A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem
Abstract
:1. Introduction
2. Literature Review
3. Data and Methods
3.1. Study Area
3.2. Data
3.3. Methods
3.3.1. Selection of Indicators
3.3.2. Computation of Indicators
3.3.2.1. Spatial Compactness
3.3.2.2. Land use Compatibility
3.3.2.3. Land Use Mix
3.3.2.4. Evenness of Population Distribution
3.3.3. Calculation of Social Benefit Index (SBI)
3.3.4. Sensitivity Analysis
4. Result and Discussion
4.1. Indicators of Social Benefit
4.2. Output of the Indicators
4.3. Mapping Social Benefit in Land Use Allocation
4.4. Sensitivity of SBI
4.5. Real-World Application of SBI
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, K.; Batty, M.; Huang, B.; Liu, Y.; Yu, L.; Chen, J. Spatial multi-objective land use optimization: Extensions to the non-dominated sorting genetic algorithm-II. Int. J. Geogr. Inf. Sci. 2011, 25, 1949–1969. [Google Scholar] [CrossRef]
- Sahebgharani, A. Multi-objective land use optimization through parallel particle swarm algorithm: Case study Baboldasht district of Isfahan, Iran. J. Urban Environ. Eng. 2016, 10, 42–49. [Google Scholar] [CrossRef]
- Lubida, A.; Veysipanah, M.; Pilesjo, P.; Mansourian, A. Land-use planning for sustainable urban development in Africa: A spatial and multi-objective optimization approach. Geod. Cartogr. 2019, 45, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Szabó, G. Multi-objective urban land use optimization using spatial data: A systematic review. Sustain. Cities Soc. 2021, 74, 103214. [Google Scholar] [CrossRef]
- Almusaed, A.; Almssad, A. Introductory chapter: Housing policy matters. In Housing; Almusaed, A., Almssad, A., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Guerrero, A.M.; Bennett, N.J.; Wilson, K.A.; Carter, N.; Gill, D.; Mills, M.; Ives, C.D.; Selinske, M.J.; Larrosa, C.; Bekessy, S.; et al. Achieving the promise of integration in social-ecological research: A review and prospectus. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabó, G. Impact of land use and land cover changes on urban ecosystem service value in Dhaka, Bangladesh. Land 2021, 10, 793. [Google Scholar] [CrossRef]
- Zhou, H.; He, S.; Cai, Y.; Wang, M.; Su, S. Social inequalities in neighborhood visual walkability: Using street view imagery and deep learning technologies to facilitate healthy city planning. Sustain. Cities Soc. 2019, 50, 101605. [Google Scholar] [CrossRef]
- Cao, K.; Huang, B.; Wang, S.; Lin, H. Sustainable land use optimization using Boundary-based Fast Genetic Algorithm. Comput. Environ. Urban Syst. 2012, 36, 257–269. [Google Scholar] [CrossRef]
- Yuan, M.; Liu, Y.; He, J.; Liu, D. Regional land-use allocation using a coupled MAS and GA model: From local simulation to global optimization, a case study in Caidian District, Wuhan, China. Cartogr. Geogr. Inf. Sci. 2014, 41, 363–378. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, Y.; Jin, X.; Shu, B.; Zhou, Y.; Yang, X. Simulating multi-objective land use optimization allocation using Multi-agent system—A case study in Changsha, China. Ecol. Modell. 2016, 320, 334–347. [Google Scholar] [CrossRef]
- Jenks, M.; Jones, C. Issues and concepts. In Dimensions of the Sustainable City; Jenks, M., Jones, C., Eds.; Springer: London, UK, 2010; p. 9. [Google Scholar]
- Eizenberg, E.; Jabareen, Y. Social sustainability: A new conceptual framework. Sustainability 2017, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Medved, P.; Kim, J.I.; Ursic, M. The urban social sustainability paradigm in Northeast Asia and Europe. Int. Rev. Spat. Plan. Sustain. Dev. 2020, 8, 16–37. [Google Scholar] [CrossRef]
- Larimian, T.; Sadeghi, A. Measuring urban social sustainability: Scale development and validation. Environ. Plan. B Urban Anal. City Sci. 2021, 48, 621–637. [Google Scholar] [CrossRef] [Green Version]
- Fröding, K.; Elander, I.; Eriksson, C. Neighbourhood development and public health initiatives: Who participates? Health Promot. Int. 2012, 27, 102–116. [Google Scholar] [CrossRef] [Green Version]
- Barton, H.; Grant, M.; Guise, R. Shaping Neighbourhoods: For Local Health and Global Sustainability; Spon Press: London, UK, 2021; pp. 89–91. [Google Scholar]
- Rabah, M.; Basiouny, M.; Ghanem, E.; Elhadary, A. Using RTK and VRS in direct geo-referencing of the UAV imagery. NRIAG J. Astron. Geophys. 2018, 7, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Grimmond, S. Urbanization and global environmental change: Local effects of urban warming. Geograph. J. 2007, 173, 83–88. [Google Scholar] [CrossRef]
- Sinaga, K.P.; Yang, M.S. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Li, F.; Gong, Y.; Cai, L.; Sun, C.; Chen, Y.; Liu, Y.; Jiang, P. Sustainable Land-Use Allocation: A Multiobjective Particle Swarm Optimization Model and Application in Changzhou, China. J. Urban Plan. Dev. 2018, 144, 04018010. [Google Scholar] [CrossRef]
- Schwaab, J.; Deb, K.; Goodman, E.; Lautenbach, S.; van Strien, M.J.; Grêt-Regamey, A. Improving the performance of genetic algorithms for land-use allocation problems. Int. J. Geogr. Inf. Sci. 2018, 32, 907–930. [Google Scholar] [CrossRef]
- Mouratidis, K. Is compact city livable? The impact of compact versus sprawled neighbourhoods on neighbourhood satisfaction. Urban Stud. 2018, 55, 2408–2430. [Google Scholar] [CrossRef]
- Nadeem, M.; Aziz, A.; Al-Rashid, M.A.; Tesoriere, G.; Asim, M.; Campisi, T. Scaling the potential of compact city development: The case of Lahore, Pakistan. Sustainability 2021, 13, 5257. [Google Scholar] [CrossRef]
- Kotulla, T.; Denstadli, J.M.; Oust, A.; Beusker, E. What does it take to make the compact city liveable for wider groups? Identifying key neighbourhood and dwelling features. Sustainability 2019, 11, 3480. [Google Scholar] [CrossRef] [Green Version]
- Mouratidis, K. Compact city, urban sprawl, and subjective well-being. Cities 2019, 92, 261–272. [Google Scholar] [CrossRef]
- Kai, C.; Bo, H. Comparison of spatial compactness evaluation methods for simple genetic algorithm based land use planning optimization problem. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Proceedings of the Joint International Conference on Theory, Data Handling and Modelling in GeoSpatial Information Science 2010, Hong Kong, China, 26–28 May 2010; Curran Associates: Red Hook, NY, USA, 2012; Volume 38, pp. 51–55. [Google Scholar]
- Aerts, J.C.; Eisinger, E.; Heuvelink, G.B.; Stewart, T.J. Using linear integer programming for multi-site land-use allocation. Geogr. Anal. 2003, 35, 148–169. [Google Scholar] [CrossRef]
- Stewart, T.J.; Janssen, R.; Van Herwijnen, M. A genetic algorithm approach to multiobjective land use planning. Comput. Oper. Res. 2004, 31, 2293–2313. [Google Scholar] [CrossRef]
- Williams, J.C.; ReVelle, C.S. Reserve assemblage of critical areas: A zero-one programming approach. Eur. J. Oper. Res. 1998, 104, 497–509. [Google Scholar] [CrossRef]
- Hu, Y. An analysis of land-use and land-cover change in the Zhujiang-Xijiang Economic Belt, China, from 1990 to 2017. Appl. Sci. 2018, 8, 1524. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wang, H.; Ji, Y.; Liu, Z.; Zhao, X. Land use zoning at the county level based on a multi-objective particle swarm optimization algorithm: A case study from Yicheng, China. Int. J. Environ. Res. Public Health 2012, 9, 2801–2826. [Google Scholar] [CrossRef] [Green Version]
- Cao, K.; Ye, X. Coarse-grained parallel genetic algorithm applied to a vector based land use allocation optimization problem: The case study of Tongzhou Newtown, Beijing, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 1133–1142. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, B. Land Use Optimization for a Rapidly Urbanizing City with Regard to Local Climate Change: Shenzhen as a Case Study. J. Urban Plan. Dev. 2015, 141, 05014007. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, W. Sustainable Land-Use Planning for a Downtown Lake Area in Central China: Multiobjective Optimization Approach Aided by Urban Growth Modeling. J. Urban Plan. Dev. 2014, 140, 04014002. [Google Scholar] [CrossRef] [Green Version]
- Karakostas, S.M. Land-use planning via enhanced multi-objective evolutionary algorithms: Optimizing the land value of major Greenfield initiatives. J. Land Use Sci. 2016, 11, 595–617. [Google Scholar] [CrossRef]
- Jana, A.; Sarkar, A.; Bardhan, R. Analysing outdoor airflow and pollution as a parameter to assess the compatibility of mass-scale low-cost residential development. Land Use Policy 2020, 99, 105052. [Google Scholar] [CrossRef]
- Pahlavani, P.; Sheikhian, H.; Bigdeli, B. Evaluation of residential land use compatibilities using a density-based IOWA operator and an ANFIS-based model: A case study of Tehran, Iran. Land Use Policy 2020, 90, 104364. [Google Scholar] [CrossRef]
- Abedini, A.; Lotfian, M.; Moradi, M. Land use compatibility assessment using a mdified TOPSIS model: A case study of elementary schools in Tehran. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Proceedings of the International Conference on Sensors & Models in Remote Sensing & Photogrammetry, Kish Island, Iran, 23–25 November 2015; Arefi, H., Motagh, M., Eds.; Copernicus Publications: Göttingen, Germany, 2015; Volume XL-1/W5. [Google Scholar] [CrossRef] [Green Version]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef] [Green Version]
- Mavoa, S.; Boulangé, C.; Eagleson, S.; Stewart, J.; Badland, H.M.; Giles-Corti, B.; Gunn, L. Identifying appropriate land-use mix measures for use in a national walkability index. J. Transp. Land Use 2018, 11, 681–700. [Google Scholar] [CrossRef]
- Christian, H.E.; Bull, F.C.; Middleton, N.J.; Knuiman, M.W.; Divitini, M.L.; Hooper, P.; Amarasinghe, A.; Giles-Corti, B. How important is the land use mix measure in understanding walking behaviour? Results from the RESIDE study. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gehrke, S.R.; Clifton, K.J. Toward a spatial-temporal measure of land-use mix. J. Transp. Land Use 2016, 9, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Diao, M. Selectivity, spatial autocorrelation and the valuation of transit accessibility. Urban Stud. 2015, 52, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Seong, E.Y.; Lee, N.H.; Choi, C.G. Relationship between land use mix and walking choice in high-density cities: A review of walking in Seoul, South Korea. Sustainability 2021, 13, 810. [Google Scholar] [CrossRef]
- Eom, S.; Suzuki, T.; Lee, M.H. A land-use mix allocation model considering adjacency, intensity, and proximity. Int. J. Geogr. Inf. Sci. 2020, 34, 899–923. [Google Scholar] [CrossRef]
- Im, H.N.; Choi, C.G. Measuring pedestrian volume by land use mix: Presenting a new entropy-based index by weighting walking generation units. Environ. Plan. B Urban Anal. City Sci. 2020, 47, 1219–1236. [Google Scholar] [CrossRef]
- Carpio-Pinedo, J.; Benito-Moreno, M.; Lamíquiz-Daudén, P.J. Beyond land use mix, walkable trips. An approach based on parcel-level land use data and network analysis. J. Maps 2021, 17, 23–30. [Google Scholar] [CrossRef]
- Im, H.N.; Choi, C.G. The hidden side of the entropy-based land-use mix index: Clarifying the relationship between pedestrian volume and land-use mix. Urban Stud. 2019, 56, 1865–1881. [Google Scholar] [CrossRef]
- Lee, C.; Moudon, A.V. The 3Ds + R: Quantifying land use and urban form correlates of walking. Transp. Res. Part D Transp. Environ. 2006, 11, 204–215. [Google Scholar] [CrossRef]
- Jiao, J.; Rollo, J.; Fu, B. The hidden characteristics of land-use mix indices: An overview and validity analysis based on the land use in Melbourne, Australia. Sustainability 2021, 13, 1898. [Google Scholar] [CrossRef]
- Song, Y.; Merlin, L.; Rodriguez, D. Comparing measures of urban land use mix. Comput. Environ. Urban Syst. 2013, 42, 1–13. [Google Scholar] [CrossRef]
- Constantinides, M.A. Optimal population growth and the social welfare function. East. Econ. J. 1988, 14, 229–238. [Google Scholar]
- Rajendran, L.P.; Boyko, C.T.; Coulton, C.J.; Hale, J.D.; Cooper, R.F. A socio-spatial approach to enable inclusive well-being in cities: A case study of Birmingham, UK. Soc. Sci. 2020, 9, 109. [Google Scholar] [CrossRef]
- Ulgiati, S.; Zucaro, A. Challenges in Urban Metabolism: Sustainability and Well-Being in Cities. Front. Sustain. Cities 2019, 1, 1–3. [Google Scholar] [CrossRef]
- Song, M.; Chen, D.M. A comparison of three heuristic optimization algorithms for solving the multi-objective land allocation (MOLA) problem. Ann. GIS 2018, 24, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Chen, D. An improved knowledge-informed NSGA-II for multi-objective land allocation (MOLA). Geo Spat. Inf. Sci. 2018, 21, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Liu, X.; Li, X.; Liang, J.; He, S. An improved artificial immune system for seeking the Pareto front of land-use allocation problem in large areas. Int. J. Geogr. Inf. Sci. 2013, 27, 922–946. [Google Scholar] [CrossRef]
- Weisstein, E.W. Moore Neighborhood. MathWorld—A Wolfram Web Resoursce 2005. Available online: https://mathworld.wolfram.com/MooreNeighborhood.html (accessed on 6 November 2021).
- He, S.; Yu, S.; Li, G.; Zhang, J. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 2020, 95, 104576. [Google Scholar] [CrossRef]
- Mohammadi, M.; Nastaran, M.; Sahebgharani, A. Sustainable spatial land use optimization through non-dominated sorting genetic algorithm-II (NSGA-II): (Case Study: Baboldasht District of Isfahan). Ind. J. Sci. Technol. 2015, 8, 118–129. [Google Scholar] [CrossRef]
- Vaiphei, S.T. Pair-wise comparative method for optimization of gene expression analysis using real-time RT-PCR. Res. J. Biotechnol. 2020, 15, 107–110. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.D.; Zhang, H.B.; Wang, X.C. Simulating land use structure optimization based on an improved multi-objective differential evolution algorithm. Polish J. Environ. Stud. 2019, 28, 887–899. [Google Scholar] [CrossRef]
- Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method. Comput. Oper. Res. 1995, 22, 763–770. [Google Scholar] [CrossRef]
- Kadoić, N. Characteristics of the analytic network process, a multi-criteria decision-making method. Croat. Oper. Res. Rev. 2018, 9, 235–244. [Google Scholar] [CrossRef] [Green Version]
- Olsen, A.A.; Wolcott, M.D.; Haines, S.T.; Janke, K.K.; McLaughlin, J.E. How to use the Delphi method to aid in decision making and build consensus in pharmacy education. Curr. Pharm. Teach. Learn. 2021, 13, 1376–1385. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making—the Analytic Hierarchy and Network Processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 2004, 13, 348–379. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision making with the Analytic Hierarchy Process. Sci. Iran. 2002, 9, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.D.L.; Bleys, B. Applying analytic hierarchy process to adaptation to saltwater intrusion in Vietnam. Sustainability 2021, 13, 2311. [Google Scholar] [CrossRef]
- Triantaphyllou, E.; Sánchez, A. A sensitivity analysis approach for some deterministic multi-criteria decision-making methods. Decis. Sci. 1997, 28, 151–194. [Google Scholar] [CrossRef]
- Ivanco, M.; Hou, G.; Michaeli, J. Sensitivity analysis method to address user disparities in the analytic hierarchy process. Expert Syst. Appl. 2017, 90, 111–126. [Google Scholar] [CrossRef]
- Erkut, E.; Tarimcilar, M. On sensitivity analysis in the analytic hierarchy process. IMA J. Manag. Math. 1991, 3, 61–83. [Google Scholar] [CrossRef]
- Sowlati, T.; Assadi, P.; Paradi, J.C. Developing a mathematical programming model for sensitivity analysis in analytic hierarchy process. Int. J. Math. Oper. Res. 2010, 2, 290–301. [Google Scholar] [CrossRef]
- Handayanto, R.T.; Tripathi, N.K.; Kim, S.M.; Guha, S. Achieving a sustainable urban form through land use optimisation: Insights from Bekasi City’s land-use plan (2010–2030). Sustainability 2017, 9, 221. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, X. An improved simulated annealing algorithm for interactive multi-objective land resource spatial allocation. Ecol. Complex. 2018, 36, 184–195. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, W.; He, J.; Liu, Y.; Ai, T.; Liu, D. A land-use spatial optimization model based on genetic optimization and game theory. Comput. Environ. Urban Syst. 2015, 49, 1–14. [Google Scholar] [CrossRef]
- Yang, L.; Sun, X.; Peng, L.; Shao, J.; Chi, T. An improved artificial bee colony algorithm for optimal land-use allocation. Int. J. Geogr. Inf. Sci. 2015, 29, 1470–1489. [Google Scholar] [CrossRef]
- Shaygan, M.; Alimohammadi, A.; Mansourian, A.; Govara, Z.S.; Kalami, S.M. Spatial multi-objective optimization approach for land use allocation using NSGA-II. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 906–916. [Google Scholar] [CrossRef]
- Masoomi, Z.; Mesgari, M.S.; Hamrah, M. Allocation of urban land uses by Multi-Objective Particle Swarm Optimization algorithm. Int. J. Geogr. Inf. Sci. 2013, 27, 542–566. [Google Scholar] [CrossRef]
- Jia, P.; Pan, X.; Liu, F.; He, P.; Zhang, W.; Liu, L.; Zou, Y.; Chen, L. Land use mix in the neighbourhood and childhood obesity. Obes. Rev. 2021, 22, e13098. [Google Scholar] [CrossRef] [PubMed]
- Dennis, M.; Barlow, D.; Cavan, G.; Cook, P.A.; Gilchrist, A.; Handley, J.; James, P.; Thompson, J.; Tzoulas, K.; Wheater, C.P.; et al. Mapping Urban Green Infrastructure: A Novel Landscape-Based Approach to Incorporating Land Use and Land Cover in the Mapping of Human-Dominated Systems. Land 2018, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Huang, H. Effects of transit-oriented development (TOD) on housing prices: A case study in Wuhan, China. Res. Transp. Econ. 2020, 80, 100813. [Google Scholar] [CrossRef]
- Veneri, P.; Edzes, A.J.E. Editorial: Well-being in Cities and Regions: Measurement, Analysis and Policy Practices; Region–ERSA: Louvain-la-Neuve, Belgium, 2017; Volume 4, pp. E1–E5. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Szolnoki, A.; Perc, M. Percolation threshold determines the optimal population density for public cooperation. Phys. Rev. E 2012, 85, 037101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, A.; Raturi, V.; Kanimozhee, S. Urban Transit Technology Selection for Many-to-Many Travel Demand Using Social Welfare Optimization Approach. J. Urban Plan. Dev. 2018, 144, 04017021. [Google Scholar] [CrossRef]
- Okulicz-Kozaryn, A.; Valente, R.R. Livability and Subjective Well-Being Across European Cities. Appl. Res. Qual. Life 2019, 14, 197–220. [Google Scholar] [CrossRef]
- Kwon, O.H.; Hong, I.; Yang, J.; Wohn, D.Y.; Jung, W.S.; Cha, M. Urban green space and happiness in developed countries. EPJ Data Sci. 2021, 10, 28. [Google Scholar] [CrossRef] [PubMed]
Intensity of Importance | Definition | Explanation |
---|---|---|
1 | Equal importance | Two activities contribute equally to the objective |
3 | Moderate importance of one over another | Experience and judgment slightly favor one activity over another |
5 | Essential or strong importance | Experience and judgment strongly favor one activity over another |
7 | Very strong importance | An activity is strongly favored, and its dominance demonstrated in practice |
9 | Extreme importance | The evidence favoring one activity over another is of tile highest possible order of affirmation |
2, 4, 6, 8 | Intermediate values between the two adjacent judgments | When compromise is needed |
Indicator | Ind 1 | Ind 2 | Ind 3 | Ind 4 | Eigenvector | Weight |
---|---|---|---|---|---|---|
Ind 1 | W11 | W12 | W13 | W14 | β1 | |
Ind 2 | 1/W12 | W22 | W23 | W24 | β2 | |
Ind 3 | 1/W13 | 1/W23 | W33 | W34 | β3 | |
Ind 4 | 1/W14 | 1/W24 | 1/W34 | W44 | β4 | |
Total | 1 |
Indicators | References |
---|---|
Spatial compactness | [2,10,22,25,26,56,76,77,78] |
Land use compatibility | [3,34,36,39,61,79,80,81] |
Land use mix | [45,46,47,48,49,82,83,84] |
Evenness of population distribution | [53,54,85,86,87,88] |
Land Use | R | C | I | G | E | H |
---|---|---|---|---|---|---|
R | 1 | 0.1 | 0.004 | 0.84 | 0.176 | 0.24 |
C | 0.1 | 1 | 1 | 0.204 | 0.196 | 0.056 |
I | 0.004 | 1 | 1 | 0.14 | 0.072 | 0.004 |
G | 0.84 | 0.204 | 0.14 | 1 | 0.46 | 0.436 |
E | 0.176 | 0.196 | 0.072 | 0.46 | 1 | 0.072 |
H | 0.24 | 0.056 | 0.004 | 0.436 | 0.072 | 1 |
Indicators | Weight |
---|---|
Land use compatibility | 0.24 |
Evenness of population distribution | 0.10 |
Land use mix | 0.14 |
Spatial compactness | 0.52 |
SBI Level | Area (km2) | Percentage |
---|---|---|
Very low | 7.16 | 19.58 |
Low | 14.66 | 40.06 |
Medium | 13.77 | 37.63 |
High | 1.00 | 2.73 |
Very High | 0.00 | 0.00 |
Total | 36.59 | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Szabó, G. A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem. Land 2021, 10, 1398. https://doi.org/10.3390/land10121398
Rahman MM, Szabó G. A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem. Land. 2021; 10(12):1398. https://doi.org/10.3390/land10121398
Chicago/Turabian StyleRahman, Md. Mostafizur, and György Szabó. 2021. "A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem" Land 10, no. 12: 1398. https://doi.org/10.3390/land10121398
APA StyleRahman, M. M., & Szabó, G. (2021). A Geospatial Approach to Measure Social Benefits in Urban Land Use Optimization Problem. Land, 10(12), 1398. https://doi.org/10.3390/land10121398