Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Regional Input–Output Analysis
2.2. Multi-Regional Decomposition Analysis
2.3. Data Sources
3. Results
3.1. Transfer Flows of Embodied Agricultural Land
3.2. Driving Factors of Embodied Agricultural Land Transfers
3.3. Transfer Patterns of the Agricultural Land Flows
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Borgstrom, G. The hungry planet: The modern world at the edge of famine. J. Eur. Econ. Hist. 1965, 22, 99–112. [Google Scholar]
- Liu, Y.S. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Ministry of Land and Resources of the People’s Republic of China. General Planning Outline of National Land Use (2006–2020). 2008. Available online: http://www.gov.cn/zxft/ft149/content_1144625.htm (accessed on 19 February 2021).
- General Office of the State Council of the People’s Republic of China. Outline of National Land Planning (2016–2030). 2017. Available online: http://www.gov.cn/zhengce/content/2017-02/04/content_5165309.htm (accessed on 19 February 2021).
- Chen, J.; Wu, F.L. Housing and land financialization under the state ownership of land in China. Land Use Policy 2020, 104844. [Google Scholar] [CrossRef]
- Kastner, T.; Rivas, M.J.I.; Koch, W.; Nonhebel, S. Global changes in diets and the consequences for land requirements for food. Proc. Natl. Acad. Sci. USA 2021, 109, 6868–6872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Feng, K.S. Tele-connecting local consumption to global land use. Glob. Environ. Chang. 2013, 23, 1178–1186. [Google Scholar] [CrossRef]
- Bird, D.N.; Zanchi, G.; Pena, N. A method for estimating the indirect land use change from bioenergy activities based on the supply and demand of agricultural-based energy. Biomass Bioenergy 2013, 59, 3–15. [Google Scholar] [CrossRef]
- Costanza, R. Embodied energy and economic valuation. Science 1980, 210, 1219–1224. [Google Scholar] [CrossRef]
- Chen, G.Q.; Han, M.Y. Virtual land use change in China 2002–2010: Internal transition and trade imbalance. Land Use Policy 2015, 47, 55–65. [Google Scholar] [CrossRef]
- Han, M.Y.; Chen, G.Q. Global arable land transfers embodied in Mainland China’s foreign trade. Land Use Policy 2018, 70, 521–534. [Google Scholar] [CrossRef]
- Kastner, T.; Schaffartzik, A.; Eisenmenger, N.; Erb, K.H.; Haberl, H.; Krausmann, F. Cropland area embodied in international trade: Contradictory results from different approaches. Ecol. Econ. 2014, 104, 140–144. [Google Scholar] [CrossRef]
- Wilting, H.C.; Vringer, K. Carbon and land use accounting from a producer’s and a consumer’s perspective—An empirical examination covering the world. Econ. Syst. Res. 2009, 21, 291–310. [Google Scholar] [CrossRef]
- Taherzadeh, O.; Caro, D. Drivers of water and land use embodied in international soybean trade. J. Clean. Prod. 2019, 223, 83–93. [Google Scholar] [CrossRef]
- Lenzen, M.; Kanemoto, K.; Moran, D.; Geschke, A. Mapping the structure of the world economy. Environ. Sci. Technol. 2012, 46, 8374–8381. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M.; Turner, K.; Barrett, J. Examining the global environment impact of regional consumption activities—Part 2: Review of input–output models for the assessment of environment impacts embodied in trade. Ecol. Econ. 2007, 61, 15–26. [Google Scholar] [CrossRef]
- Peters, G.P. From production-based to consumption-based national emission inventories. Ecol. Econ. 2008, 65, 13–23. [Google Scholar] [CrossRef]
- Wu, X.F.; Chen, G.Q. Coal use embodied in globalized world economy: From source to sink through supply chain. Renew. Sustain. Energy Rev. 2018, 81, 978–993. [Google Scholar] [CrossRef]
- Zhang, B.; Qiao, H.; Chen, Z.M.; Chen, B. Growth in embodied energy transfers via China’s domestic trade: Evidence from multi-regional input–output analysis. Appl. Energy. 2016, 184, 1093–1105. [Google Scholar] [CrossRef]
- Li, Y.L.; Chen, B.; Han, M.Y.; Dunford, M.; Liu, W.D.; Li, Z. Tracking carbon transfers embodied in Chinese municipalities’ domestic and foreign trade. J. Clean. Prod. 2018, 192, 950–990. [Google Scholar] [CrossRef]
- Han, M.Y.; Lao, J.M.; Yao, Q.H.; Tang, Z.P.; Liu, W.D. China’s intra- and inter-national carbon emission transfers by province: A nested network perspective. Sci. China Earth Sci. 2020, 63, 852–864. [Google Scholar] [CrossRef]
- Wu, X.D.; Guo, J.L.; Li, C.H.; Shao, L.; Han, M.Y.; Chen, G.Q. Global socio-hydrology: An overview of virtual water use by the world economy from source of exploitation to sink of final consumption. J. Hydrol. 2019, 573, 794–810. [Google Scholar] [CrossRef]
- Lenzen, M.; Moran, D.; Bhaduri, A.; Kanemoto, K.; Bekchanov, M.; Geschke, A.; Foran, B. International trade of scarce water. Ecol. Econ. 2013, 94, 78–85. [Google Scholar] [CrossRef]
- Han, M.Y.; Chen, G.Q.; Dunford, M. Land use balance for urban economy: A multi-scale and multi-type perspective. Land Use Policy 2019, 83, 323–333. [Google Scholar] [CrossRef]
- Ji, X.; Han, M.Y.; Ulgiati, S. Optimal allocation of direct and embodied arable land associated to urban economy: Understanding the options deriving from economic globalization. Land Use Policy 2020, 91, 104392. [Google Scholar] [CrossRef]
- Ali, T.; Huang, J.K.; Wang, J.X.; Xie, W. Global footprints of water and land resources through China’s food trade. Glob. Food Secur. 2017, 12, 139–145. [Google Scholar] [CrossRef]
- Oliver, T.; Mike, B.; Keith, R. Water, energy and land insecurity in global supply chains. Glob. Environ. Chang. 2020, 102158. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Input–output analysis of CO2 emissions embodied in trade: A multi-region model for China. Appl. Energy 2014, 114, 377–384. [Google Scholar] [CrossRef]
- Guo, S.; Shen, G.Q. Multiregional input–output model for China’s farm land and water use. Environ. Sci. Technol. 2015, 49, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Shen, G.; Chen, Z.; Yu, R. Embodied cultivated land use in China 1987–2007. Ecol. Indic. 2014, 47, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Rulli, M.C.; Saviori, A.; D’Odorico, P. Global land and water grabbing. Proc. Natl. Acad. Sci. USA 2012, 110, 892–897. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Q.; Han, M.Y. Global supply chain of arable land use: Production-based and consumption-based trade imbalance. Land Use Policy 2015, 49, 118–130. [Google Scholar] [CrossRef]
- Wu, X.D.; Guo, J.L.; Han, M.Y.; Chen, G.Q. An overview of arable land use for the world economy: From source to sink via the global supply chain. Land Use Policy 2018, 76, 201–214. [Google Scholar] [CrossRef]
- Marselis, S.M.; Feng, K.S.; Liu, Y.; Teodoro, J.D.; Hubacek, K. Agricultural land displacement and undernourishment. J. Clean. Prod. 2017, 161, 619–628. [Google Scholar] [CrossRef]
- Wurtenberger, L.; Koellner, T.; Binder, C.R. Virtual land use and agricultural trade: Estimating environmental and socio-economic impacts. Ecol. Econ. 2006, 57, 679–697. [Google Scholar] [CrossRef]
- de Ruiter, H.; Macdiarmid, J.I.; Matthews, R.B.; Kastner, T.; Lynd, L.R.; Smith, P. Total global agricultural land footprint associated with UK food supply 1986–2011. Glob. Environ. Chang. 2017, 43, 72–81. [Google Scholar] [CrossRef]
- Infante-Amate, J.; Aguilera, E.; Palmeri, F.; Guzmán, G.; Soto, D.; García-Ruiz, R.; de Molina, M.G. Land embodied in Spain’s biomass trade and consumption (1900–2008): Historical changes, drivers and impacts. Land Use Policy 2018, 78, 493–502. [Google Scholar] [CrossRef]
- Weinzettel, J.; Hertwich, E.G.; Peters, G.P.; Steen-Olsen, K.; Galli, A. Affluence drives the global displacement of land use. Glob. Environ. Chang. 2013, 23, 433–438. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAOSTAT. Food and Agriculture Organization of the United Nations. 2012. Available online: http://www.fao.org/faostat/en/#data (accessed on 19 February 2021).
- Fei, R.L.; Lin, Z.Y.; Chunga, J. How land transfer affects agricultural land use effciency: Evidence from China’s agricultural sector. Land Use Policy 2021, 103, 105300. [Google Scholar] [CrossRef]
- Gao, W.W.; de Vries, W.T.; Zhao, Q.Y. Understanding rural resettlement paths under the increasing versus decreasing balance land use policy in China. Land Use Policy 2021, 103, 105325. [Google Scholar] [CrossRef]
- Dorninger, C.; Hornborg, A.; Abson, D.J.; von Wehrden, H.; Schaffartzik, A.; Giljum, S.; Engler, J.O.; Feller, R.L.; Hubacek, K.; Wieland, H. Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century. Ecol. Econ. 2021, 179, 106824. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kastner, T. Land use biodiversity impacts embodied in international food trade. Glob. Environ. Chang. 2016, 38, 195–204. [Google Scholar] [CrossRef]
- Li, Y.L.; Han, M.Y. Embodied water demands, transfers and imbalance of China’s mega-cities. J. Clean. Prod. 2018, 172, 1336–1345. [Google Scholar] [CrossRef]
- Su, B.; Ang, B.W. Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy Econ. 2017, 65, 137–147. [Google Scholar] [CrossRef]
- Li, J.S.; Wei, W.D.; Zhen, W.; Guo, Y.; Chen, B. How green transition of energy system impacts China’s mercury emissions. Earth’s Future 2019, 7, 1407–1416. [Google Scholar] [CrossRef] [Green Version]
- Jakob, M.; Marschinski, R. Interpreting trade-related CO2 emission transfers. Nat. Clim. Chang. 2012, 3, 19–23. [Google Scholar] [CrossRef]
- Ministry of Land and Resources. Bulletin of the Key Data on the Second National Land Resource Investigation. Available online: http://www.gov.cn/jrzg/2013-12/31/content_2557453.htm (accessed on 19 February 2021).
- Ye, S.J.; Song, C.Q.; Shen, S.; Gao, P.C.; Cheng, C.X.; Cheng, F.; Wan, C.J.; Zhu, D.H. Spatial pattern of arable land-use intensity in China. Land Use Policy 2020, 99, 104845. [Google Scholar] [CrossRef]
- National Bureau of Statistics. China Statistical Yearbook 2012; China Statistics Press: Beijing, China, 2013. [Google Scholar]
- National Bureau of Statistics. China Statistical Yearbook 2014; China Statistics Press: Beijing, China, 2015. [Google Scholar]
- Liu, W.D.; Tang, Z.P.; Han, M.Y. The 2012 China Multi-Regional Input–Output Table of 31 Provincial Units; China Statistics Press: Beijing, China, 2018. [Google Scholar]
Output | Intermediate Use | Final Demand | Export | Total Output | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Region 1 | … | Region m | Region 1 | … | Region m | ||||||||
Input | Sector 1 | … | Sector n | Sector 1 | … | Sector n | |||||||
Region 1 | Sector 1 | ||||||||||||
… | |||||||||||||
Sector n | |||||||||||||
… | |||||||||||||
Region m | Sector 1 | ||||||||||||
… | |||||||||||||
Sector n | |||||||||||||
Import | |||||||||||||
Value Added | |||||||||||||
Agricultural Land |
No. | Category | Province/Municipality |
---|---|---|
1 | North China | Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia |
2 | Northeast China | Liaoning, Jilin, Heilongjiang |
3 | East China | Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong |
4 | Central China | Henan, Hubei, Hunan |
5 | South China | Guangdong, Guangxi, Hainan |
6 | Southwest China | Chongqing, Sichuan, Guizhou, Yunnan, Tibet |
7 | Northwest China | Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang |
No. | Flow Direction | Amount | No. | Flow Direction | Amount |
---|---|---|---|---|---|
1 | Heilongjiang→Shandong | 1266.78 | 11 | Inner Mongolia→Guangdong | 447.26 |
2 | Heilongjiang→Guangdong | 1107.25 | 12 | Gansu→Shandong | 437.86 |
3 | Heilongjiang→Zhejiang | 737.08 | 13 | Henan→Guangdong | 428.48 |
4 | Heilongjiang→Jiangsu | 624.43 | 14 | Shandong→Jiangsu | 414.63 |
5 | Heilongjiang→Liaoning | 556.10 | 15 | Xinjiang→Shandong | 409.74 |
6 | Shandong→Guangdong | 519.37 | 16 | Henan→Shandong | 401.03 |
7 | Anhui→Jiangsu | 502.50 | 17 | Anhui→Guangdong | 391.25 |
8 | Anhui→Shandong | 496.50 | 18 | Inner Mongolia→Jiangsu | 389.49 |
9 | Heilongjiang→Henan | 491.96 | 19 | Henan→Jiangsu | 382.39 |
10 | Heilongjiang→Inner Mongolia | 447.67 | 20 | Inner Mongolia→Shandong | 381.69 |
No. | Region | ETB | TB | △SP | △CI | No. | Region | ETB | TB | △SP | △CI |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Beijing | −2189.76 | 42.01 | 1.97 | −2.26 | 17 | Hubei | 169.92 | −38.14 | 0.19 | 0.08 |
2 | Tianjin | −1063.19 | 237.43 | 0.52 | −2.02 | 18 | Hunan | 875.04 | 152.59 | 0.59 | −0.47 |
3 | Hebei | 826.26 | 462.92 | −0.05 | 0.16 | 19 | Guangdong | −5355.61 | −83.52 | 0.07 | −2.06 |
4 | Shanxi | −1149.73 | −107.74 | −0.74 | 1.07 | 20 | Guangxi | 971.52 | −98.20 | 0.35 | 1.11 |
5 | Inner Mongolia | 2626.32 | 167.34 | −0.47 | 3.57 | 21 | Hainan | 154.76 | 8.78 | 0.12 | 0.24 |
6 | Liaoning | −1086.28 | 142.65 | −0.30 | −0.70 | 22 | Chongqing | −807.40 | −178.62 | −0.25 | −0.18 |
7 | Jilin | 2259.70 | 69.17 | 0.26 | 3.65 | 23 | Sichuan | −476.56 | −213.37 | −0.10 | 0.52 |
8 | Heilongjiang | 7687.40 | −62.07 | 0.06 | 9.56 | 24 | Guizhou | 1076.94 | −141.79 | 0.15 | 4.40 |
9 | Shanghai | −2423.26 | −131.16 | 2.27 | −2.30 | 25 | Yunnan | 423.80 | −391.88 | −0.11 | 3.81 |
10 | Jiangsu | −2548.11 | 660.89 | 0.01 | −1.61 | 26 | Tibet | −25.77 | −69.43 | 5.63 | 4.01 |
11 | Zhejiang | −3771.59 | −429.50 | 0.13 | −1.85 | 27 | Shanxi | 1264.93 | 104.40 | 0.40 | 0.46 |
12 | Anhui | 1858.65 | −138.24 | 0.37 | 1.15 | 28 | Gansu | 2263.79 | −66.89 | 0.10 | 7.33 |
13 | Fujian | −1079.38 | −15.94 | 0.55 | −1.69 | 29 | Qinghai | −30.95 | −70.61 | 0.30 | 0.80 |
14 | Jiangxi | 141.40 | −95.22 | 0.29 | 0.07 | 30 | Ningxia | 26.30 | −81.23 | −0.09 | 2.41 |
15 | Shandong | −2856.90 | 865.06 | −1.08 | −0.85 | 31 | Xinjiang | 1185.46 | −231.22 | 0.39 | 3.22 |
16 | Henan | 1052.32 | −268.45 | 0.31 | 0.48 |
Balance Endowment | Regions with Net Outflows | Regions with Net Inflows |
---|---|---|
High Endowment a | Heilongjiang, Inner Mongolia, Jilin, Guizhou, Yunnan, Shaanxi, Gansu, Ningxia, Xinjiang | Shanxi, Tibet, Qinghai |
Low Endowment a | Hebei, Anhui, Jiangxi, Henan, Hubei, Hunan, Guangxi, Hainan | Beijing, Tianjin, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Chongqing, Sichuan |
Balance Endowment | Regions with Net Outflows | Regions with Net Inflows |
---|---|---|
Low Intensity a | Hunan | Beijing, Tianjin, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Chongqing |
High Intensity a | Hebei, Inner Mongolia, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Guangxi, Hainan, Guizhou, Yunnan, Shaanxi, Gansu, Ningxia, Xinjiang | Shanxi, Sichuan, Tibet, Qinghai |
Drivers | Regions with Outflows | Regions with Inflows |
---|---|---|
Intensity-driven | Inner Mongolia, Jilin, Heilongjiang, Anhui, Guangxi, Guizhou, Yunnan, Gansu, Ningxia, Xinjiang | Beijing, Tianjin, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Guangdong |
Trade-driven | Hebei | Chongqing, Sichuan, Tibet, Qinghai |
Specialization-driven | Jiangxi, Henan, Hubei, Hunan, Hainan, Shaanxi | Shanxi, Shandong |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, M.; Li, S. Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis. Land 2021, 10, 213. https://doi.org/10.3390/land10020213
Han M, Li S. Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis. Land. 2021; 10(2):213. https://doi.org/10.3390/land10020213
Chicago/Turabian StyleHan, Mengyao, and Shuchang Li. 2021. "Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis" Land 10, no. 2: 213. https://doi.org/10.3390/land10020213
APA StyleHan, M., & Li, S. (2021). Transfer Patterns and Drivers of Embodied Agricultural Land within China: Based on Multi-Regional Decomposition Analysis. Land, 10(2), 213. https://doi.org/10.3390/land10020213