanding and improving salt tolerance in plants. Crop Sci. 2005, 45, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, A.S.; Daba, A.W. Differential analysis of five quinoa (Chenopodium quinoa W.) genotypes under different salt stresses in a controlled environment. Am. J. Sustain. Agric. 2019, 13, 1–17. [Google Scholar]
- Gelaye, K.K.; Zehetner, F.; Loiskandl, W.; Klik, A. Comparison of growth of annual crops used for salinity bioremediation in the semi-arid irrigation area. Plant Soil Environ. 2019, 65, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Kitila, K.; Chala, A.; Workina, M. Effect of Gypsum and compost Application in Reclaiming Sodic soils at Small Scale Irrigation Farm in Bora District of East Shewa Zone, Oromia, Ethiopia. Agriways 2020, 8, 28–44. [Google Scholar] [CrossRef]
- Daba, A.W.; Qureshi, A.S.; Nisaren, B.N. Evaluation of some rhodes grass (Chloris gayana) genotypes for their salt tolerance, biomass yield and nutrient composition. Appl. Sci. 2019, 9, 143. [Google Scholar] [CrossRef] [Green Version]
- Farifteh, J.; Farshad, A.; George, R.J. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 2006, 130, 191–206. [Google Scholar] [CrossRef]
- Shirale, A.O.; Kharche, V.K.; Wakode, R.R.; Meena, B.P.; Das, H.; Gore, R.P. Influence of gypsum and organic amendments on soil properties and crop productivity in degraded black soils of Central India. Commun. Soil Sci. Plant Anal. 2018, 49, 2418–2428. [Google Scholar] [CrossRef]
- Setia, R.; Marschner, P.; Baldock, J.; Chittleborough, D. Is CO2 evolution in saline soils affected by an osmotic effect and calcium carbonate? Biol. Fertil. Soils 2010, 46, 781–792. [Google Scholar] [CrossRef]
- Setia, R.; Smith, P.; Marschner, P.; Gottschalk, P.; Baldock, J.; Verma, V.; Setia, D.; Smith, J. Simulation of salinity effects on past, present, and future soil organic carbon stocks. Environ. Sci. Technol. 2012, 46, 1624–1631. [Google Scholar] [CrossRef]
- Kumar, S.; Raju, R.; Sheoran, P.; Sharma, R.; Yadav, R.K.; Singh, R.K.; Sharma, P.C.; Chahal, V.P. Techno-economic evaluation of recharge structure as localized drainage option for sustainable crop production in sodic agro-ecosystems. Indian J. Agric. Sci. 2020, 90, 212–219. [Google Scholar]
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Ayenew, T. Water management problems in the Ethiopian rift: Challenges for development. J. Afr. Earth Sci. 2007, 48, 222–236. [Google Scholar] [CrossRef]
- Qadir, M.; Quillérou, E.; Nangia, V.; Murtaza, G.; Singh, M.; Thomas, R.J.; Drechsel, P.; Noble, A.D. Economics of salt-induced land degradation and restoration. Nat. Resour. Forum 2014, 38, 282–295. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Mohammed, M.; Daba, A.W.; Hailu, B.; Belay, G.; Tesfaye, A.; Ertebo, T. Improving agricultural productivity on salt-affected soils in Ethiopia: Farmers’ perceptions and proposals. Afr. J. Agric. Res. 2019, 14, 897–906. [Google Scholar]
- Worku, A.; Mamo, B.N.L.; Bekele, T. Evaluation of some selected forage grasses for their salt tolerance, ameliorative effect and biomass yield under salt affected soil at Southern Afar, Ethiopia. J. Soil Sci. Environ. Manag. 2019, 10, 94–102. [Google Scholar]
- Bekele, T.; Worku, A.; Mamo, L.; Nekir, B.; Aregahegn, Z. Effect of Chemical Amendments and Nitrogen Fertilizer on Rice Yeild under Salt Affected Sodic Condition. Results Nat. Resour. Manag. Res. 2020, 7, 27–35. [Google Scholar]
- Abate, S.; Belayneh, M.; Ahmed, F. Reclamation and amelioration of saline-sodic soil using gypsum and halophytic grasses: Case of Golina-Addisalem irrigation scheme, Raya Kobo Valley, Ethiopia. Cogent Food Agric. 2021, 7, 1859847. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.; Sarkar, B.; Jat, H.S.; Sharma, P.C.; Bolan, N.S. Soil salinity under climate change: Challenges for sustainable agriculture and food security. J. Environ. Manag. 2020, 280, 111736. [Google Scholar] [CrossRef]
- Sudi, A.; Melese, M.; Heluf, G.K. Impact of Gypsum and Sulfuric Acid Application on Cotton Yield under Saline Sodic Soil Condition in Melka Sadi Irrigated Farm. Acad. J. Agric. Res. 2016, 4, 91–95. [Google Scholar]
- Abegaz, F. Effect of sub-surface drainage system on groundwater table, soil salinity and crop yield in Melka Sadi pilot drainage scheme. In Proceedings of the 1st and Inaugural Conference of the Agronomy and Crop Physiology society of Ethiopia, Addis Ababa, Ethiopia, 30–31 May 1995; pp. 139–148. [Google Scholar]
- Bekele, T.; Lemma, W.; Solomon, T. Effect of Gypsum and Farmyard Manure on Selected Physicochemical Properties of Saline Sodic soil, at Amibara, Ethiopia. Int. J. Nov. Res. Life Sci. 2019, 7, 15–26. [Google Scholar]
- Yazdanpanah, N.; Pazira, E.; Neshat, A.; Mahmoodabadi, M.; Sinobas, L.R. Reclamation of calcareous saline sodic soil with different amendments (II): Impact on nitrogen, phosphorous and potassium redistribution and on microbial respiration. Agric. Water Manag. 2013, 120, 39–45. [Google Scholar] [CrossRef]
- Zhu, F.; Huang, N.; Xue, S.; Hartley, W.; Li, Y.; Zou, Q. Effects of binding materials on microaggregate size distribution in bauxite residues. Environ. Sci. Pollut. Res. 2016, 23, 23867–23875. [Google Scholar] [CrossRef] [PubMed]
- Bekele, T.; Nekir, B.; Mamo, L.; Worku, A. Effect of sole and combined application of biochar and gypsum on wheat productivity under saline sodic and sodic soil condition. Int. J. Nov. Res. Life Sci. 2021, 8, 1–9. [Google Scholar]
- Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar]
- Murtaza, G.; Murtaza, B.; Usman, H.M.; Ghafoor, A. Amelioration of Saline-sodic Soil using Gypsum and Low Quality Water in Following Sorghum-berseem Crop Rotation. Int. J. Agric. Biol. 2013, 15, 640–648. [Google Scholar]
- Nekir, B.; Mamo, L.; Worku, A.; Bekele, T. Evaluation of wheat varieties/lines for salt tolerance at different growth stages. Greener J. Soil Sci. Plant Nutr. 2019, 6, 1–7. [Google Scholar]
- Macci, C.; Doni, S.; Peruzzi, E.; Mennone, C.; Masciandaro, G. Biostimulation of soil microbial activity through organic fertilizer and almond tree association. L. Degrad. Dev. 2016, 27, 335–345. [Google Scholar] [CrossRef]
- Wani, S.H.; Kumar, V.; Shriram, V.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar] [CrossRef] [Green Version]
- Mamo, L.; Bekele, T.; Nekir, B.; Worku, A. Screening of Different Sesame (Sesamum indicum L.) Accessions for Salt Tolerance at Different Growth Stages. Int. J. Nov. Res. Life Sci. 2021, 8, 21–27. [Google Scholar]
- Hailu, B.; Mehari, H.; Tamiru, H. Evaluation of Sorghum for Salt Stress Tolerance Using Different Stages as Screening Tool in Raya Valley, Northern Ethiopia. Ethiop. J. Agric. Sci. 2020, 30, 265–276. [Google Scholar]
- Mamo, L.; Nekir, B.; Bekele, T.; Worku, A. Evaluation of Wheat (Triticum aestivum L.) Accession for Salt Tolerance at Different Growth Stages. Results Nat. Resour. Manag. Res. 2020, 7, 44–54. [Google Scholar]
- Hailu, B.; Mehari, H.; Tesfay, A. Screening of Some Selected Tef Varieties/Lines for their Salt Stress Tolerance. J. Nat. Sci. Res. 2019, 9. [Google Scholar] [CrossRef]
- Halcrow, S.I.R.W. Melka Sadi Pilot Drainage Scheme Final Report. 1986. Available online: http://197.156.72.153:8080/xmlui/handle/123456789/1364 (accessed on 6 December 2021).
Salt Affected Soil Type | Electrical Conductivity of Saturation Extracts (ECe) at 25 °C (dSm−1) | Saturation (%) of Cation Exchange Capacity with Na (ESP) | Reaction (pH Value) |
---|---|---|---|
Saline soil | >4 | <15 | <8.5 |
Saline sodic soil | >4 | >15 | <8.5 |
Sodic (alkali) soil | <4 | >15 | 8.5–10 |
Non-saline non-sodic | <4 | <15 | About neutral |
Soil Salinity Levels (dSm−1) | Afar | Oromia | Amhara | Tigray | ||||
---|---|---|---|---|---|---|---|---|
Km2 | % | Km2 | % | Km2 | % | Km2 | % | |
Non-saline (<2) | 40,787 | 42 | 287,768.25 | 88.70 | 137,428 | 88 | 48,067 | 97.29 |
Low saline (2–5) | 26,961 | 28 | 17,292.05 | 5.33 | 4903 | 3 | 0 | 0 |
Medium saline (5–10) | 9798 | 10 | 17,152.54 | 5.29 | 11,892 | 8 | 1339 | 2.71 |
High saline (10–15) | 5618 | 5 | 1576.72 | 0.49 | 1230 | 0.8 | 0 | 0 |
Extremely saline (>15) | 14,085 | 15 | 713.74 | 0.22 | 202 | 0.2 | 0 | 0 |
Total area | 97,204 | 100 | 324,428.69 | 100 | 155,648 | 100 | 49,604 | 100 |
Direct Effects | Amibara | Dubti | Total | χ2 Value | |||
---|---|---|---|---|---|---|---|
Freq. | % | Freq. | % | Freq. | % | ||
Abandoning farmland | 14 | 20.90 | 16 | 45.71 | 30 | 29.41 | 10.046 * |
Decreasing farm productivity | 40 | 59.70 | 14 | 40.00 | 54 | 52.94 | |
Decreasing household income | 8 | 11.94 | 1 | 2.86 | 9 | 8.82 | |
Indirect effects | |||||||
Increasing food insecurity | 22 | 32.84 | 8 | 22.86 | 30 | 29.41 | 8.130 |
Decreasing employment | 3 | 4.48 | 1 | 2.86 | 4 | 3.92 | |
Increasing landlessness | 27 | 40.30 | 19 | 54.23 | 46 | 45.10 | |
Increasing dependency | 6 | 8.96 | 0 | 0.00 | 6 | 5.88 |
Treatment | 2010 | 2011 | Avg. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SCM | PH | ABN | ABW | Y q ha−1 | SCM | PH | ABN | ABW | Y q ha−1 | Y q ha−1 | |
T1 | 492.0 | 61.6 | 7.7 | 3.63 | 15.4 | 501.37 | 71.33 | 16.63 | 4.71 | 18.04 | 16.71 |
T2 | 551.6 | 66.4 | 9.3 | 4.04 | 17.9 | 567.67 | 85.73 | 22.70 | 5.15 | 27.85 | 22.90 |
T3 | 611.6 | 71.0 | 14.6 | 4.53 | 31.3 | 571.65 | 87.00 | 25.43 | 5.58 | 31.20 | 31.28 |
T4 | 578.0 | 69.2 | 13.2 | 4.09 | 24.9 | 578.00 | 89.1 | 22.10 | 4.77 | 27.68 | 26.31 |
CV | 3.9 | 5.9 | 12.2 | 11.90 | 11.3 | 11.75 | 5.75 | 8.33 | 13.40 | 5.30 | 11.56 |
LSD = 5% | 44.16 * | 7.97 * | 2.74 * | NS | 5.01 * | NS | 9.50 * | 3.61 * | NS | 2.77 * | 3.24 * |
Treatment | Soil depth | Before apply chemical and planting | After apply chemical | After apply chemical | |||||||
2010 at 1st harvesting | 2011 at 2nd harvesting | ||||||||||
pHe | ECe (ds/m) | ESP (%) | pHe | ECe (ds/m) | ESP (%) | pHe | ECe (ds/m) | ESP (%) | |||
T1 | 0–30 | 8.4 | 12.35 | 33.83 | 8.2 | 11.77 | 28.19 | 8.1 | 10.77 | 27.19 | |
30–60 | 8.3 | 9.55 | 34.10 | 8.3 | 12.30 | 27.35 | 8.2 | 14.30 | 27.25 | ||
T2 | 0–30 | 8.6 | 13.67 | 34.26 | 7.8 | 5.60 | 25.28 | 7.9 | 5.20 | 23.28 | |
30–60 | 8.5 | 11.06 | 34.27 | 8.0 | 6.00 | 25.61 | 7.9 | 6.00 | 23.55 | ||
T3 | 0–30 | 8.5 | 14.33 | 36.51 | 7.6 | 6.30 | 25.55 | 7.5 | 5.40 | 20.55 | |
30–60 | 8.4 | 13.04 | 40.02 | 7.7 | 5.97 | 24.8 | 7.6 | 5.45 | 20.80 | ||
T4 | 0–30 | 8.4 | 11.44 | 28.25 | 7.9 | 7.43 | 22.45 | 7.8 | 7.43 | 22.35 | |
30–60 | 8.3 | 9.24 | 31.78 | 7.8 | 5.97 | 26.99 | 7.8 | 6.14 | 24.09 |
Gypsum Levels | BACA | After 1st Harvest | After 2 | ||||
---|---|---|---|---|---|---|---|
0 H | PAG | CGG | 0 H | PAG | CGG | ||
Exchangeable sodium percentage (%) | |||||||
0% | 55.03 | 56.64 | 45.29 | 44.45 | 57.37 | 39.99 | 38.60 |
75% | 39.56 | 26.71 | 25.97 | 36.88 | 18.59 | 17.63 | |
100% | 31.64 | 17.96 | 17.41 | 27.97 | 13.73 | 13.55 | |
125% | 26.06 | 11.99 | 12.41 | 22.23 | 8.94 | 8.93 | |
LSD | 1.17 | 0.37 | |||||
CV (%) | 2.33 | 0.86 | |||||
Electrical conductivity (dSm−1) | |||||||
0% | 20.00 | 19.92 | 14.90 | 14.59 | 20.10 | 11.92 | 11.90 |
75% | 11.87 | 8.18 | 8.37 | 11.05 | 7.28 | 7.34 | |
100% | 10.63 | 7.20 | 7.17 | 10.39 | 6.38 | 6.33 | |
125% | 9.11 | 5.55 | 6.00 | 8.73 | 4.13 | 4.62 | |
LSD | 0.645 | 0.28 | |||||
CV (%) | 3.7 | 3.58 |
Treatments | Mean Crop Yield (Q/ha) | Relative Yield Advantage |
---|---|---|
Main effect for compost | ||
0 (control) | 237.18 f | 0.00 |
2.5 t/ha compost | 235.03 f | 1.20 |
5.0 t/ha compost | 275.55 | 16.18 |
Main effect of Gypsum | ||
2 t/ha Gypsum | 284.44 e | 19.93 |
4 t/ha Gypsum | 325.00 d | 37.03 |
Interaction effects | ||
2.5 t/ha compost + 2 t/ha Gypsum | 355.77 c | 50.00 |
2.5 t/ha compost + 4 t/ha Gypsum | 396.40 b | 67.13 |
5.0 t/ha compost + 2 t/ha Gypsum | 406.70 b | 71.47 |
5.0 t/ha compost + 4 t/ha Gypsum | 430.33 a | 85.23 |
LCD (0.05) | 25.03 | - |
CV (%) | 6.05 | - |
t-test | **** | - |
Phytoremediation | ECei (dS m−1) | ECef (dS m−1) | ECer (%) | ESPi (%) | ESPf (%) | ESPr (%) |
---|---|---|---|---|---|---|
Cinchrus ciliaris | 16.00 | 4.73 | 70.55 | 25.14 | 10.24 | 59.27 |
Chloris gayana | 18.08 | 4.55 | 74.81 | 27.14 | 9.75 | 64.08 |
Panicum antidotale | 12.05 | 4.05 | 66.42 | 31.14 | 14.68 | 52.86 |
Sorghum sudanese | 9.81 | 4.65 | 52.60 | 21.14 | 13.08 | 38.13 |
Crop | No. Genotypes Tested | Tolerant Variety | ECe (dS/m) | Yield (Kg/ha) | Reference |
---|---|---|---|---|---|
Wheat | 49 | ETBW-5879 | 13.00 | 3998.00 | [64] |
Wheat | 200 | SANDALL-3 | 14.05 | 3709.02 | [69] |
Sesame | 100 | EW-01 | 10.00 | 844.00 | [67] |
Sorghum | 46 | Meko | 6.81 | 4722.00 | [68] |
Teff | 42 | Kora | 8.23 | 2200.00 | [70] |
Quinoa | 5 | ICBA Q3 | 20.01 | 2965.00 | [39] |
Sampling Point | Soil Depth (cm) | 1983 | 1989 | Reduction ECe (dS/m) | ||
---|---|---|---|---|---|---|
pH | ECe (dS/m) | pH | ECe (dS/m) | |||
A02 | 0–30 | 7.3 | 35.6 | 7.8 | 6.7 | 28.9 |
30–60 | 7.4 | 18.5 | 7.9 | 5.8 | 12.7 | |
60–90 | 7.3 | 16.0 | 8.0 | 6.9 | 9.1 | |
90–120 | 7.6 | 14.4 | 8.0 | 8.3 | 6.1 | |
A017 | 0–30 | 7.2 | 37.1 | 7.8 | 2.1 | 35.0 |
30–60 | 7.2 | 37.1 | 8.0 | 4.0 | 33.1 | |
60–90 | 7.2 | 12.3 | 7.4 | 3.59 | 8.71 | |
90–120 | 7.6 | 12.3 | 7.2 | 4.2 | 8.10 | |
A025 | 0–30 | 7.4 | 61.7 | 8.1 | 0.55 | 61.15 |
30–60 | 7.6 | 39.1 | 8.0 | 0.44 | 38.66 | |
60–90 | 7.6 | 25.8 | 8.0 | 0.36 | 25.44 | |
90–120 | 7.6 | 21.6 | 7.8 | 0.57 | 21.03 | |
A027 | 0–30 | 7.2 | 56.0 | 8.2 | 0.61 | 55.39 |
30–60 | 7.6 | 42.0 | 8.1 | 0.54 | 41.46 | |
60–90 | 7.6 | 42.0 | 7.9 | 0.4 | 41.6 | |
90–120 | 8.0 | 15.4 | 8.3 | 0.53 | 14.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daba, A.W.; Qureshi, A.S. Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies. Land 2021, 10, 1377. https://doi.org/10.3390/land10121377
Daba AW, Qureshi AS. Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies. Land. 2021; 10(12):1377. https://doi.org/10.3390/land10121377
Chicago/Turabian StyleDaba, Ashenafi Worku, and Asad Sarwar Qureshi. 2021. "Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies" Land 10, no. 12: 1377. https://doi.org/10.3390/land10121377
APA StyleDaba, A. W., & Qureshi, A. S. (2021). Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies. Land, 10(12), 1377. https://doi.org/10.3390/land10121377