Farmland Use Transition in a Typical Farming Area: The Case of Sihong County in the Huang-Huai-Hai Plain of China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Measurement of Farmland Dominant Morphology
2.3.2. Measurement of Farmland Function Morphology
2.3.3. Identifying Potential Important Driving Factors
3. Results
3.1. Characteristics of Farmland Use Transition
3.1.1. Farmland Use Spatial Transition
3.1.2. Farmland Function Transition
3.2. Driving Factors of Farmland Use Transition
3.2.1. Driving Factors of Farmland Use Spatial Transition
3.2.2. Driving Factors of Farmland Function Transition
4. Discussion
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Implications for Land Use Policy
5.3. Limitation and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lambin, E.F.; Meyfroidt, P. Land use transition: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Long, H.L.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2017, 34, 1607–1618. [Google Scholar] [CrossRef]
- Grainger, A. The forest transition: An alternative approach. Area 1995, 27, 242–251. [Google Scholar]
- Mather, A.S.; Fairbairn, J.; Needle, C.L. The course and drivers of the forest transition: The case of France. J. Rural Stud. 1999, 15, 65–90. [Google Scholar] [CrossRef]
- Mather, A.S.; Needle, C.L. The forest transition: A theoretical basis. Area 1998, 30, 117–124. [Google Scholar] [CrossRef]
- Barbier, E.B.; Burgess, J.C.; Grainger, A. The forest transition: Towards a more comprehensive theoretical framework. Land Use Policy 2010, 27, 98–107. [Google Scholar] [CrossRef]
- Grainger, A. Difficulties in tracking the long-term global trend in tropical forestarea. Proc. Natl. Acad. Sci. USA 2008, 105, 818–823. [Google Scholar] [CrossRef] [Green Version]
- Mather, A.S. Forest transition theory and the reforesting of Scotland. Scott. Geogr. J. 2004, 120, 83–98. [Google Scholar] [CrossRef]
- Mather, A.S. Recent Asian forest transitions in relation to forest transition theory. Int. For. Rev. 2007, 9, 491–502. [Google Scholar]
- Grau, H.R.; Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 2008, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Yeo, I.-Y.; Huang, C. Revisiting the forest transition theory with historical records and geospatial data: A case study from Mississippi (USA). Land Use Policy 2013, 32, 1–13. [Google Scholar] [CrossRef]
- Tuan, Y.F. Geography, phenomenology and the study of human nature. Can. Geogr. 1971, 15, 181–192. [Google Scholar] [CrossRef]
- Long, H.L. Land Use Transitions and Rural Restructuring in China; Springer: Singapore, 2020. [Google Scholar]
- Song, X.Q. Discussion on land use transition research framework. Acta Geogr. Sin. 2017, 72, 471–487. [Google Scholar]
- Long, H.L.; Qu, Y.; Tu, S.S.; Zhang, Y.N.; Jiang, Y.F. Development of land use transitions research in China. J. Geogr. Sci. 2020, 30, 1195–1214. [Google Scholar] [CrossRef]
- Li, X.B. Theoretical hypotheses about agricultural land use changes and the relevant propositions about environmental impacts. Adv. Earth Sci. 2008, 23, 1124–1129. [Google Scholar]
- Long, H.L.; Heilig, G.K.; Li, X.B.; Zhang, M. Socio-economic development and land-use change: Analysis of rural housing land transition in the Transect of the Yangtse River, China. Land Use Policy 2007, 24, 141–153. [Google Scholar] [CrossRef]
- Long, H.L.; Li, T.T. The coupling characteristics and mechanism of farmland and rural housing land transition in China. J. Geogr. Sci. 2012, 22, 548–562. [Google Scholar] [CrossRef]
- Lyu, X.; Huang, X.J.; Zhang, Q.J. A literature review on urban-rural construction land transition. City Plan Rev. 2015, 39, 105–112. [Google Scholar]
- Wang, T.; Kazak, J.; Han, Q.; de Vries, B.A. framework for path-dependent industrial land transition analysis using vector data. Eur. Plan. Stud. 2019, 27, 1391–1412. [Google Scholar] [CrossRef]
- Amin, A.; Fazal, S.; Mujtaba, A.; Singh, S.K. Effects of land transformation on water quality of Dal Lake, Srinagar, India. J. Indian Soc. Remote Sens. 2014, 42, 119–128. [Google Scholar] [CrossRef]
- Asabere, S.B.; Acheampong, R.A.; Ashiagbor, G.; Beckers, S.C.; Keck, M.; Erasmi, S.; Schanze, J.; Sauer, D. Urbanization, land use transformation and spatio-environmental impacts: Analyses of trends and implications in major metropolitan regions of Ghana. Land Use Policy 2020, 96, 104707. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Long, H.L. Land use transitions and their dynamic mechanism: The case of the Huang-Huai-Hai Plain. J. Geogr. Sci. 2016, 26, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Ge, D.Z.; Long, H.L.; Zhang, Y.N.; Ma, L.; Li, T.T. Farmland transition and its influences on grain production in China. Land Use Policy 2018, 70, 94–105. [Google Scholar] [CrossRef]
- Ntihinyurwa, P.D.; de Vries, W.T. Farmland Fragmentation, Farmland Consolidation and Food Security: Relationships, Research Lapses and Future Perspectives. Land 2021, 10, 129. [Google Scholar] [CrossRef]
- Willy, D.K.; Muyanga, M.; Jayne, T. Can economic and environmental benefits associated with agricultural intensification be sustained at high population densities? A farm level empirical analysis. Land Use Policy 2019, 81, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.S.; Zhang, Y.F.; Li, G.D. Driving mechanism of cultivated land transition in Yantai Proper, Shandong Province, China. Chin. Geogr. Sci. 2015, 25, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, Y.B.; Luo, G.J. Spatiotemporal change characteristics and driving mechanism of slope cultivated land transition in karst trough valley area of Guizhou Province, China. Environ. Earth Sci. 2020, 79, 1–18. [Google Scholar] [CrossRef]
- Islam, M.R.; Hassn, M.Z. Losses of agricultural land due to infrastructural development: A study on Rajshahi District. Int. J. Sci. Eng. Res. 2013, 4, 391–396. [Google Scholar]
- Francis, C.A.; Hansen, T.E.; Fox, A.A.; Hesje, P.J.; Nelson, H.E.; Lawseth, A.E.; English, A. Farmland conversion to non-agricultural uses in the US and Canada: Current impacts and concerns for the future. Int. J. Agric. Sustain. 2012, 10, 8–24. [Google Scholar] [CrossRef]
- Sun, B.; Zhou, Q.M. Expressing the spatio-temporal pattern of farmland change in arid lands using landscape metrics. J. Arid Environ. 2016, 124, 118–127. [Google Scholar] [CrossRef]
- Tan, M. The transition of farmland production functions in metropolitan areas in China. Sustainability 2014, 6, 4028–4041. [Google Scholar] [CrossRef] [Green Version]
- You, H.Y.; Hu, X.W.; Wu, Y.Z. Farmland use intensity changes in response to rural transition in Zhejiang province, China. Land Use Policy 2018, 79, 350–361. [Google Scholar] [CrossRef]
- Slee, B.; Brown, I.; Donnelly, D.; Gordon, I.J.; Matthews, K.; Towers, W. The ‘squeezed middle’: Identifying and addressing conflicting demands on intermediate quality farmland in Scotland. Land Use Policy 2014, 41, 206–216. [Google Scholar] [CrossRef]
- Shi, Y.Y.; Lyu, X.; Guo, G.C.; Gong, C. Temporal-spatial pattern and driving mechanism of cultivated land use transition based on GIS and spatial econometric model. China Land Sci. 2019, 33, 51–60. [Google Scholar]
- Fu, H.; Liu, Y.J.; Sun, H.R.; Zhou, G.L. Spatiotemporal characteristics and dynamic mechanism of cultivated land use transition in the Beijing-Tianjin-Hebei region. Prog. Geogr. 2020, 39, 27–40. [Google Scholar]
- Zhang, Y.N.; Long, H.L.; Ma, L.; Ge, D.Z.; Tu, S.S.; Qu, Y. Farmland function evolution in the Huang-Huai-Hai Plain: Processes, patterns and mechanisms. J. Geogr. Sci. 2018, 28, 759–777. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.Q.; Kong, X.S.; Li, Y.J. Identifying the Static and Dynamic Relationships Between Rural Population and Settlements in Jiangsu Province, China. Chin. Geogr. Sci. 2020, 30, 810–823. [Google Scholar] [CrossRef]
- Jiang, P.H.; Li, M.C.; Lv, J.C. The causes of farmland landscape structural changes in different geographical environments. Total Environ. 2019, 685, 667–680. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Su, S.L.; Xiao, R.; Jiang, D.W.; Wu, J.P. Identifying determinants of urban growth from a multi-scale perspective: A case study of the urban agglomeration around Hangzhou Bay, China. Appl. Geogr. 2013, 45, 193–202. [Google Scholar] [CrossRef]
- Xu, W.X.; Jin, X.; Liu, J.; Zhou, Y.K. Impact of cultivated land fragmentation on spatial heterogeneity of agricultural agglomeration in China. J. Geogr. Sci. 2020, 30, 1571–1589. [Google Scholar] [CrossRef]
- He, S.W.; Yu, S.; Li, G.D.; Zhang, J.F. Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities. Land Use Policy 2020, 95, 104576. [Google Scholar] [CrossRef]
- Yang, X.; Tan, M.H. Changes and Relationships of Arable Land Functions in Beijing in Recent Years. J. Nat. Resour. 2014, 29, 733–743. [Google Scholar]
- Song, X.Q.; Huang, Y.; Wu, Z.F.; Ouyang, Z. Does cultivated land function transition occur in China? J. Geogr. Sci. 2015, 25, 817–835. [Google Scholar] [CrossRef]
- Song, X.Q.; Wu, Z.F.; Ouyang, Z. Route of cultivated land transition research. Geogr. Res. 2014, 33, 403–413. [Google Scholar]
- Liu, J.Z.; Fang, Y.G.; Wang, R.R. Spatio-temporal evolution characteristics and driving mechanisms of agricultural multifunctions in Shandong province. J. Nat. Resour. 2020, 35, 2901–2915. [Google Scholar]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach; Nelson Education: Toronto, ON, Canada, 2016. [Google Scholar]
- Ntihinyurwa, P.D.; de Vries, W.T. Farmland fragmentation and defragmentation nexus: Scoping the causes, impacts, and the conditions determining its management decisions. Ecol. Indic. 2020, 119, 106828. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, Y.; Li, Y.; Liu, F.; Shen, J.L.; Wang, J.; Xiao, R.L.; Wu, J.S. Changes in arable land in response to township urbanization in a Chinese low hilly region: Scale effects and spatial interactions. Appl. Geogr. 2017, 88, 24–37. [Google Scholar] [CrossRef]
- Ma, L.; Long, H.L.; Tu, S.S.; Zhang, Y.N.; Zheng, Y.H. Farmland transition in China and its policy implications. Land Use Policy 2020, 92, 104470. [Google Scholar] [CrossRef]
- Wang, X.; Shao, S.; Li, L. Agricultural inputs, urbanization, and urban-rural income disparity: Evidence from China. China Econ. Rev. 2019, 55, 67–84. [Google Scholar] [CrossRef]
- Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.Q.; McNamara, P.; Wu, Y.F.; Dong, Y. An econometric analysis of changes in arable land utilization using multinomial logit model in Pinggu district, Beijing, China. J. Environ. Manag. 2013, 128, 324–334. [Google Scholar] [CrossRef] [PubMed]
- Bucała-Hrabia, A. Long-term impact of socio-economic changes on agricultural land use in the Polish Carpathians. Land Use Policy 2017, 64, 391–404. [Google Scholar] [CrossRef]
- Ann, T.W.; Wu, Y.Z.; Zheng, B.B.; Zhang, X.L.; Shen, L.Y. Identifying risk factors of urban-rural conflict in urbanization: A case of China. Habitat Int. 2014, 44, 177–185. [Google Scholar]
- Long, H.L.; Zhang, Y.N.; Tu, S.S. Rural vitalization in China: A perspective of land consolidation. J. Geogr. Sci. 2019, 29, 517–530. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.B.; Jiang, G.H.; Li, Z.T.; Tian, Y.Y.; Wei, S.W. Understanding rural land use transition and regional consolidation implications in China. Land Use Policy 2019, 82, 742–753. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.J.; Gong, J.Z.; Wang, L.; Hu, Y.M. Quantifying the amount, heterogeneity, and pattern of farmland: Implications for China’s requisition-compensation balance of farmland policy. Land Use Policy 2019, 81, 256–266. [Google Scholar] [CrossRef]
- Deng, Z.Q.; Zhao, Q.Y.; Bao, H.X. The Impact of Urbanization on Farmland Productivity: Implications for China’s Requisition–Compensation Balance of Farmland Policy. Land 2020, 9, 311. [Google Scholar] [CrossRef]
- Song, J.; Ye, J.T.; Zhu, E.Y.; Deng, J.S.; Wang, K. Analyzing the impact of highways associated with farmland loss under rapid urbanization. ISPRS Int. J. Geoinf. 2016, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.C.; Hu, Z.Q.; Wu, G.G.; Deng, J.S.; Wang, C. Analysis of evolutionary law rule of farmland landscape. TXN. Chin. Soc. Agric. Eng. 2005, 6, 54–58. [Google Scholar]
Metrics | Formula | Description |
---|---|---|
Patch density (PD) | (unit: N/ha) | n = number of farmland patches; A = total landscape area (ha); |
Mean patch size (MPS) | (unit: ha) | ai = area (ha) of farmland patch i; n = number of farmland patches; |
Aggregation index (AI) | (unit: Percent) | gii = number of like adjacencies (joins) between pixels of farmland patches (class) i based on the single-count method. max→gii = maximum number of like adjacencies (joins) between pixels of farmland patches (class) i based on the single-count method. |
Functional Classification | Index | Unit | Direction | Index Calculation Method | Weight |
---|---|---|---|---|---|
Crop production | Grain production | kg/hm2 | + | Grain yield/farmland area | 0.483 |
Vegetable production | kg/hm2 | + | Total yield of vegetables (including vegetable melons)/farmland area | 0.316 | |
Melon and fruit production | kg/hm2 | + | The total yield of melons (fruit melons)/farmland area | 0.104 | |
Oilseed production | kg/hm2 | + | Total oilseed production (peanut and rapeseed)/farmland area | 0.097 | |
Living security function | Per capita grain | kg/person | + | Grain yield/permanent resident population | 0.317 |
Per capita farmland area | hm2/person | + | Farmland area/permanent resident population | 0.401 | |
The proportion of employees in the plantation industry | — | + | Number of employees in plantation/number of rural employees | 0.282 | |
Eco-environmental function | Agricultural fertilizer use intensity | kg/hm2 | − | Chemical fertilizer consumption/farmland area | 0.350 |
Pesticide use intensity | kg/hm2 | − | Pesticide consumption/farmland area | 0.322 | |
The intensity of agricultural plastic film use | kg/hm2 | − | Plastic film consumption/farmland area | 0.328 |
Factors | Dominant Morphologies | Functional Morphologies | |||||
---|---|---|---|---|---|---|---|
Area | PD | MPS | AI | F (crop) | F (living) | F (ecol) | |
El | 0.248 ** | −0.539 *** | 0.699 *** | 0.127 | −0.636 *** | 0.126 | −0.028 |
Slp | 0.030 | −0.291 *** | 0.252 *** | 0.363 *** | −0.05 | −0.093 | 0.052 |
lnPd | 0.185 | −0.438 *** | 0.385 *** | 0.111 | −0.437 *** | −0.297 ** | 0.342 ** |
Urp | −0.312 ** | 0.465 *** | −0.383 *** | −0.195 | 0.399 *** | −0.492 *** | 0.332 ** |
lnPgdp | −0.347 | 0.013 | 0.046 | 0.372 * | −0.088 | −0.325 | 0.863 *** |
lnFi | −0.103 | 0.214 | −0.299 * | −0.773 *** | 0.436 ** | 0.064 | −0.628 ** |
Stp | 0.096 | −0.32 ** | 0.186 | 0.13 | −0.053 | 0.142 | −0.363 * |
Rd | −0.425 *** | 0.414 *** | −0.588 *** | −0.758 *** | −0.146 | −0.148 | −0.562 *** |
Lci | 0.929 *** | 0.071 | 0.169 | 0.604 *** | −0.247 | 0.196 | −0.241 |
R2 | 0.452 | 0.602 | 0.781 | 0.598 | 0.683 | 0.455 | 0.380 |
Adjusted R2 | 0.368 | 0.562 | 0.748 | 0.536 | 0.635 | 0.371 | 0.285 |
F | 5.403 *** | 10.707 *** | 23.372 *** | 9.736 *** | 14.118 *** | 5.464 *** | 4.017 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, L.; Gao, Z.; Long, H.; Wang, X.; Fan, Y. Farmland Use Transition in a Typical Farming Area: The Case of Sihong County in the Huang-Huai-Hai Plain of China. Land 2021, 10, 347. https://doi.org/10.3390/land10040347
Lyu L, Gao Z, Long H, Wang X, Fan Y. Farmland Use Transition in a Typical Farming Area: The Case of Sihong County in the Huang-Huai-Hai Plain of China. Land. 2021; 10(4):347. https://doi.org/10.3390/land10040347
Chicago/Turabian StyleLyu, Ligang, Zhoubing Gao, Hualou Long, Xiaorui Wang, and Yeting Fan. 2021. "Farmland Use Transition in a Typical Farming Area: The Case of Sihong County in the Huang-Huai-Hai Plain of China" Land 10, no. 4: 347. https://doi.org/10.3390/land10040347
APA StyleLyu, L., Gao, Z., Long, H., Wang, X., & Fan, Y. (2021). Farmland Use Transition in a Typical Farming Area: The Case of Sihong County in the Huang-Huai-Hai Plain of China. Land, 10(4), 347. https://doi.org/10.3390/land10040347