Rapid Response Indicators for Predicting Changes in Soil Properties Due to Solarization or Biosolarization on an Intensive Horticultural Crop in Semiarid Regions
Abstract
:1. Introduction
- To determine rapid response indicators that can predict the changes in some physical properties (structure, bulk density, and infiltration) and chemical properties (pH, ECe, OC, TN, and soil solution ions) of soil as a consequence of the implementation of solarization or biosolarization practices, and the influence of these practices on the development, quality, and yield of crops.
- To determine the extent to which these techniques attenuate the degradation and contamination of agricultural ecosystems and enhance their recovery.
2. Material and Methods
2.1. Experimental Design and Soil Sampling
- BSM: biosolarization with sheep manure. This consisted of an organic amendment based on semicomposted sheep and poultry manure (25 t ha−1) (Table 1), distributed on raised beds 110 cm in width, 30 cm in height, covered with a transparent polyethylene plastic sheet (40 microns thick), and spaced 40 cm apart.
- BB: biosolarization with brassicas. This consisted of an organic amendment based on Brassica juncea (L.). This crucifer was sown 50 days before the start of the experiment. When it reached the appropriate level of development, it was cut, crushed, and incorporated into the soil. Then, raised beds were formed and covered with plastic of 40 microns thickness.
- S: solarization. No organic amendment was incorporated in this treatment. Once the raised beds had been formed and the soil conditioned when moist, transparent solarization plastic of 40 microns thickness was spread over the surface.
- PT: pilot testing. Only the raised beds were formed, without applying any organic amendment, and the soil was not covered with plastic.
2.2. Physical, Chemical, and Biological Analysis of the Soil Samples and Soil Solution
2.3. Irrigation System and Inorganic Fertilization
2.4. Yield and Crop Quality
2.5. Statistical Analysis
3. Results
3.1. Soil Temperature, Moisture Content, and Redox Potential Values during Solarization and Biosolarization
3.2. Influence of Solarization and Biosolarization on Soil Properties
3.2.1. Physical Properties: Bulk Density (BD), Particle Density (PD), Porosity (PY), and Structural Stability (SS)
3.2.2. Hydraulic Behavior of the Soil: Infiltration Curves
3.2.3. Physical-Chemical Indicators: pH and ECe
3.2.4. Essential Elements for Plants
3.2.5. Chemical Indicators: OC, TN, NO3−, NO2−, PO43−, and CaCO3
3.2.6. Biological Indicators. Basal Respiration and Dehydrogenase Activity
3.3. Influence of Solarization and Biosolarization on the Soil Solution Composition, Yield, and Crop Quality
4. Discussion
4.1. Physical Properties
4.2. Physicochemical Properties
4.3. Available Elements
4.4. Organic Matter and Nitrogen
4.5. Soil Solution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Espinosa, M.; Andrade, E.; Rivera, P.; Romero, A. Soil degradation due to anthropic activities in northern Tamaulipas, México. Pap. Geogr. 2011, 53, 77–88. [Google Scholar]
- Martínez-Casasnovas, J.A.; Sánchez-Bosch, I. Impact assessment of changes in land use/conservation practices on soil erosion in the Penedès–Anoia vineyard region (NE Spain). Soil Tillage Res. 2000, 57, 101–106. [Google Scholar] [CrossRef]
- García, A.F. Characterization and Risks of Soil Salinization in the Bajo Segura Risk Network. Ph.D. Thesis, University of Murcia, Murcia, Spain, 2016. [Google Scholar]
- Bastida, F.; Kandeler, E.; Moreno, J.L.; Ros, M.; García, C.; Hernández, T. Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl. Soil Ecol. 2008, 40, 318–329. [Google Scholar] [CrossRef]
- Quintero, C.D. Mar Menor Residents Denounce the Limited State of their Beaches. Larazon.es. Available online: https://www.larazon.es/murcia/20200524/slbvri3bjjd5po4zoygpztdnxq.html (accessed on 10 July 2020).
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Huang, X.; Jia, Z.; Guo, J.; Li, T.; Sun, D.; Meng, H.; Yu, G.; He, X.; Ran, W.; Zhang, S.; et al. Ten- year long-term organic fertilization enhances carbon sequestration and calcium-mediated stabilization of aggregate-associated organic carbon in a reclaimed Cambisol. Geoderma 2019, 355, 113880. [Google Scholar] [CrossRef]
- Mathew, I.; Shimelis, H.; Mutema, M.; Minasny, B.; Chaplot, V. Crops for increasing soil organic carbon stocks—A global meta-analysis. Geoderma 2020, 367, 114230. [Google Scholar] [CrossRef]
- Mermut, A.R. Carbon Sequestration and its Importance for Arid and Desert Environments. In Suistainable Use and Management of Soils in Arid and Semiarid Regions; Quaderna Editorial; Ortiz, R., Faz, A., Eds.; Catena Verlag GMBH: Alicante, Spain, 2002; pp. 210–220. [Google Scholar]
- Bello, A.; López-Pérez, J.A.; Sanz, R.; Escuer, M.; Herrero, J. Biofumigation and organic amendments. In Regional Workshop on Methyl Bromide Alternatives for North Africa and Southern European Countries; United Nations Envionment Programme (UNEP): Paris, France, 2000; pp. 113–141. [Google Scholar]
- Fernández-Bayo, J.D.; Achmon, Y.; Harrold, D.R.; McCurry, D.G.; Hernandez, K.; Dahlquist-Willard, R.M.; Simmons, C.W. Assessment of two solid anaerobic digestate soil amendments for effects on soil quality and biosolarization efficacy. J. Agric. Food Chem. 2017, 65, 3434–3442. [Google Scholar] [CrossRef]
- Di Mola, I.; Ventorino, V.; Cozzolino, E.; Ottaiano, L.; Romano, I.; Duri, L.G.; Mori, M. Biodegradable mulching vs traditional polyethylene film for sustainable solarization: Chemical properties and microbial community response to soil management. Appl. Soil Ecol. 2021, 163, 103921. [Google Scholar] [CrossRef]
- Simmons, C.W.; Guo, H.; Claypool, J.T.; Marshall, M.N.; Perano, K.M.; Stapleton, J.J.; VanderGheynst, J.S. Managing compost stability and amendment into soil to enhance soil heating during soil solarization. Waste Manag. Res. 2013, 33, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Achmon, Y.; Harrold, D.R.; Claypool, J.T.; Stapleton, J.J.; Vander Gheynst, J.S.; Simmons, C.W. Assessment of major California fruit processing residues as soil amendments for biosolarization. Waste Manag. Res. 2016, 48, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Díaz, M.; Lacasa-Plasencia, A. Effects of biofumigation plus solarization on crop production. Ind. Crops. Prod. 2005, 7, 225–228. [Google Scholar]
- Gandariasbeitia, M.; López-Pérez, J.A.; Juaristi, B.; Abaunza, L.; Larregla, S. Biodisinfestation With Agricultural By-Products Developed Long-Term Suppressive Soils Against Meloidogyne incognita in Lettuce Crop. Front. Sustain. Food Syst. 2021, 5, 168–174. [Google Scholar] [CrossRef]
- Sennett, L.; Burton, D.L.; Goyer, C.; Zebarth, B.J. Influence of chemical fumigation and biofumigation on soil nitrogen cycling processes and nitrifier and denitrifier abundance. Soil Biol. Biochem. 2021, 162, 108421. [Google Scholar] [CrossRef]
- Hernández-Piñera, A. Effect of Biosolarization with Brassica carinata Pellets and Fresh Sheep Manure on the Indirect Capacity and Oospore Viability of Phytophthora capsici. Master’s Thesis, University of Cartagena, Murcia, Spain, 2011. [Google Scholar]
- Gimsing, A.; Poulsen, J.; Pedersen, H.; Hansen, H. Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil. Environ. Sci. Technol. 2007, 41, 4271–4276. [Google Scholar] [CrossRef] [PubMed]
- Morillas, G.J. Humidity and Temperature Regimes of the Soils of the Island of La Palma. Ph.D. Thesis, University of La Laguna, La Palma, Spain, 2015. [Google Scholar]
- Sotomayor, D.; Allen, L.H.; Chen, Z.; Dickson, D.W.; Hewlett, T. Anaerobic soil management practices and solarization for nematode control in Florida. Fla. Agric. Exp. Stn. J. Ser. Number 1999, 29, 53–170. [Google Scholar]
- Stevenson, F.J.; Cole, M.A. Cycles of Soil, 2nd ed.; John Wiley & Sons: London, UK, 1999. [Google Scholar]
- Eiza, M.J.; Studdert, G.A.; Fioriti, N.; Domínguez, G.F. Aggregate stability and total and particulate organic matter in Balcarce molisols. In Proceedings of the Conference XX Argentine Congress of Soil Science, Salta-Jujuy, Argentina, 19–22 September 2006. [Google Scholar]
- Cerdá, A. Forest fires and aggregate stability. Cuad. Geogr. 1993, 53, 1–16. [Google Scholar]
- Murray, R.M.; Bojórquez, S.; Hernández, A.; Orozco, M.G.; García, J.D.; Gómez, R.; Ontiveros, H.M.; Aguirre, J. Effect of organic matter on soil physical properties in an agroforestry system in the northern coastal plain of Nayarit. Mexico. Biociencia 2011, 1, 27–35. [Google Scholar]
- Gallardo, J.F. Mineralization and humification of soil organic matter: Consequences on contamination. In Proceedings of the X Congress of the Colombian Society of Soil Science, Medellín, Colombia, 11–13 October 2000. [Google Scholar]
- Martínez, E.; Fuentes, J.P.; Acebo, E. Organic carbon and soil properties. Rev. Cienc. Suelo Nutr. Veg. 2008, 8, 68–96. [Google Scholar] [CrossRef]
- Official State Bulletin. Law 3/2020, of July 27, for the Recovery and Protection of the Mar Menor. Available online: https://www.boe.es (accessed on 13 September 2021).
- Cooper, J.; Niggli, U.; Leifert, C. Handbook of Organic Food Safety and Quality; Woodhead Publishing: Cambridge, UK, 2007; pp. 1–11. [Google Scholar]
- Esteve, M.A. The Mar Menor Disaster, History of an Environmental Collapse that Could Have Been Avoided. Available online: https://www.nationalgeographic.com.es/ciencia/desastre-mar-menor-historia-colapso-ambiental-que-pudo-haberse-evitado,_17247 (accessed on 5 December 2021).
- Food and Agriculture Organization of the United Nations (FAO). Guidelines for Soil Description, 4th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; p. 109. [Google Scholar]
- FAO-ISRIC-ISSS. World Reference Base for Soil Resources; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015. [Google Scholar]
- Little, T.M.; Hills, F.J. Métodos Estadísticos Para la Investigación en Agricultura, 2nd ed.; Trillas: Juarez City, Mexico, 1991; p. 270. [Google Scholar]
- Mathieu, C.; Pieltain, F. Analyse Physique des sols: Méthodes Choisies; Lavoisier: Paris, France; Lavoisier: London, UK; Lavoisier: New York, NY, USA, 1998; p. 275. [Google Scholar]
- Ponce, V.M. Engineering Hydrology, Principles and Practices; Prentice-Hall: Upper Saddle River, NJ, USA, 1989; p. 920. [Google Scholar]
- Anderson, J.; Ingram, J. Tropical soil biology and fertility program. In A handbook of Methods; CAB International: Wallingford, UK, 1993. [Google Scholar]
- USDA. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report 42, Version 4.0. United States Department of Agriculture. Nat. Resour. Conserv. Serv. Natl. Soil Surv. Cent. 2004, 42, 736. [Google Scholar]
- Lax, A.; Díaz, E.; Castillo, V.; Albaladejo, J. Reclamation of physical and chemical properties of a salinized soil by organic amendment. Arid Soil Res. Rehabil. 1994, 8, 9–17. [Google Scholar] [CrossRef]
- Hénin, S.; Gras, R.; Monnier, G. Le profil cultural. Masson Cie 1969, 1, 332. [Google Scholar]
- Blake, G.R.; Hartge, K.H. Particle density. In Methods of Soil Analysis, 2nd ed.; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1986; pp. 377–382. [Google Scholar]
- Rouquerol, R.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.M.; Pernicone, N.; Ramsay, J.D.F.; Sing, K.S.W.; Unger, K. Recommendations for the characterization of porous solids (Technical Report). Pure Appl. Chem. 1994, 66, 1739–1758. [Google Scholar] [CrossRef]
- García, C.; Hernández, T.; Costa, F.; Ceccanti, B.; Mascindaro, G. The dehydrogenase activity of soils: An ecological marker in processes of perturbed system regeneration. In Proceedings of the Conference XI International Symposium of Environmental Biogeochemistry, Salamanca, Spain, 28 September 1993. [Google Scholar]
- García, C.; Hernández, T. Research and Prospects for Soil Enzymology in Spain; CEBAS-CSIC: Murcia, Spain, 2000; p. 352. [Google Scholar]
- Cobertera, E. Applied Soil Science. Soils, Agricultural Production, Territorial Planning and Environmental Impacts; Cátedra, Ed.; Fuenlabrada: Madrid, Spain, 1993; Volume 1, ISBN 84-376-1108-3. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Innovation in Family Farming; FAO: Rome, Italy, 2014; p. 139. ISSN 0081-4539. [Google Scholar]
- U.S. Salinity Laboratory. United States Department of Agriculture, Agricultural Research Service, USSL Research Databases; EEUU: Riverside, CA, USA, 1960. [Google Scholar]
- Zribi, W.; Faci, J.; Aragüès, R. Effects of different mulching systems on soil moisture and temperature, and on different parameters of drip-irrigated nectarine. In Proceedings of the XXIX National Irrigation Congress “Towards an Efficient and Profitable Irrigation”, Córdoba, Spain, 8 June 2011. [Google Scholar]
- Caravaca, F.; Lax, A.; Albaladejo, J. Aggregate stability and carbon characteristics of particle-size fractions in cultivated and forested soils of semiarid Spain. Soil Till. 2004, 78, 83–90. [Google Scholar] [CrossRef]
- Sánchez Navarro, A.; Gil-Vázquez, J.M.; Delgado-Iniesta, M.J.; Marín-Sanleandro, P.; Blanco Bernadeau, M.A.; Ortiz-Silla, R. Establishing an index and identification of limiting parameters for characterizing soil quality in Mediterranean ecosystems. Catena 2015, 131, 35–45. [Google Scholar] [CrossRef]
- Bernard, L. Salt tolerance of vegetable crops in the West. In Agriculture Information Bulletin; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1959; p. 5. [Google Scholar]
- Alías, L.J.; Ortiz, R.; Sánchez, A.; Linares, P.; Sánchez, M.J.; Marín, P. LUCDEME Project. Soil Map, Scale 1:100,000 Totana 954; Ministry of Agriculture, Fisheries and Food (ICONA): Madrid, Spain, 1992; p. 115. [Google Scholar]
- Celis, J.E.; Sandoval, M.; Martínez, B.; Quezada, C. Effect of organic and mineral amendments upon soil respiration and microbial biomass in a saline-sodic soil. Cienc. Investig. Agrar. 2013, 40, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Osorio, A.; Césped, R. Effect of localized irrigation methods on soil profile salinity in table grapevine: electrical conductivity, sodium, chlorine and boron at different points of the profile. Agric. Téc. 2000, 60, 178–194. [Google Scholar] [CrossRef]
- Rodríguez, J. Effect of soil solarization on weed emergence. Agrocienc. Urug. 2012, 16, 19–85. [Google Scholar]
- Leiros, M.C.; Trasar-Cepeda, C.; Seoane, S.; Gil-Sotres, F. Dependence of mineralization of soil organic matter on temperature and moisture. Elsevier Sci. 1999, 31, 327–335. [Google Scholar] [CrossRef]
- Aragüés, R. Water quality for irrigation: Effects on plants and soils. Alto Aragon Irrigation. 2011, 1, 18–23. [Google Scholar]
- Alarcón, I. Solarization, Biofumigation and Biosolarization as Strategies in Sustainable Agriculture: Effect on Some Soil Properties. Master’s Thesis, University of Murcia, Murcia, Spain, 2018. [Google Scholar]
- Cerana, J.; Wilson, M.G.; De Battist, J.J.; Noir, J.; Quintero, C. Structural stability of Vertisols in a groundwater irrigated rice system. Rev. Investig. Agropecu. 2006, 35, 87–106. [Google Scholar]
- Ulfat, M.; Athar, H.U.R.; Khan, Z.D.; Kalaji, H.M. RNAseq analysis reveals altered expression of key ion transporters causing differential uptake of selective ions in canola (Brassica napus L.) grown under NaCl Stress. Plants 2020, 9, 891. [Google Scholar] [CrossRef]
- Smith, J.L.; Doran, J.W. Measurement and use of pH and electrical conductivity for soil quality analysis. Methods Assess. Soil Qual. 1997, 49, 169–185. [Google Scholar]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; Santos, C.A.D.; Alves, P.R.L.; Nogueira, M.A. Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Singh, Y.P.; Mishra, V.K.; Singh, S.; Sharma, D.K.; Singh, D.; Singh, U.S.; Ismail, A.M. Productivity of sodic soils can be enhanced through the use of salt tolerant rice varieties and proper agronomic practices. Field Crops Res. 2016, 190, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Anwar, S.; Xu, J.; Hou, Z.; Salah, A.; Khan, S.; Zhang, C. The response of transgenic Brassica species to salt stress: A review. Biotechnol. Lett. 2018, 40, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Cornu, J.Y.; Denaix, L.; Lacoste, J.; Sappin-Didier, V.; Nguyen, C.; Schneider, A. Impact of temperature on the dynamics of organic matter and on the soil-to-plant transfer of Cd, Zn and Pb in a contaminated agricultural soil. Environ. Sci. Pollut. Res. 2016, 23, 2997–3007. [Google Scholar] [CrossRef] [PubMed]
- Maqueda, C.; Morillo, E.; López, R.; Undabeytia, T.; Cabrera, F. Influence of organic amendments on Fe, Cu, Mn, and Zn availability and clay minerals of different soils. Arch. Agron. Soil Sci. 2014, 61, 599–613. [Google Scholar] [CrossRef]
- García, C.; Moreno, J.L.; Hernández, M.T.; Polo, A. Heavy metals and their implication on soil quality. In Science and Environment; Valladares, F., Ed.; CCMA-CSIC: Madrid, Spain, 2002; pp. 125–138. [Google Scholar]
- El-Hedek, K.S.; El-Kholy, M.M.; El-Tohamy, A. Changes in fractions of some micronutrients as affected by continuous cropping and long-term application of mineral and organic fertilizer. J. Soil Sci. Agric. Eng. 2014, 5, 1247–1268. [Google Scholar] [CrossRef]
- Nemeth, T.; Molnar, E.; Csillag, J.; Lukacs, A.; Bujtas, K.; Van Genuchten, M.T. Model experiments to assess the fate of heavy metals in soils. Environ. Geochem. Health 1996, 1, 505–514. [Google Scholar]
- Shuman, L.M. Effect of organic matter on the distribution of manganese, copper, iron, and zinc in soil fractions. Soil Sci. 1988, 146, 192–198. [Google Scholar] [CrossRef]
- Shuman, L.M. Effect of phosphorus level on extractable micronutrients and their distribution among soil fractions. Soil Sci. Soc. Am. J. 1998, 52, 136–141. [Google Scholar] [CrossRef]
- Chen, X.; Wei, X.; Hao, M.; Zhao, J. Changes in soil iron fractions and availability in the loess belt of northern China after 28 years of continuous cultivation and fertilization. Pedosphere 2019, 29, 123–131. [Google Scholar] [CrossRef]
- Sofi, T.A.; Tewari, A.K.; Razdan, V.K.; Koul, V.K. Long term effect of soil solarization on soil properties and cauliflower vigor. Phytoparasitica 2014, 42, 1–11. [Google Scholar] [CrossRef]
- Arteaga, M.; Garcés, N.; Guridis, F.; Pino, J.A. A review on integrators for assessing the impact of humic substances on the soil-water leaching system (I). Rev. Cienc. Téc. Agropecu 2004, 23, 83–88. [Google Scholar]
- Flores-Sánchez, B.; Segura-Castruita, M.; Fortis-Hernández, M.; Martínez-Corral, L.; Aldaco-Nuncio, R.A.; Orozco-Vidal, J.A. Solarized manure amendments on aggregate stability of a cultivated Aridisol of Mexico. Rev. Mexicana Cienc. Agric. 2015, 6, 1543–1555. [Google Scholar]
- Cuellas, M.; Amoia, P.; Delmazzo, P. Effect of different soil disinfection treatments on edaphic properties. Chil. J. Agric. Anim. Sciences. Agro-Ciencia 2019, 35, 26–37. [Google Scholar]
- Ladd, T.L.; Jacobson, M.; Buriff, C.R. Japanese beetles: Extracts from neem tree seeds as feeding deterrents. J. Econ. Entomol. 1978, 71, 810–813. [Google Scholar] [CrossRef]
- Orozco, C.; Martínez, P. Evaluation of the inoculation of asymbiotic nitrogen-fixing microorganisms isolated from the rhizosphere of Pinus patula in Colombia. Bosque 2009, 30, 70–77. [Google Scholar]
- Rojas, I.S.; Coronado, M.A.; Rossetti, S.R.; Beltrán, F.A. Nitrate contamination from agricultural activities in the lower basin of the Mayo river in the state of Sonora, Mexico. Terra Latinoam. 2019, 38, 247–256. [Google Scholar]
- Fontela, C.; Morábito, J.; Maffei, J.; Salatino, S.; Mirábile, C.; Mastrantonio, L. Drip irrigation in Mendoza, Argentina: Evaluation of irrigation uniformity and the increase of salinity, sodicity and chloride ions in the soil. Rev. Fac. Cienc. Agrar. 2009, 41, 135–154. [Google Scholar]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2011, 112, 313–323. [Google Scholar] [CrossRef]
- Marín, J.I. Evaluation of the Effect of Different Organic Matter on Soil Microbiota, Soil Nitrate Content, and Crop Production and Quality of Tomato and Watermelon Crops in Sandy Soil under Plastic. Ph.D. Thesis, University of Almería, Almería, Spain, 2016. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
Humidity (%) | 20.2 ± 1.2 | Pt (P2O5, %) | 1.31 ± 0.06 |
pHw (1:2.5) | 8.84 ± 0.42 | Kt (K2O, %) | 2.54 ± 0.17 |
ECe (1:5 dS m−1) | 7.93 ± 0.45 | Cat (CaO, %) | 6.16 ± 0.31 |
A (%) | 49.7 ± 2.5 | Mgt (MgO, %) | 1.66 ± 0.11 |
TOM (%) | 50.3 ± 2.8 | Nat (Na2O, %) | 1.02 ± 0.05 |
TOC (%) | 29.2 ± 2.1 | Bt (mg kg−1) | 23.3 ± 1.4 |
C/N | 17.8 ± 0.9 | Fet (%) | 0.69 ± 0.03 |
TN (%) | 1.64 ± 0.09 | Mnt (%) | 0.03 ± 1.5 10−3 |
Cut (mg kg−1) | 62.9 ± 3.7 | Znt (mg kg−1) | 269 ± 16 |
Horizon | Depths (cm) | OC (g kg−1) | TN (g kg−1) | NO3− (mg kg−1) | C/N | CaCO3 (g kg−1) | CEC (cmolc(+) kg−1) | pHw | pHk | ECe (dS m−1) | SAR |
---|---|---|---|---|---|---|---|---|---|---|---|
Ap1 | 0–25 | 10.4 | 1.6 | 462 | 6.5 | 416 | 11.9 | 7.76 | 7.61 | 6.58 | 3.1 |
Ap2 | 25–65 | 4.0 | 0.9 | 256 | 4.4 | 395 | 11.7 | 8.37 | 7.53 | 1.23 | 2.8 |
Ab | 65–98 | 11.3 | 1.9 | 101 | 5.9 | 262 | 13.1 | 8.21 | 7.38 | 2.08 | 2.1 |
Bk | +98 | 2.9 | 1.0 | 57 | 2.9 | 470 | 10.1 | 8.35 | 7.90 | 1.76 | 2.9 |
Treatment | Tm | Tmin | Tmax | μm | μmin | μmax |
---|---|---|---|---|---|---|
S | 32.6a | 27.2a | 38.2b | 23ab | 19ab | 30a |
BB | 32.7a | 27.5a | 37.4b | 26a | 22a | 29a |
BSM | 31.9a | 25.6a | 44.3a | 16b | 13b | 19b |
PT | 27.9b | 24.2b | 36.9b | 15b | 13b | 18b |
Treatment | OC | TN | C/N | CaCO3 | NO3− | NO2− |
---|---|---|---|---|---|---|
S | 10.7a | 1.70a | 6.3b | 401a | 436.2a | 4.2b |
BB | 10.5a | 1.46b | 7.2a | 389a | 226.2b | 5.4a |
BSM | 10.1a | 1.35b | 7.5a | 387a | 175.1b | 3.9b |
PT | 10.4a | 1.65a | 6.3b | 397a | 371.3a | 5.3a |
Treatment | Yc | Yt | HI | M | Mc |
---|---|---|---|---|---|
S | 21,002b | 31,350b | 0.669a | 610a | 411a |
BB | 23,301a | 34,902a | 0.667a | 609a | 414a |
BSM | 23,700a | 35,406a | 0.669a | 609a | 415a |
PT | 21,367b | 31,785b | 0.672a | 612a | 412a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Navarro, A.; Jiménez-Ballesta, R.; Girona-Ruiz, A.; Alarcón-Vera, I.; Delgado-Iniesta, M.J. Rapid Response Indicators for Predicting Changes in Soil Properties Due to Solarization or Biosolarization on an Intensive Horticultural Crop in Semiarid Regions. Land 2022, 11, 64. https://doi.org/10.3390/land11010064
Sánchez-Navarro A, Jiménez-Ballesta R, Girona-Ruiz A, Alarcón-Vera I, Delgado-Iniesta MJ. Rapid Response Indicators for Predicting Changes in Soil Properties Due to Solarization or Biosolarization on an Intensive Horticultural Crop in Semiarid Regions. Land. 2022; 11(1):64. https://doi.org/10.3390/land11010064
Chicago/Turabian StyleSánchez-Navarro, Antonio, Raimundo Jiménez-Ballesta, Aldara Girona-Ruiz, Iris Alarcón-Vera, and María José Delgado-Iniesta. 2022. "Rapid Response Indicators for Predicting Changes in Soil Properties Due to Solarization or Biosolarization on an Intensive Horticultural Crop in Semiarid Regions" Land 11, no. 1: 64. https://doi.org/10.3390/land11010064
APA StyleSánchez-Navarro, A., Jiménez-Ballesta, R., Girona-Ruiz, A., Alarcón-Vera, I., & Delgado-Iniesta, M. J. (2022). Rapid Response Indicators for Predicting Changes in Soil Properties Due to Solarization or Biosolarization on an Intensive Horticultural Crop in Semiarid Regions. Land, 11(1), 64. https://doi.org/10.3390/land11010064