An Ecological Service System Based Study on Suburban Rural Landscape Multifunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Study Data
2.2.1. Basic Statistics of Jiangning District
2.2.2. Land Use Classification Data of Jiangning District
2.3. Analysis Method
2.3.1. Landscape Multifunction Classification Criteria
2.3.2. Landscape Function Assessment
2.3.3. Interactions among Landscape Functions
2.3.4. Landscape Multifunction Identification
2.3.5. Identification of Dominant Function of the Landscape Multifunction
3. Analytical Result
3.1. Landscape Function Identification in Suburban Rural Communities
3.2. Relationships among Landscape Functions
3.3. Landscape Multifunction Evaluation
3.4. Classification of Landscape Multifunction
4. Discussion
4.1. Superiorities of Multifunction Identification of Suburban Rural Landscape Based on Multi-indicator Areas and Buffers
4.2. Discussion on Landscape Multifunction Hotspots and Dominant Landscape Function Areas in Suburban Rural Communities
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruitenbeek, H.J. Functions of nature: Evaluation of nature in environmental planning, management and decision making. Ecol. Econ. 1995, 14, 211–213. [Google Scholar] [CrossRef]
- Wiggering, H.; Dalchow, C.; Glemnitz, M.; Helming, K.; Muller, K.; Schultz, A.; Stachow, U.; Zander, P. Indicators for multifunctional land use- linking socio-economic requirements with landscape potentials. Ecol. Indic. 2006, 6, 238–249. [Google Scholar] [CrossRef]
- Syrbe, R.-U.; Bastian, O.; Roder, M.; James, P. A framework for monitoring landscape functions: The Saxon Academy Landscape Monitoring Approach (SALMA), exemplified by soil investigations in the Kleine Spree floodplain (Saxony, Germany). Landsc. Urban Plan 2007, 79, 190–199. [Google Scholar] [CrossRef]
- Henke, R.; Vanni, F. Peri-urban agriculture: An analysis of farm typologies in Italy. New medit: Mediterranean. J. Econ. Agric. Environ. 2017, 16, 11–18. [Google Scholar]
- Fu, B.; Wang, S.; Su, C.; Forsius, M. Linking ecosystem processes and ecosystem services. Curr. Opin. Environ. Sustain. 2013, 5, 4–10. [Google Scholar] [CrossRef]
- Wu, J.G. Landscape Ecology: Patterns, Processes, Scales, and Hierarchies; Higher Education Press: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Willemen, L.; Hein, L.; van Mensvoort, M.E.F.; Verburg, P.H. Space for people, plants, and livestock? Quantifying interactions among multiple landscape functions in a Dutch rural region. Ecol. Indic. 2010, 10, 62–73. [Google Scholar] [CrossRef]
- Lyu, Y.H.; Ma, Z.M.; Fu, B.J.; Gao, G.Y. Ecosystem service diversity and landscape multi-function—From scientific concept to comprehensive evaluation. Acta Ecol. Sin. 2013, 33, 153–159. (In Chinese) [Google Scholar]
- Naveh, Z. Ten major premises for a holistic conception of multifunctional landscapes. Landsc. Urban Plan. 2001, 57, 269–284. [Google Scholar] [CrossRef]
- Bastian, O.B. Functions, Leitbilder, and Red Lists—Expression of an Integrative Landscape Concept; Brandt, J., Vejre, H., Eds.; WITPress: Ashurst, AZ, USA; Southampton, UK; Dresden, Germany, 2004; Volume 1, pp. 75–94. [Google Scholar]
- Wu, J. Key concepts and research topics in landscape ecology revisited: 30 years after the allerton park workshop. Landsc. Ecol. 2013, 28, 1–11. [Google Scholar] [CrossRef]
- Kienast, F.; Bolliger, J.; Potschin, M.; Groot, R.S.D.; Verburg, P.H.; Heller, I.; Wascher, D.; Haines-Young, R. Assessing landscape functions with broad-scale environmental data: Insights gained from a prototype development for europe. Environ. Manag. 2009, 44, 1099–1120. [Google Scholar] [CrossRef] [Green Version]
- Potschin, M.; Haines-Young, R. ‘Rio +10′, sustainability science and landscape ecology. Landsc. Urban Plan 2006, 75, 162–174. [Google Scholar] [CrossRef]
- Petz, K.; Alkemade, R.; Bakkenes, M.; Schulp, C.J.E.; Leemans, R. Mapping and modelling trade-offs and synergies between grazing intensity and ecosystem services in rangelands using global-scale datasets and models. Glob. Environ. Chang. 2014, 29, 223–234. [Google Scholar] [CrossRef]
- Gulickx, M.M.C.; Verburg, P.H.; Stoorvogel, J.J.; Kok, K.; Veldkamp, A. Mapping landscape services: A case study in a multifunctional rural landscape in the Netherlands. Ecol. Indic. 2013, 24, 273–283. [Google Scholar] [CrossRef]
- Peng, J.; Chen, X.; Liu, Y.; Lü, H.L.; Hu, X. Spatial identification of multifunctional landscapes and associated influencing factors in the Beijing-Tianjin-Hebei region, china. Appl. Geogr. 2016, 74, 170–181. [Google Scholar] [CrossRef]
- Hauck, J.; Görg, C.; Varjopuro, R.; Ratamäki, O.; Maes, J.; Wittmer, H.; Jax, K. “maps have an air of authority”: Potential benefits and challenges of ecosystem service maps at different levels of decision making. Ecosyst. Serv. 2013, 4, 25–32. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Mónica Hernández-Morcillo, M.; Plieninger, T.; Bieling, C. An empirical review of cultural ecosystem service indicators. Ecol. Indic. 2013, 29, 434–444. [Google Scholar] [CrossRef]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Li, X.; Chen, Y. Building new countryside in China: A geographical perspective. Land Use Policy 2010, 27, 457–470. [Google Scholar] [CrossRef]
- De Groot, R. Function-analysis and valuation as a tool to assess land use conflicts in planning for sustainable, multi-functional landscapes. Landsc. Urban Plan. 2006, 75, 175–186. [Google Scholar] [CrossRef]
- Groot, R.S.D.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Mea, M.E.A. Ecosystems and human well-being: Desertification synthesis. Ecosystems 2005, 5, 1–100. [Google Scholar]
- Thompson, C.W.; Roe, J.; Aspinall, P.; Mitchell, R.; Clow, A.; Miller, D. More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns. Landsc. Urban Plan. 2012, 105, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Mander, Ü.; Wiggering, H.; Helming, K. Multifunctional Land Use; Springer: Berlin/Heidelberg, Germany, 2007; pp. 28–29. [Google Scholar]
- Geurs, K.T.; Ritsema van Eck, J.R. Accessibility Measures: Review and Applications. Evaluation of Accessibility Impacts of Land-Use Transport Scenarios, and Related Social and Economic Impact; Universiteit Utrecht-URU: Utrecht, The Netherlands, 2001. [Google Scholar]
- Ge, Y.; Li, F. Research on the Promotion Strategy of the Human Resources in the Rural Areas from the Perspective of Ethnicity Theory: Based on the Investigation and Analysis of the Migrant Workers’ Living Condition in Zhangjiakou. Chin. Gard. 2020, 36, 25–30. [Google Scholar]
- Brabyn, L.; Sutton, S. A population based assessment of the geographical accessibility of outdoor recreation opportunities in New Zealand. Appl. Geogr. 2013, 41, 124–131. [Google Scholar] [CrossRef]
- Yang, F.; Tan, J.; Zhao, Q.; Du, Z.; He, K.; Ma, Y.; Duan, F.; Chen, G. Characteristics of pm2.5 speciation in representative megacities and across china. Atmos. Chem. Phys. 2011, 11, 1025–1051. [Google Scholar] [CrossRef] [Green Version]
- Elmqvist, T.; Krishnaswamy, J.; Hylander, K. Ecosystem services: Managing trade-offs between provisioning and regulating services. In Valuation of Regulating Services of Ecosystems: Methodology and Applications; Routledge: London, UK, 2010; pp. 24–39. [Google Scholar]
- Rodriguez, J.P.; Beard, D.; Bennett, E.; Cumming, G.; Cork, S.; Agard, J.; Dobson, A.; Peterson, G. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2005, 11, 709–723. [Google Scholar] [CrossRef] [Green Version]
- Turner, K.G.; Odgaard, M.V.; Bøcher, P.K.; Dalgaard, T.; Svenning, J.C. Bundling ecosystem services in Denmark: Trade-offs and synergies in a cultural landscape. Landsc. Urban Plan 2014, 125, 89–104. [Google Scholar] [CrossRef]
- Raudsepp-Hearne, C.; Peterson, G.D.; Bennett, E. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. USA 2010, 107, 5242–5247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Farrell, P.J.; Anderson, P.M.L. Sustainable multifunctional landscapes: A review to implementation. Curr. Opin. Environ. Sustain. 2010, 2, 59–65. [Google Scholar] [CrossRef]
- Peng, J.; Hu, X.; Qiu, S.; Hu, Y.; Meersmans, J.; Liu, Y. Multifunctional landscapes identification and associated development zoning in mountainous area. Sci. Total Environ. 2019, 660, 765–775. [Google Scholar] [CrossRef] [Green Version]
- Nassauer, J.I.; Opdam, P. Design in science: Extending the landscape ecology paradigm. Landsc. Ecol. 2008, 23, 633–644. [Google Scholar] [CrossRef]
- Zasada, I. Multifunctional peri-urban agriculture—a review of societal demands and the provision of goods and services by farming. Land Use Policy 2011, 28, 639–648. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate causes and underlying driving forces of tropical deforestation. Bioscience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Gu, X.; Liu, J.; Dai, B. Suitability assessment of reducing industrial land in shanghai metropolitan region. J. Nat. Resour. 2018, 33, 1317–1325. [Google Scholar]
- Gu, X.; Xie, B.; Zhang, Z.; Guo, H.D. Rural multifunction in shanghai suburbs: Evaluation and spatial characteristics based on villages. Habitat Int. 2019, 92, 102041. [Google Scholar] [CrossRef]
- Qu, Y.; Jiang, G.; Zhao, Q.; Ma, W.; Zhang, R.; Yang, Y. Geographic identification, spatial differentiation, and formation mechanism of multifunction of rural settlements: A case study of 804 typical villages in shandong province, china. J. Clean. Prod. 2017, 166, 1202–1215. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, E.; Zhang, H.; Shang, E. Spatio-temporal coordination and conflict of production-living-ecology land functions in the beijing-tianjin-hebei region, china. Land 2020, 9, 170. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.W.; Fu, B.J.; Ding, J.Y.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Sci. Total Environ. 2017, 607, 1250–1263. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.N.; Gu, Y.Y.; Zou, C.Y.; Xu, D.L.; Wang, L.; Ye, X.; Yang, Y.; Huang, X.F. Temporal variation and spatial scale dependency of the trade-offs and synergies among multiple ecosystem services in the Taihu Lake Basin of China. Sci. Total Environ. 2019, 651, 218–229. [Google Scholar] [CrossRef]
- Ren, G.P.; Liu, L.M.; Sun, J.; Yuan, C.C.; Zhuo, D. GRA and Topsis models-based multifunctional positioning of suburban rural landscapes. Geogr. Res. 2018, 37, 263–280. [Google Scholar]
Level-I Type | Level-II Type | Forest Land | Grassland | Cultivated Land | Wetland | Waters | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|---|
Provision function | Food production | 2.13% | 0.00% | 32.84% | 0.00% | 1.34% | 0 | 0 |
Raw material production | 19.20% | 0.00% | 12.64% | 0.68% | 0.89% | 0 | 0 | |
Regulating function | Gas regulation | 27.83% | 18.23% | 23.65% | 6.85% | 1.29% | 0 | 0 |
Hydrological regulation | 26.35% | 18.47% | 25.29% | 38.20% | 47.58% | 0 | 0 | |
Waste disposal | 11.08% | 16.04% | 0.00% | 40.93% | 37.64% | 0 | 0 | |
Culture function | Provision of aesthetics | 13.40% | 47.26% | 5.58% | 13.33% | 11.25% | 100% | 0 |
Level-I Type | Level-II Type | Description | Key Data | Unit | Computing Method |
---|---|---|---|---|---|
Provision function (PF) | Food production | Converting solar energy into edible plant and animal products | Remotely sensed image data by satellite (https://www.esa.int/, accessed on 2 February 2021) | Yuan/hm2 | Area × Percentage of value (forest + cultivated land + water) |
Raw material production | Converting solar energy into biological energy for building or other purposes | Yuan/hm2 | Area × Percentage of value (forest + cultivated land + wetland + water) | ||
Regulating function (RF) | Gas regulation | The ecosystem maintains the balance of atmospheric chemical components, absorbing SO2, fluorides, and nitrogen oxides | Yuan/hm2 | Area × Percentage of value (forest + grassland + cultivated land + wetland + water) | |
Hydrological regulation | The freshwater filtration, retention, and storage by the ecosystem, as well as the supply of freshwater | Yuan/hm2 | Area × Percentage of value (forest + grassland + cultivated land + wetland + water) | ||
Waste disposal | The role of vegetation and organisms in the removal and decomposition of excess nutrients and compounds; dust trapped | Yuan/hm2 | Area × Percentage of value (forest + grassland + wetland + water) | ||
Culture function (CF) | Provision of aesthetics | Landscapes (potentially) available for entertainment, and valuable in terms of culture and arts | Remotely sensed image data by satellite | Yuan/hm2 | Area × Percentage of value (forest + wetland + grassland + cultivated land + water) |
Cultural heritage | Immovable cultural relics of great historical, artistic, and scientific value. | Data set of cultural heritage protection organizations in Jiangsu Province in 2019 | Each | Making statistics of the number in each rural community | |
Leisure and entertainment | Tourist spots offering leisure and entertainment | Baidu POI data (art galleries, attractions, amusement parks, parks, attractions, etc.) | Each | Making statistics of the number in each rural community | |
Support function (SF) | Transport function | Accessibility mapping | Openstreet road data set; data set of rail transit and bus stations in Nanjing | Km/km2, each | Road network density = The ratio of total length of all roads within the area to the total area Spatialization statistics of rail transit and bus stations |
Construction function | The ability to provide humans with living and working spaces | Remotely sensed image data by satellite | km2 | Statistics of the construction area within each rural community |
Provision Function (PF) | Culture Function (CF) | Support Function (SF) | |
---|---|---|---|
Regulating function (RF) | 0.858 | 0.662 | −0.281 |
Provision function (PF) | - | 0.589 | −0.35 |
Culture function (CF) | - | - | −0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, J.; Na, L.; Liu, B.; Zhang, T.; Wang, H. An Ecological Service System Based Study on Suburban Rural Landscape Multifunction. Land 2021, 10, 232. https://doi.org/10.3390/land10030232
Zheng J, Na L, Liu B, Zhang T, Wang H. An Ecological Service System Based Study on Suburban Rural Landscape Multifunction. Land. 2021; 10(3):232. https://doi.org/10.3390/land10030232
Chicago/Turabian StyleZheng, Jie, Lisha Na, Binglin Liu, Tiantian Zhang, and Hao Wang. 2021. "An Ecological Service System Based Study on Suburban Rural Landscape Multifunction" Land 10, no. 3: 232. https://doi.org/10.3390/land10030232
APA StyleZheng, J., Na, L., Liu, B., Zhang, T., & Wang, H. (2021). An Ecological Service System Based Study on Suburban Rural Landscape Multifunction. Land, 10(3), 232. https://doi.org/10.3390/land10030232