Knowledge Transfer on Digital Transformation: An Analysis of the Olive Landscape in Andalusia, Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study: The Olive Landscape in Andalusia
2.2. Social Network Analysis (SNA)
2.3. Analytic Hierarchy Process (AHP)
- Level I: It corresponds to the overall objective of the model. In this case, to evaluate the performance of the KT function of the SIT of the DT in the Andalusian olive landscape.
- Level III: It includes the alternatives to be evaluated. In this case, there is one alternative: The TIS of DT in the Andalusian olive landscape.
3. Results and Discussion
3.1. Knowledge Transfer Network
3.1.1. Network Features
3.1.2. Actors in the Network of Knowledge Transfer
3.2. Knowledge Transfer Function
3.2.1. Local Priorities of the KT Sub-Functions
3.2.2. Performance of the TIS in the KT Function and Sub-Functions
4. Conclusions
- Capacity building of stakeholders: actions that involve the development of specific capacities of knowledge-generating and transferring agents should be promoted, such as the networking (between knowledge generators and with end-users), shared governance, transdisciplinary approaches and the inclusion of the social responsibility of innovations.
- KT mechanisms: designing KT actions that are not only based on a top-down flow of information but also seek a dialogue of knowledge between the stakeholders. Thus, for example, forums, symposia, congresses and so on should include a section for end-user feedback. Furthermore, such actions can be reinforced by participatory action research approaches. In this way, KT will move from being a mere space at the end of research projects to a real iterative process of technological and social innovation that creates real solutions for sustainable rural development.
- Incentives for KT: future public policies should acknowledge that knowledge generation and knowledge transfer go hand in hand and should be implemented together. In this context, the “transfer six-year period” promoted in Spanish universities is a valuable tool to encourage new knowledge to materialise into tangible solutions in society. However, it is not enough, as it is not part of a comprehensive transfer programme that (a) grants the corresponding funding to carry out KT, (b) fosters research on the effectiveness and efficiency of KT mechanisms and (c) establishes transversal quality mechanisms for evaluated KT processes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kernecker, M.; Knierim, A.; Wurbs, A.; Kraus, T.; Borges, F. Experience versus Expectation: Farmers’ Perceptions of Smart Farming Technologies for Cropping Systems across Europe. Precis. Agric. 2020, 21, 34–50. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A Review of Social Science on Digital Agriculture, Smart Farming and Agriculture 4.0: New Contributions and a Future Research Agenda. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100315. [Google Scholar] [CrossRef]
- Lamprinopoulou, C.; Renwick, A.; Klerkx, L.; Hermans, F.; Roep, D. Application of an Integrated Systemic Framework for Analysing Agricultural Innovation Systems and Informing Innovation Policies: Comparing the Dutch and Scottish Agrifood Sectors. Agric. Syst. 2014, 129, 40–54. [Google Scholar] [CrossRef]
- Krishnan, R.; Agarwal, R.; Bajada, C.; Arshinder, K. Redesigning a Food Supply Chain for Environmental Sustainability—An Analysis of Resource Use and Recovery. J. Clean. Prod. 2020, 242, 118374. [Google Scholar] [CrossRef]
- Makate, C.; Makate, M.; Mango, N.; Siziba, S. Increasing Resilience of Smallholder Farmers to Climate Change through Multiple Adoption of Proven Climate-Smart Agriculture Innovations. Lessons from Southern Africa. J. Environ. Manag. 2019, 231, 858–868. [Google Scholar] [CrossRef]
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for Science to Overcome Hurdles Thwarting the Full Promise of the ‘Digital Agriculture’ Revolution. J. Sci. Food Agric. 2018, 100, 5083–5092. [Google Scholar] [CrossRef] [Green Version]
- World Bank. World Development Report 2016: Digital Dividends; World Bank: Washington, DC, USA, 2016. [Google Scholar]
- Trendov, N.; Varas, S.; Zeng, M. Tecnologías Digitales En La Agricultura y Las Zonas Rurales; FAO: Rome, Italy, 2019. [Google Scholar]
- Mwila, N.K. The Role of Social Networks in Knowledge Transfer: A Study of the Small and Medium Scale Agriculture Sector in Zambia. Ph.D. Thesis, Monash University, Clayton, Australia, 2016. [Google Scholar]
- Fundación de Estudios Rurales Agricultura Familiar en España. Anuario 2019; UPA-MAPA: Madrid, Spain, 2019. [Google Scholar]
- Perez-Trujillo, M.; Lacalle-Calderon, M. The Impact of Knowledge Diffusion on Economic Growth across Countries. World Dev. 2020, 132, 104995. [Google Scholar] [CrossRef]
- CELAC. Sistemas de Innovación Para El Desarrollo Rural Sostenible; Comunidad de Estudios Latinoamericanos Caribeños: Santiago, Chile, 2017. [Google Scholar]
- FAO. Transformar La Alimentación y La Agricultura Para Alcanzar Los ODS; FAO: Rome, Italy, 2018; ISBN 9789251306741. [Google Scholar]
- Audretsch, D.B.; Bönte, W.; Keilbach, M. Entrepreneurship Capital and Its Impact on Knowledge Diffusion and Economic Performance. J. Bus. Ventur. 2008, 23, 687–698. [Google Scholar] [CrossRef]
- Klarl, T. Knowledge Diffusion and Knowledge Transfer Revisited: Two Sides of the Medal. J. Evol. Econ. 2014, 24, 737–760. [Google Scholar] [CrossRef]
- Skare, M.; Soriano, D.R. Technological and Knowledge Diffusion Link: An International Perspective 1870–2019. Technol. Soc. 2021, 66, 101652. [Google Scholar] [CrossRef]
- Dost, M.; Badir, Y.F.; Sambasivan, M.; Umrani, W.A. Open-and-Closed Process Innovation Generation and Adoption: Analyzing the Effects of Sources of Knowledge. Technol. Soc. 2020, 62, 101309. [Google Scholar] [CrossRef]
- Stanko, M.A.; Olleros, X. Industry Growth and the Knowledge Spillover Regime: Does Outsourcing Harm Innovativeness but Help Profit? J. Bus. Res. 2013, 66, 2007–2016. [Google Scholar] [CrossRef]
- Morone, P.; Taylor, R. Knowledge Architecture and Knowledge Flows. In Encyclopedia of Information Science and Technology; IGI Global: New York, NY, USA, 2009; pp. 2319–2324. [Google Scholar]
- Deng, C.-P.; Wang, T.; Teo, T.S.; Song, Q. Organizational Agility through Outsourcing: Roles of IT Alignment, Cloud Computing and Knowledge Transfer. Int. J. Inf. Manag. 2021, 60, 102385. [Google Scholar] [CrossRef]
- Ryan, S.; O’Connor, R.V. Development of a Team Measure for Tacit Knowledge in Software Development Teams. J. Syst. Softw. 2009, 82, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Dhanaraj, C.; A Lyles, M.; Steensma, H.K.; Tihanyi, L. Managing Tacit and Explicit Knowledge Transfer in IJVs: The Role of Relational Embeddedness and the Impact on Performance. J. Int. Bus. Stud. 2004, 35, 428–442. [Google Scholar] [CrossRef]
- Dasanayaka, U.; Matsuda, Y. Role of Social Capital in Local Knowledge Evolution and Transfer in a Network of Rural Communities Coping with Landslide Disasters in Sri Lanka. Int. J. Lightweight Mater. Manuf. 2021, 67. [Google Scholar] [CrossRef]
- Carlile, P.R.; Rebentisch, E.S. Into the Black Box: The Knowledge Transformation Cycle. IEEE Eng. Manag. Rev. 2003, 31, 67–80. [Google Scholar] [CrossRef]
- Hekkert, M.P.; Suurs, R.A.A.; Negro, S.O.; Kuhlmann, S.; Smits, R.E.H.M. Functions of Innovation Systems: A New Approach for Analysing Technological Change. Technol. Forecast. Soc. Change 2007, 74, 413–432. [Google Scholar] [CrossRef] [Green Version]
- Inkpen, A.; Tsang, E. Social Capital, Networks, and Knowledge Transfer. Acad. Manag. Rev. 2005, 30, 146–165. [Google Scholar] [CrossRef] [Green Version]
- Arévalo, A.B.; Pérez, J.E. Desarrollo, Territorio y Capital Social. Un Análisis a Partir de Dinámicas Relacionales En El Desarrollo Rural. Redes Revista Hispana Para el Análisis de Redes Sociales 2013, 24, 81–113. [Google Scholar] [CrossRef] [Green Version]
- Granovetter, M. Granovetter-Economic Action and the Problem of Embeddedness. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
- Azhar, A.; Malik, M.N.; Muzaffar, A. Social Network Analysis of Army Public School Shootings: Need for a Unified Man-Made Disaster Management in Pakistan. International J. Disaster Risk Reduct. 2019, 34, 255–264. [Google Scholar] [CrossRef]
- Carlsson, B.; Stankiewicz, R. On the Nature, Function and Composition of Technological Systems. In Technological Systems and Economic Performance: The Case of Factory Automation; Carlsson, B., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1995; pp. 21–56. [Google Scholar]
- Musiolik, J.; Markard, J.; Hekkert, M. Networks and Network Resources in Technological Innovation Systems: Towards a Conceptual Framework for System Building. Technol. Forecast. Soc. Change 2012, 79, 1032–1048. [Google Scholar] [CrossRef] [Green Version]
- Galli, R.; Teubal, M. Paradigmatic Shifts in National Innovation Systems. In Systems of Innovation; Edquist, C., Ed.; Pinter: London, UK, 1997. [Google Scholar]
- Bergek, A.; Jacobson, S.; Carlsson, B.; Lindmark, S.; Rickne, A. Analyzing the Dynamics and Functionality of Technological Systems: A Manual. Technology 2008, 37, 407–429. [Google Scholar]
- Bergek, A.; Hekkert, M.; Jacobsson, S.; Markard, J.; Sandén, B.; Truffer, B. Technological Innovation Systems in Contexts: Conceptualizing Contextual Structures and Interaction Dynamics. Environ. Innov. Soc. Transit. 2015, 16, 51–64. [Google Scholar] [CrossRef] [Green Version]
- Markard, J.; Hekkert, M.; Jacobsson, S. The Technological Innovation Systems Framework: Response to Six Criticisms. Environ. Innov. Soc. Transit. 2015, 16, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Bergek, A.; Jacobsson, S.; Carlsson, B.; Lindmark, S.; Rickne, A. Analyzing the Functional Dynamics of Technological Innovation Systems: A Scheme of Analysis. Res. Policy 2008, 37, 407–429. [Google Scholar] [CrossRef] [Green Version]
- Wieczorek, A.J.; Hekkert, M.P. Systemic Instruments for Systemic Innovation Problems: A Framework for Policy Makers and Innovation Scholars. Sci. Public Policy 2012, 39, 74–87. [Google Scholar] [CrossRef]
- FAOSTAT. Statistical Database of the FAO; Rome. Available online: http://faostat.fao.org (accessed on 21 October 2021).
- Junta de Andalucía Implementación de La Guía Metodológica Para La Identificación de Necesidades y Barreras Para La Digitalización Del Sector Agroalimentario, Para La Elaboración de Mapas de Capital Relacional y Para La Identificación de Buenas Prácticas y Proyectos; Regions 4Food Proyect-Interreg Europe; Consejería de Agricultura, Ganadería, Pesca y Desarrollo Sostenible: Sevilla, Spain, 2019.
- Parra-López, C.; Reina-Usuga, L.; Carmona-Torres, C.; Sayadi, S.; Klerkx, L. Digital Transformation of the Agrifood System: Quantifying the Conditioning Factors to Inform p Olicy Planning in the Olive Sector. Land Use Policy 2021, 108, 105537. [Google Scholar] [CrossRef]
- MAPA. Avance Del Anuario de Estadística 2018 (Datos 2017 y 2018); MAPA: Madrid, Spain, 2019. [Google Scholar]
- CAGPDS. Macromagnitudes Agrarias de Andalucía. Renta Agraria de Andalucía. Año 2020. Avance.; Sevilla, Spain, 2020. Available online: https://www.juntadeandalucia.es/export/drupaljda/2_estimacion_renta_agraria2020_Nov_2020_Rev-2.pdf (accessed on 21 October 2021).
- CAPDER. Plan Director Del Olivar Andaluz; Junta de Andalucía: Sevilla, Spain, 2015. [Google Scholar]
- Gómez-Limón, J.A.; Arriaza Balmón, M. Evaluación de La Sostenibilidad de Las Explotaciones de Olivar En Andalucía; Fundación Unicaja: Malaga, Spain, 2011; ISBN 9788492443161. [Google Scholar]
- Gallardo-Cobos, R.; Sánchez-Zamora, P. Olivar y Desarrollo Rural: Las Oportunidades Derivadas de La Diversificación Concéntrica. In J. Gómez-Limón, y M. Parras (Cords.), Economía y Comercialización de Los Aceites de Oliva. Factores y Perspectivas Para el Liderazgo Español del Mercado Global; Caja Mar Rural: Jaén, Spain, 2017; pp. 161–177. ISBN 9788495531858. [Google Scholar]
- Parra-Lopez, C.; Calatrava-Requena, J. Comparison of Farming Techniques Actually Implemented and Their Rationality in Organic and Conventional Olive Groves in Andalusia, Spain. Biol. Agric. Hortic. 2006, 24, 35–59. [Google Scholar] [CrossRef]
- Parra-Lopez, C.; De-Haro-Giménez, T.; Calatrava-Requena, J. Diffusion and Adoption of Organic Farming in the Southern Spanish Olive Groves. J. Sustain. Agric. 2007, 30, 105–151. [Google Scholar] [CrossRef]
- Hinojosa-Rodríguez, A.; Parra-López, C.; Carmona-Torres, C.; Sayadi, S.; Gallardo-Cobos, R. Certified Quality Systems and Farming Practices in Olive Growing: The Case of Integrated Production in Andalusia. Renew. Agric. Food Syst. 2014, 29, 291–309. [Google Scholar] [CrossRef]
- Hinojosa-Rodríguez, A.; Parra López, C.; Carmona Torres, C.; Sayadi Gmada, S. Protected Designation of Origin in the Olive Growing Sector: Adoption Factors and Goodness of Practices in Andalusia, Spain. New Medit 2014, 13, 2–12. [Google Scholar]
- Parra-López, C.; Hinojosa-Rodríguez, A.; Sayadi, S.; Carmona-Torres, C. Protected Designation of Origin as a Certified Quality System in the Andalusian Olive Oil Industry: Adoption Factors and Management Practices. Food Control. 2015, 51, 321–332. [Google Scholar] [CrossRef]
- Parra-López, C.; Hinojosa-Rodríguez, A.; Carmona-Torres, C.; Sayadi, S. ISO 9001 Implementation and Associated Manufacturing and Marketing Practices in the Olive Oil Industry in Southern Spain. Food Control. 2016, 16, 23–31. [Google Scholar] [CrossRef]
- Sanz Menéndez, L. Análisis de Redes Sociales: O Cómo Representar Las Estructuras Sociales Subyacentes. Apuntes de Ciencia y Tecnología 2003, 7, 21–29. [Google Scholar]
- García, M.S.; Méndez, P.N. Los Sistemas Productivos Regionales Desde La Perspectiva Del Análisis de Redes. REDES-Revista Hispana Para el Análisis de Redes Sociales 2004, 6, 1–26. [Google Scholar]
- Coleman, J. Social Capital in the Creation of Human Capital. In Networks in the Knowledge Economy; Cross, R., Parker, A., Lisa, S., Eds.; Oxford University Press: New York, NY, USA, 2003; pp. 57–81. ISBN 00029602. [Google Scholar]
- Camacho, D.; Panizo-LLedot, Á.; Bello-Orgaz, G.; Gonzalez-Pardo, A.; Cambria, E. The Four Dimensions of Social Network Analysis: An Overview of Research Methods, Applications, and Software Tools. Inf. Fusion 2020, 63, 88–120. [Google Scholar] [CrossRef]
- Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Scientia Iranica 2002. [Google Scholar] [CrossRef] [Green Version]
- Bach, H.; Bergek, A.; Bjørgum, Ø.; Hansen, T.; Kenzhegaliyeva, A.; Steen, M. Implementing Maritime Battery-Electric and Hydrogen Solutions: A Technological Innovation Systems Analysis. Transp. Res. Part D Transp. Environ. 2020, 87, 102492. [Google Scholar] [CrossRef]
- Edsand, H.-E. Technological Innovation System and the Wider Context: A Framework for Developing Countries. Technol. Soc. 2019, 58, 101150. [Google Scholar] [CrossRef]
- Liu, G.; Gao, P.; Chen, F.; Yu, J.; Zhang, Y. Technological Innovation Systems and IT Industry Sustainability in China: A Case Study of Mobile System Innovation. Telemat. Inform. 2018, 35, 1144–1165. [Google Scholar] [CrossRef]
- Planko, J.; Cramer, J.; Hekkert, M.P.; Chappin, M.M.H. Combining the Technological Innovation Systems Framework with the Entrepreneurs’ Perspective on Innovation. Technol. Anal. Strateg. Manag. 2017, 29, 614–625. [Google Scholar] [CrossRef] [Green Version]
- Forman, E.H.; Selly, M.A. Decision by Objectives: How to Convince Others That You Are Right; World Scientific Publishing: Singapore, 2001. [Google Scholar]
- Kurttila, M.; Pesonen, M.; Kangas, J.; Kajanus, M. Utilizing the Analytic Hierarchy Process (AHP) in SWOT Analysis—A Hybrid Method and Its Application to a Forest-Certification Case. For. Policy Econ. 2000, 1, 41–52. [Google Scholar] [CrossRef]
- Parra-López, C.; Groot, J.C.J.; Carmona-Torres, C.; Rossing, W.A.H. An Integrated Approach for Ex-Ante Evaluation of Public Policies for Sustainable Agriculture at Landscape Level. Land Use Policy 2009, 26, 1020–1030. [Google Scholar] [CrossRef]
- Calabrese, A.; Costa, R.; Levialdi, N.; Menichini, T. Integrating Sustainability into Strategic Decision-Making: A Fuzzy AHP Method for the Selection of Relevant Sustainability Issues. Technol. Forecast. Soc. Change 2019, 139, 155–168. [Google Scholar] [CrossRef]
- Carmona-Torres, C.; Parra-López, C.; Hinojosa-Rodríguez, A.; Sayadi, S. Farm-Level Multifunctionality Associated with Farming Techniques in Olive Growing: An Integrated Modeling Approach. Agric. Syst. 2014, 127, 97–114. [Google Scholar] [CrossRef]
- Ramanathan, R.; Ganesh, L.S. Group Preference Aggregation Methods Employed in AHP: An Evaluation and an Intrinsic Process for Deriving Members’ Weightages. Eur. J. Oper. Res. 1994, 79, 249–265. [Google Scholar] [CrossRef]
- Sixt, G.N.; Klerkx, L.; Griffin, T.S. Transitions in Water Harvesting Practices in Jordan’s Rainfed Agricultural Systems: Systemic Problems and Blocking Mechanisms in an Emerging Technological Innovation System. Environ. Sci. Policy 2018, 84, 235–249. [Google Scholar] [CrossRef]
- Schiller, K.J.F.; Klerkx, L.; Poortvliet, P.M.; Godek, W. Exploring Barriers to the Agroecological Transition in Nicaragua: A Technological Innovation Systems Approach. Agroecol. Sustain. Food Syst. 2020, 44, 88–132. [Google Scholar] [CrossRef] [Green Version]
- Ngwese, N.M.; Saito, O.; Sato, A.; Boafo, Y.A.; Jasaw, G. Traditional and Local Knowledge Practices for Disaster Risk Reduction in Northern Ghana. Sustain. Times 2018, 10, 825. [Google Scholar] [CrossRef] [Green Version]
- Bodin, Ö.; Crona, B.I. The Role of Social Networks in Natural Resource Governance: What Relational Patterns Make a Difference? Global Environ. Change 2009, 19, 366–374. [Google Scholar] [CrossRef]
- Audouin, S.; Gazull, L.; Gautier, D. Territory Matters: Exploring the Functioning of an Innovation System through the Filter of Local Territorial Practices—The Example of the Adoption of Cashew Trees in Burkina Faso. J. Rural Stud. 2018, 63, 130–140. [Google Scholar] [CrossRef]
- Rivera, M.; Guarín, A.; Pinto-Correia, T.; Almaas, H.; Mur, L.A.; Burns, V.; Czekaj, M.; Ellis, R.; Galli, F.; Grivins, M.; et al. Assessing the Role of Small Farms in Regional Food Systems in Europe: Evidence from a Comparative Study. Glob. Food Secur. 2020, 26, 100417. [Google Scholar] [CrossRef]
- Sanz Cañada, J.; Sánchez Escobar, F.; Hervás Fernández, I.; Coq Huelva, D. Investigación, Innovación y Transferencia En El Sector Del Aceite de Oliva En España. Un Análisis Mediante Paneles Presenciales de Expertos. OLIVAE 2014, 120, 31–48. [Google Scholar]
Network Structure | Position of the Nodes | ||
---|---|---|---|
Medium degree | Arithmetic mean of the relations for each node | Degree | No. of connections of a node. Can be incoming or outgoing |
Centralisation | Extent to which the network is or is not organised around more central nodes | Degree centrality | No. of nodes to which a specific node is connected. A node with a high degree of centrality can be considered “well connected” |
Network density | No. of connections established in the network out of the total number of possible connections. It measures how close a network is to be complete. A complete network has all possible edges (relationships) and a density equal to 1. | Authority | Importance of a node based on the quality and connectivity of the nodes that connect it. A node has a high authority when it is connected by many other nodes that in turn are connecting many other nodes |
1 | Olive Grower |
2 | Cooperative/Cooperative Group |
3 | Non-Cooperative Group (e.g., Interoleo, etc.) |
4 | Protected Designation of Origin (PDO) |
5 | Agricultural Association (SAT, ATRIA, API) |
6 | Agricultural Organisation (e.g., UPA, COAG, ASAJA) |
7 | Refinery |
8 | Packaging Company |
9 | Distribution Agent |
10 | Rural Development Group (RDG) |
11 | Communal Olive Heritage |
12 | Interprofessional Olive Oil |
13 | Private Consultant |
14 | Company Supplying Agricultural Inputs |
15 | Digital Technologies Company |
16 | Knowledge Generating Agent (University, Public Research Organisation, etc.) |
17 | Knowledge Transfer Agent (Technology Centre, etc.) |
18 | Knowledge Management Agent (e.g., IDEA, RETA, etc.) |
19 | Public Administration (Agricultural Delegation, OCA, County Council, etc.) |
20 | Financial Institution (Bank, Savings Bank) |
21 | Scientific and Dissemination Media (Journal, Internet, etc.) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reina-Usuga, L.; Parra-López, C.; Carmona-Torres, C. Knowledge Transfer on Digital Transformation: An Analysis of the Olive Landscape in Andalusia, Spain. Land 2022, 11, 63. https://doi.org/10.3390/land11010063
Reina-Usuga L, Parra-López C, Carmona-Torres C. Knowledge Transfer on Digital Transformation: An Analysis of the Olive Landscape in Andalusia, Spain. Land. 2022; 11(1):63. https://doi.org/10.3390/land11010063
Chicago/Turabian StyleReina-Usuga, Liliana, Carlos Parra-López, and Carmen Carmona-Torres. 2022. "Knowledge Transfer on Digital Transformation: An Analysis of the Olive Landscape in Andalusia, Spain" Land 11, no. 1: 63. https://doi.org/10.3390/land11010063
APA StyleReina-Usuga, L., Parra-López, C., & Carmona-Torres, C. (2022). Knowledge Transfer on Digital Transformation: An Analysis of the Olive Landscape in Andalusia, Spain. Land, 11(1), 63. https://doi.org/10.3390/land11010063