Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale Perspective
Abstract
:1. Introduction
2. Research Method
2.1. Area of Research and Its Administrative Multiscale Structure
2.2. Data Collection and Analysis
2.2.1. Tracing Sources and Flow of Agricultural Land
2.2.2. Evaluating the Rate and Intensity of Land Change
2.2.3. Measuring the Degree of Spatial (Im)balance of Land Change
3. Result: A Multiscale Perspective on Agricultural Land Change
3.1. Agricultural Land Loss More Than the Gain in Chongqing Metropolis
3.2. Accelerated Conversion in OHEC and Intense Change in Planned Key Nodes
3.3. Disequilibrium at Town/Village Scale Far Outweighed That at District/County Scale
4. Conclusions and Discussion
4.1. Comparing Agricultural Land Change in Chongqing with Other Areas
4.2. Major Policies Influencing Chongqing’s Agricultural Land Change
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACRa | annual conversion rate |
ACRs | standardized annual conversion rate |
ALCI | intensity index of agricultural land conversion to construction land |
CREZs | national-level comprehensive reform experimental zones |
CV | coefficient of variation |
LULC | land use/land cover |
MCA | main city area |
NW | northeast wing |
OHEC | one-hour economic circle |
ROHEC | rest of one-hour economic circle |
SW | southeast wing |
References
- Rounsevell, M.D.A.; Pedroli, B.; Erb, K.-H.; Gramberger, M.; Busck, A.G.; Haberl, H.; Kristensen, S.; Kuemmerle, T.; Lavorel, S.; Lindner, M.; et al. Challenges for land system science. Land Use Policy 2012, 29, 899–910. [Google Scholar] [CrossRef]
- Verburg, P.H.; Erb, K.H.; Mertz, O.; Espindola, G. Land System Science: Between global challenges and local realities. Curr. Opin. Environ. Sustain. 2013, 5, 433–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; You, L.; Muller, D. Synthesis of agricultural land system change in China over the past 40 years. J. Land Use Sci. 2019, 13, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Haines-Young, R. Land use and biodiversity relationships. Land Use Policy 2009, 26, S178–S186. [Google Scholar] [CrossRef]
- Kuemmerle, T.; Erb, K.; Meyfroidt, P.; Müller, D.; Verburg, P.H.; Estel, S.; Haberl, H.; Hostert, P.; Jepsen, M.R.; Kastner, T. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013, 5, 484–493. [Google Scholar] [CrossRef]
- Peerzado, M.B.; Magsi, H.; Sheikh, M.J. Land use conflicts and urban sprawl: Conversion of agriculture lands into urbanization in Hyderabad, Pakistan. J. Saudi Soc. Agric. Sci. 2019, 18, 423–428. [Google Scholar] [CrossRef]
- Roeffen, B.; Czapiewska, K.M.; Graaf, R.E.D.; Zanon, B.D.B. Reducing global land scarcity with floating urban development and food production. In Proceedings of the International Water Week, Amsterdam, Netherlands, 5–6 November 2013. [Google Scholar]
- Hu, Q.; Wu, W.; Xiang, M.; Chen, D.; Long, Y.; Song, Q.; Liu, Y.; Lu, M.; Yu, Q. Spatio-Temporal Changes in Global Cultivated Land over 2000–2010. Sci. Agric. Sin. 2018, 51, 1091–1105. (In Chinese) [Google Scholar]
- Lepers, E.; Lambin, E.F.; Janetos, A.C.; Defries, R.; Achard, F.; Ramankutty, N.; Scholes, R.J. A synthesis of information on rapid land-cover change for the period 1981–2000. BioScience 2005, 55, 115–124. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, Z.; Tang, S.; Li, X.; Hao, T. Spatiotemporal characteristics and patterns of the global cultivated land since the 1980s. Acta Geogr. Sin. 2017, 72, 1235–1247. [Google Scholar]
- Ramankutty, N.; Foley, J.A. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Glob. Biogeochem. Cycles 1999, 13, 997–1027. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Y.; Xu, X.; Li, X.; Zeng, Z. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Friedmann, J. China’s Urbanization. Int. J. Urban Reg. Res. 2003, 27, 745–758. [Google Scholar] [CrossRef]
- Liu, X.; Pei, F.; Wen, Y.; Li, X.; Liu, Z. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 2019, 10, 5558. [Google Scholar] [CrossRef] [Green Version]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Schulpa, C.J.E.; Levers, C.; Kuemmerle, T.; Tieskens, K.F.; Verburg, P.H. Mapping and modelling past and future land use change in Europe’s cultural landscapes. Land Use Policy 2019, 80, 332–344. [Google Scholar] [CrossRef]
- Long, H. Farmland Use Transition in China. In Land Use Transitions and Rural Restructuring in China; Long, H., Ed.; Springer: Singapore, 2020; pp. 31–160. [Google Scholar]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.; Long, H.; Zhang, Y.; Ma, L.; Li, T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- He, C.Y.; Li, J.W.; Zhang, X.L.; Liu, Z.F.; Zhang, D. Will rapid urban expansion in the drylands of northern China continue: A scenario analysis based on the Land Use Scenario Dynamics-urban model and the Shared Socioeconomic Pathways. J. Clean. Prod. 2017, 165, 57–69. [Google Scholar] [CrossRef]
- Shi, L.; Liu, F.; Zhang, Z.; Zhao, X.; Liu, B.; Xu, J.; Wen, Q.; Yi, L.; Hu, S. Spatial differences of coastal urban expansion in China from 1970s to 2013. Chin. Geogr. Sci. 2015, 25, 389–403. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 60, 102701. [Google Scholar] [CrossRef]
- Zurqani, H.A.; Post, C.J.; Mikhailova, E.A.; Schlautman, M.A.; Sharp, J.L. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 175–185. [Google Scholar] [CrossRef]
- Chen, J.; Gao, J.; Yuan, F.; Wei, Y. Spatial Determinants of Urban Land Expansion in Globalizing Nanjing, China. Sustainability 2016, 8, 868. [Google Scholar] [CrossRef] [Green Version]
- Simwanda, M.; Murayama, Y. Spatiotemporal patterns of urban land use change in the rapidly growing city of Lusaka, Zambia: Implications for sustainable urban development. Sustain. Cities Soc. 2018, 39, 262–274. [Google Scholar] [CrossRef]
- Alijani, Z.; Hosseinali, F.; Biswas, A. Spatio-temporal evolution of agricultural land use change drivers: A case study from Chalous region, Iran. J. Environ. Manag. 2020, 262, 110326. [Google Scholar] [CrossRef] [PubMed]
- Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, T.D. Spatiotemporal Analysis of Land Use/Land Cover and Its Effects on Surface Urban Heat Island Using Landsat Data: A Case Study of Metropolitan City Tehran (1988–2018). Sustainability 2018, 10, 4433. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, B.R.d.; Carvalho-Ribeiro, S.M.; Maia-Barbosa, P.M. A multiscale analysis of land use dynamics in the buffer zone of Rio Doce State Park, Minas Gerais, Brazil. J. Environ. Plan. Manag. 2020, 63, 935–957. [Google Scholar] [CrossRef]
- Smith, N. Remaking scale: Competition and cooperation in prenational and postnational Europe. In Competitive European Peripheries; Eskelinen, H., Snickars, F., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 59–74. [Google Scholar]
- Lu, D.; Li, G.; Moran, E.; Hetrick, S. Spatiotemporal analysis of land-use and land-cover change in the Brazilian Amazon. Int. J. Remote Sens. 2013, 34, 5953–5978. [Google Scholar] [CrossRef] [Green Version]
- Boeing, G. A multi-scale analysis of 27,000 urban street networks: Every US city, town, urbanized area, and Zillow neighborhood. Environ. Plan. B 2020, 47, 590–608. [Google Scholar] [CrossRef] [Green Version]
- Li, L. State rescaling and national new area development in China: The case of Chongqing Liangjiang. Habitat Int. 2015, 50, 80–89. [Google Scholar] [CrossRef]
- Chien, S.-S. New local state power through administrative restructuring—A case study of post-Mao China county-level urban entrepreneurialism in Kunshan. Geoforum 2013, 46, 103–112. [Google Scholar] [CrossRef]
- Zuo, L.; Zhang, Z.; Zhao, X.; Wang, X.; Wu, W.; Yi, L.; Liu, F. Multitemporal analysis of cropland transition in a climatesensitive area: A case study of the arid and semiarid region of northwest China. Reg. Environ. Chang. 2014, 14, 75–89. [Google Scholar] [CrossRef]
- Zhong, T.; Qian, Z.; Huang, X.; Zhao, Y.; Zhou, Y.; Zhao, Z. Impact of the top-down quota-oriented farmland preservation planning on the change of urban land-use intensity in China. Habitat Int. 2018, 77, 71–79. [Google Scholar] [CrossRef]
- Long, H. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Lin, J.Y. The Household Responsibility System in China’s Agricultural Reform: A Theoretical and Empirical Study. Econ. Dev. Cult. Chang. 2000, 36, 199–224. [Google Scholar] [CrossRef]
- Tan, S.; Heerink, N.; Qu, F. Land fragmentation and its driving forces in China. Land Use Policy 2006, 23, 272–285. [Google Scholar] [CrossRef]
- Cui, Z. Partial intimations of the coming whole: The Chongqing experiment in light of the theories of Henry George, James Meade, and Antonio Gramsci. Mod. China 2011, 37, 646–660. [Google Scholar] [CrossRef] [Green Version]
- Naughton, B.J. Holding China together: Diversity and national integration in the post-Deng era. In The Western Development Program; Naughton, B.J., Yang, D.L., Eds.; Cambridge University Press: Cambridge, UK, 2004; pp. 1–25. [Google Scholar]
- Xu, Y.; Yu, L.; Peng, D.; Zhao, J.; Cheng, Y.; Liu, X.; Li, W.; Meng, R.; Xu, X.; Gong, P. Annual 30-m land use/land cover maps of China for 1980–2015 from the integration of AVHRR, MODIS and Landsat data using the BFAST. Sci. China Earth Sci. 2020, 63, 1390–1407. [Google Scholar] [CrossRef]
- Li, Q.; Hu, S.; Qu, S. Spatiotemporal characteristics of cultivated land use transition in the Middle Yangtze River from 1990 to 2015. Geogr. Res. 2017, 36, 1489–1502. [Google Scholar]
- Long, H.; Tang, G.; Li, X.; Heilig, G.K. Socio-economic driving forces of land-use change in Kunshan, the Yangtze River Delta economic area of China. J. Environ. Manag. 2007, 83, 351–364. [Google Scholar] [CrossRef]
- Xian, S.; Li, L.; Qi, Z. Toward a sustainable urban expansion: A case study of Zhuhai, China. J. Clean. Prod. 2019, 230, 276–285. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Zhou, P.; Huang, J.; Pontius, R.G.; Hong, H. Land classification and change intensity analysis in a coastal watershed of southeast China. Sensors 2014, 14, 11640–11658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Pontius, R.G.; Li, Q.; Zhang, Y. Use of intensity analysis to link patterns with processes of land change from 1986 to 2007 in a coastal watershed of southeast China. Appl. Geogr. 2012, 34, 371–384. [Google Scholar] [CrossRef]
- Fellman, J. Estimation of Gini Coefficient using Lorenz curves. J. Stat. Econom. Methods 2012, 1, 31–38. [Google Scholar]
- Li, L.; Qi, Z.; Xian, S. Decoding spatiotemporal patterns of urban land sprawl in Zhuhai, China. Appl. Ecol. Environ. Res. 2020, 18, 913–927. [Google Scholar] [CrossRef]
- Cheng, W.; Gao, X.; Ma, T.; Xu, X.; Chen, Y.; Zhou, C. Spatial-temporal distribution of cropland in China based on geomorphological regionalization during 1990–2015. Acta Geogr. Sin. 2018, 73, 1613–1629. [Google Scholar]
- Cao, X.; Ma, L.; Yan, T. Spatial relationship between transporation and land-use in Pearl River Delta. Sci. Geogr. Sin. 2007, 27, 743–748. [Google Scholar]
- Lai, H.H. China’s western development program: Its rationale, implementation, and prospects. Mod. China 2002, 28, 432–466. [Google Scholar] [CrossRef]
- Huang, P.C. Chongqing: Equitable development driven by a “Third Hand”? Mod. China 2011, 37, 569–622. [Google Scholar] [CrossRef]
1 | Spatial units for statistics are based on administrative divisions and adjustments after Chongqing upgraded to be a municipality directly administered by the central government. |
2 | Scale 1, Scale 2, Scale 3, and Scale 4 in this table refer to the four scales in Figure 2. |
Land Use Types | 1980 | 1990 | 2000 | 2010 | 2015 |
---|---|---|---|---|---|
Agricultural land | 39,444.5 | 39,272.2 | 39,132.2 | 38,007.1 | 37,302.1 |
Forest | 30,895.5 | 30,947.0 | 30,917.3 | 31,459.0 | 31,355.4 |
Grass | 11,974.0 | 11,949.8 | 11,937.9 | 11,610.8 | 11,579.3 |
Waters | 928.0 | 921.6 | 920.3 | 1061.2 | 1097.8 |
Construction land | 427.1 | 578.5 | 761.6 | 1534.8 | 2338.5 |
Unused land | 18.3 | 18.2 | 18.0 | 14.4 | 14.2 |
Time Period | Flow of Conversion | Total | Forests | Grassland | Waters | Built-Up Land | Unused Land | |
---|---|---|---|---|---|---|---|---|
1980–1990 | Conversion to agricultural land | Value (km2) | 33.83 | 23.32 | 7.51 | 0.94 | 2.06 | 0.00 |
(%) | 100.000 | 68.931 | 22.192 | 2.782 | 6.096 | 0.000 | ||
Conversion from agricultural land | Value (km2) | 206.04 | 73.05 | 9.89 | 0.68 | 122.40 | 0.02 | |
(%) | 100.000 | 35.454 | 4.799 | 0.331 | 59.406 | 0.010 | ||
Net conversion | Value (km2) | −172.21 | −49.73 | −2.38 | 0.26 | −120.34 | −0.02 | |
(%) | 100.000 | 28.878 | 1.382 | -0.151 | 69.878 | 0.012 | ||
1990–2000 | Conversion to agricultural land | Value (km2) | 31.78 | 22.74 | 8.48 | 0.56 | 0.00 | 0.00 |
(%) | 100.000 | 71.546 | 26.689 | 1.765 | 0.000 | 0.000 | ||
Conversion from agricultural land | Value (km2) | 171.84 | 6.15 | 1.52 | 1.91 | 162.26 | 0.00 | |
(%) | 100.000 | 3.580 | 0.885 | 1.110 | 94.425 | 0.001 | ||
Net conversion | Value (km2) | −140.06 | 16.59 | 6.96 | −1.35 | −162.26 | 0.00 | |
(%) | 100.000 | −11.844 | −4.971 | 0.961 | 115.852 | 0.002 | ||
2000–2010 | Conversion to agricultural land | Value (km2) | 151.37 | 37.82 | 112.19 | 0.50 | 0.07 | 0.79 |
(%) | 100.000 | 24.986 | 74.119 | 0.331 | 0.044 | 0.521 | ||
Conversion from agricultural land | Value (km2) | 1276.52 | 361.73 | 137.14 | 71.48 | 706.17 | 0.00 | |
(%) | 100.000 | 28.337 | 10.743 | 5.600 | 55.320 | 0.000 | ||
Net conversion | Value (km2) | −1125.15 | −323.86 | −24.95 | −70.98 | −706.10 | 0.79 | |
(%) | 100.000 | 28.788 | 2.217 | 6.309 | 62.756 | −0.070 | ||
2010–2015 | Conversion to agricultural land | Value (km2) | 0.09 | 0.01 | 0.00 | 0.00 | 0.08 | 0.00 |
(%) | 100.000 | 6.494 | 2.597 | 0.000 | 90.909 | 0.000 | ||
Conversion from agricultural land | Value (km2) | 705.07 | 0.00 | 0.32 | 19.92 | 684.84 | 0.00 | |
(%) | 100.000 | 0.000 | 0.045 | 2.825 | 97.130 | 0.000 | ||
Net conversion | Value (km2) | −704.98 | 0.01 | −0.32 | −19.92 | −684.76 | 0.00 | |
(%) | 100.000 | −0.001 | 0.045 | 2.825 | 97.131 | 0.000 |
Periods | Characteristics of Agricultural Land Conversion to Built-Up Land | Policy Context and Mile Stone | |||||
---|---|---|---|---|---|---|---|
1980–1990 | Amount of the conversion | Volume (km2)/ratio |
| ||||
Scale 1 | 122.40/100% | ||||||
Scale 2 | MCA | ROHEC | NW | SW | |||
23.86 | 23.07 | 55.58 | 19.89 | ||||
19.5% | 18.8% | 45.4% | 16.3% | ||||
(Un)evenness of spatial distribution | Gini | CV | |||||
Scale 3 | 0.491 | 0.923 | |||||
Scale 4 | 0.941 | 3.181 | |||||
1990–2000 | Amount of the conversion | Volume (km2)/ratio |
| ||||
Scale 1 | 162.26/100% | ||||||
Scale 2 | MCA | ROHEC | NW | SW | |||
66.62 | 45.02 | 40.96 | 9.57 | ||||
41.1% | 27.8% | 25.2% | 5.9% | ||||
(Un)evenness of spatial distribution | Gini | CV | |||||
Scale 3 | 0.467 | 0.969 | |||||
Scale 4 | 0.935 | 4.465 | |||||
2000–2010 | Amount of the conversion | Volume (km2)/ratio |
| ||||
Scale 1 | 706.14/100% | ||||||
Scale 2 | MCA | ROHEC | NW | SW | |||
354.57 | 296.27 | 41.75 | 13.55 | ||||
50.2% | 42.0% | 5.9% | 1.9% | ||||
(Un)evenness of spatial distribution | Gini | CV | |||||
Scale 3 | 0.639 | 0.691 | |||||
Scale 4 | 0.933 | 4.597 | |||||
2010–2015 | Amount of the conversion | Volume (km2)/ratio |
| ||||
Scale 1 | 684.83/100% | ||||||
Scale 2 | MCA | ROHEC | NW | SW | |||
44.08 | 38.56 | 76.36 | 42.55 | ||||
44.1% | 38.6% | 11.1% | 6.2% | ||||
(Un)evenness of spatial distribution | Gini | CV | |||||
Scale 3 | 0.466 | 0.987 | |||||
Scale 4 | 0.882 | 3.181 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Qi, Z.; Xian, S.; Yao, D. Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale Perspective. Land 2021, 10, 275. https://doi.org/10.3390/land10030275
Li L, Qi Z, Xian S, Yao D. Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale Perspective. Land. 2021; 10(3):275. https://doi.org/10.3390/land10030275
Chicago/Turabian StyleLi, Lingyue, Zhixin Qi, Shi Xian, and Dong Yao. 2021. "Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale Perspective" Land 10, no. 3: 275. https://doi.org/10.3390/land10030275
APA StyleLi, L., Qi, Z., Xian, S., & Yao, D. (2021). Agricultural Land Use Change in Chongqing and the Policy Rationale behind It: A Multiscale Perspective. Land, 10(3), 275. https://doi.org/10.3390/land10030275