Could Air Quality Get Better during Epidemic Prevention and Control in China? An Analysis Based on Regression Discontinuity Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Model Specification
2.3. Variables Specification
3. Results
3.1. Fixed Effects Regression Results
3.2. Regression Discontinuity Results
3.3. Robust Check
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [Google Scholar] [CrossRef] [Green Version]
- Gautam, S.; Hens, L. SARS-CoV-2 pandemic in India: What might we expect? Environ. Dev. Sustain. 2020, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajardi, P.; Poletto, C.; Ramasco, J.J.; Tizzoni, M.; Colizza, V.; Vespignani, A. Human mobility networks, travel restrictions, and the global spread of 2009 H1N1 pandemic. PLoS ONE 2011, 6, e16591. [Google Scholar] [CrossRef] [Green Version]
- Charu, V.; Zeger, S.; Gog, J.; Bjørnstad, O.N.; Kissler, S.; Simonsen, L.; Grenfell, B.T.; Viboud, C. Human mobility and the spatial transmission of influenza in the United States. PLoS Comput. Biol. 2017, 13, e1005382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Taylor, J.E. Patterns and limitations of urban human mobility resilience under the influence of multiple types of natural disaster. PLoS ONE 2016, 11, e0147299. [Google Scholar]
- Diffenbaugh, N.S.; Field, C.B.; Appel, E.A.; Azevedo, I.L.; Baldocchi, D.D.; Burke, M.; Burney, J.A.; Ciais, P.; Davis, S.J.; Fiore, A.M. The COVID-19 lockdowns: A window into the Earth System. Nat. Rev. Earth Environ. 2020, 1, 470–481. [Google Scholar] [CrossRef]
- Fang, H.; Wang, L.; Yang, Y. Human mobility restrictions and the spread of the novel coronavirus (2019-ncov) in China. J. Public Econ. 2020, 191, 104272. [Google Scholar] [CrossRef] [PubMed]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdowns cause global air pollution declines with implications for public health risk. medRxiv 2020, 117, 18984–18990. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.; Canadell, J.G. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Tian, X.; An, C.; Chen, Z.; Tian, Z. Assessing the impact of COVID-19 pandemic on urban transportation and air quality in Canada. Sci. Total Environ. 2021, 765, 144270. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.K.; Gamal, G.; Wafiq, A. The impact of COVID 19 on air pollution levels and other environmental indicators-A case study of Egypt. J. Environ. Manag. 2021, 277, 111496. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Harris, J.T.; Chiu, L.S.; Sun, D.; Houser, P.R.; Yu, M.; Duffy, D.Q.; Little, M.M.; Yang, C. Spatiotemporal impacts of COVID-19 on air pollution in California, USA. Sci. Total Environ. 2021, 750, 141592. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, M.; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Gautam, S. The influence of COVID-19 on air quality in India: A boon or inutile. Bull. Environ. Contam. Toxicol. 2020, 104, 724–726. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Tomar, A.; Kumar, V. The effect of COVID-19 lockdown on the air environment in India. Glob. J. Environ. Sci. Manag. 2020, 6, 31–40. [Google Scholar]
- Dantas, G.; Siciliano, B.; França, B.B.; da Silva, C.M.; Arbilla, G. The impact of COVID-19 partial lockdown on the air quality of the city of Rio de Janeiro, Brazil. Sci. Total Environ. 2020, 729, 139085. [Google Scholar] [CrossRef]
- Bassani, C.; Vichi, F.; Esposito, G.; Montagnoli, M.; Giusto, M.; Ianniello, A. Nitrogen dioxide reductions from satellite and surface observations during COVID-19 mitigation in Rome (Italy). Environ. Sci. Pollut. Res. 2021, 1–24. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 726, 138540. [Google Scholar] [CrossRef]
- Gautam, S. COVID-19: Air pollution remains low as people stay at home. Air Qual. Atmos. Health 2020, 13, 853–857. [Google Scholar] [CrossRef]
- Xu, K.; Cui, K.; Young, L.-H.; Hsieh, Y.-K.; Wang, Y.-F.; Zhang, J.; Wan, S. Impact of the COVID-19 event on air quality in central China. Aerosol Air Qual. Res. 2020, 20, 915–929. [Google Scholar] [CrossRef] [Green Version]
- Bao, R.; Zhang, A. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, Y.L.; Li, G.; Seinfeld, J.H. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 369, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.-H.; Chou, C.; Liang, J.-Y.; Chou, C.C.-K.; Shiu, C.-J. Air pollution “holiday effect” resulting from the Chinese New Year. Atmos. Environ. 2009, 43, 2114–2124. [Google Scholar] [CrossRef]
- Latha, K.M.; Highwood, E. Studies on particulate matter (PM10) and its precursors over urban environment of Reading, UK. J. Quant. Spectrosc. Radiat. Transf. 2006, 101, 367–379. [Google Scholar] [CrossRef]
- Almond, D.; Chen, Y.; Greenstone, M.; Li, H. Winter heating or clean air? Unintended impacts of China’s Huai river policy. Am. Econ. Rev. 2009, 99, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; He, G.; Liu, Y.; Yin, P.; Li, Y.; Kan, H.; Fan, M.; Xue, A.; Fan, M. The associations between ambient air pollution and adult respiratory mortality in 32 major Chinese cities, 2006–2010. Environ. Res. 2015, 137, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, K.; Xu, X.; Shen, H.; Zhu, X.; Zhang, Y.; Hu, Y.; Shen, G. Substantial changes in nitrogen dioxide and ozone after excluding meteorological impacts during the COVID-19 outbreak in mainland China. Environ. Sci. Technol. Lett. 2020, 7, 402–408. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, Y.; Wang, S.; Liu, X.; Cheng, S.; Zhang, Q.; Chen, Y.; Streets, D.G.; Jang, C.; Hao, J. Modeling study on the air quality impacts from emission reductions and atypical meteorological conditions during the 2008 Beijing Olympics. Atmos. Environ. 2011, 45, 1786–1798. [Google Scholar] [CrossRef]
- Braniš, M.; Řezáčová, P.; Domasová, M. The effect of outdoor air and indoor human activity on mass concentrations of PM10, PM2. 5, and PM1 in a classroom. Environ. Res. 2005, 99, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Jayaratne, E.; Mengersen, K.; Jamriska, M.; Thomas, S. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmos. Environ. 2002, 36, 4375–4383. [Google Scholar] [CrossRef] [Green Version]
- Riga-Karandinos, A.; Saitanis, C.; Arapis, G. Study of the weekday-weekend variation of air pollutants in a typical Mediterranean coastal town. Int. J. Environ. Pollut. 2006, 27, 300–312. [Google Scholar] [CrossRef]
- Sicard, P.; De Marco, A.; Agathokleous, E.; Feng, Z.; Xu, X.; Paoletti, E.; Rodriguez, J.J.D.; Calatayud, V. Amplified ozone pollution in cities during the COVID-19 lockdown. Sci. Total Environ. 2020, 735, 139542. [Google Scholar] [CrossRef] [PubMed]
- Pusede, S.; Cohen, R. On the observed response of ozone to NO x and VOC reactivity reductions in San Joaquin Valley California 1995–present. Atmos. Chem. Phys. 2012, 12, 8323–8339. [Google Scholar] [CrossRef] [Green Version]
- Kong, S.; Ji, Y.; Lu, B.; Chen, L.; Han, B.; Li, Z.; Bai, Z. Characterization of PM10 source profiles for fugitive dust in Fushun-a city famous for coal. Atmos. Environ. 2011, 45, 5351–5365. [Google Scholar] [CrossRef]
- Kato, S.; Shiobara, Y.; Uchiyama, K.; Miura, K.; Okochi, H.; Kobayashi, H.; Hatakeyama, S. Atmospheric CO, O3, and SO2 Measurements at the Summit of Mt. Fuji during the Summer of 2013. Aerosol Air Qual. Res. 2016, 16, 2368–2377. [Google Scholar] [CrossRef] [Green Version]
- Jaeglé, L.; Steinberger, L.; Martin, R.V.; Chance, K. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss. 2005, 130, 407–423. [Google Scholar] [CrossRef]
- Ryerson, T.; Trainer, M.; Holloway, J.; Parrish, D.; Huey, L.; Sueper, D.; Frost, G.; Donnelly, S.; Schauffler, S.; Atlas, E. Observations of ozone formation in power plant plumes and implications for ozone control strategies. Science 2001, 292, 719–723. [Google Scholar] [CrossRef] [Green Version]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Pan, Y.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Cole, M.A.; Elliott, R.J.; Shimamoto, K. Industrial characteristics, environmental regulations and air pollution: An analysis of the UK manufacturing sector. J. Environ. Econ. Manag. 2005, 50, 121–143. [Google Scholar] [CrossRef]
- Chen, D.; Liu, X.; Lang, J.; Zhou, Y.; Wei, L.; Wang, X.; Guo, X. Estimating the contribution of regional transport to PM2. 5 air pollution in a rural area on the North China Plain. Sci. Total Environ. 2017, 583, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Gu, Y. Highway toll and air pollution: Evidence from Chinese cities. J. Environ. Econ. Manag. 2017, 83, 32–49. [Google Scholar] [CrossRef] [Green Version]
Variable | N | Mean | St. Dev. | Min | Max |
---|---|---|---|---|---|
PM2.5(Log) | 9617 | 4.751 | 0.479 | 2.079 | 6.51 |
NO2(Log) | 9614 | 2.377 | 0.697 | 0 | 4.205 |
PM10(Log) | 9587 | 3.946 | 0.595 | 0.693 | 6.477 |
SO2(Log) | 9576 | 1.685 | 0.851 | 0 | 4.234 |
CO(Log) | 8729 | 2.131 | 0.525 | 0 | 4.5 |
O3(Log) | 8777 | 3.42 | 0.381 | 0 | 4.913 |
Shutdown period | 9621 | 0.334 | 0.472 | 0 | 1 |
Cut | 9621 | −9.022 | 14.71 | −34 | 16 |
Spring Festival | 9621 | 0.196 | 0.397 | 0 | 1 |
Windy weather | 9621 | 0.833 | 0.373 | 0 | 1 |
Sunny weather | 9621 | 0.251 | 0.433 | 0 | 1 |
Weekend | 9621 | 0.157 | 0.364 | 0 | 1 |
Holiday | 9621 | 0.039 | 0.194 | 0 | 1 |
High temperature | 9621 | 9.33 | 8.573 | −20 | 32 |
Low temperature | 9621 | 0.426 | 9.68 | −33 | 23 |
PM2.5(Log) (lag 1) | 9428 | 4.74 | 0.485 | 2.079 | 6.51 |
NO2(Log) (lag 1) | 9427 | 2.388 | 0.699 | 0 | 4.205 |
PM10(Log) (lag 1) | 9399 | 3.943 | 0.6 | 0.693 | 6.477 |
SO2(Log) (lag 1) | 9389 | 1.688 | 0.852 | 0 | 4.234 |
CO(Log) (lag 1) | 8558 | 2.139 | 0.522 | 0 | 4.5 |
O3(Log) (lag 1) | 8609 | 3.412 | 0.385 | 0 | 4.913 |
Dependent Variables | ||||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
NO2(Log) | PM2.5(Log) | PM10(Log) | SO2(Log) | CO(Log) | O3(Log) | |
Shutdown period | −0.178 *** | −0.039 *** | −0.103 *** | −0.055 *** | −0.037 *** | 0.045 *** |
(0.012) | (0.010) | (0.012) | (0.012) | (0.011) | (0.010) | |
Spring Festival | −0.014 | 0.092 *** | 0.035 *** | 0.037 *** | 0.020 | 0.073 *** |
(0.013) | (0.011) | (0.013) | (0.014) | (0.013) | (0.011) | |
Weekend | −0.072 *** | −0.086 *** | −0.062 *** | 0.004 | −0.057 *** | 0.064 *** |
(0.010) | (0.009) | (0.011) | (0.011) | (0.010) | (0.009) | |
Holiday | −0.140 *** | −0.112 *** | −0.185 *** | −0.080 *** | −0.091 *** | 0.041 ** |
(0.019) | (0.017) | (0.020) | (0.021) | (0.018) | (0.017) | |
Windy weather | −0.083 *** | −0.118 *** | −0.044 ** | −0.013 | −0.069 *** | 0.039 ** |
(0.018) | (0.017) | (0.019) | (0.020) | (0.017) | (0.016) | |
Sunny weather | 0.133 *** | −0.032 *** | 0.073 *** | 0.089 *** | 0.056 *** | 0.076 *** |
(0.009) | (0.009) | (0.010) | (0.010) | (0.010) | (0.008) | |
High temperature | −0.005 *** | 0.016 *** | 0.003 * | 0.004 *** | −0.002 * | 0.014 *** |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | |
Low temperature | −0.015 *** | −0.011 *** | −0.016 *** | −0.022 *** | −0.005 *** | −0.010 *** |
(0.002) | (0.001) | (0.002) | (0.002) | (0.002) | (0.001) | |
NO2(Log) (lag 1) | 0.675 *** | |||||
(0.007) | ||||||
PM2.5(Log) (lag 1) | 0.536 *** | |||||
(0.008) | ||||||
PM10(Log) (lag 1) | 0.574 *** | |||||
(0.009) | ||||||
SO2(Log) (lag 1) | 0.494 *** | |||||
(0.009) | ||||||
CO(Log)(lag 1) | 0.588 *** | |||||
(0.009) | ||||||
O3(Log) (lag 1) | 0.477 *** | |||||
(0.011) | ||||||
Observations | 9420 | 9617 | 9373 | 9355 | 8541 | 8583 |
R * | 0.595 | 0.347 | 0.376 | 0.299 | 0.363 | 0.349 |
Adjusted R * | 0.586 | 0.333 | 0.363 | 0.284 | 0.350 | 0.335 |
Dependent Variables | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM2.5(Log) | PM10(Log) | NO2(Log) | ||||||||||
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |
Bandwidth 3 | ||||||||||||
Sdperiod | 0.0003 | −0.008 | −0.079 ** | −0.069 ** | −0.001 | −0.032 | −0.100 ** | −0.068 * | −0.007 | 0.040 | −0.139 *** | −0.061 |
(0.031) | (0.030) | (0.036) | (0.034) | (0.037) | (0.035) | (0.043) | (0.040) | (0.037) | (0.035) | (0.044) | (0.040) | |
Bandwidth 4 | ||||||||||||
Sdperiod | −0.047 * | −0.032 | −0.143 *** | −0.125 *** | −0.029 | −0.053 | −0.261 *** | −0.238 *** | −0.160 *** | −0.075 ** | −0.337 *** | −0.211 *** |
(0.026) | (0.025) | (0.032) | (0.029) | (0.034) | (0.034) | (0.043) | (0.041) | (0.038) | (0.035) | (0.049) | (0.044) | |
Bandwidth 5 | ||||||||||||
Sdperiod | −0.182 *** | −0.071 *** | −0.247 *** | −0.152 *** | −0.152 *** | −0.114 *** | −0.385 *** | −0.278 *** | −0.261 *** | −0.114 *** | −0.503 *** | −0.274 *** |
(0.026) | (0.024) | (0.034) | (0.030) | (0.031) | (0.032) | (0.044) | (0.041) | (0.036) | (0.033) | (0.050) | (0.042) | |
Bandwidth 6 | ||||||||||||
Sdperiod | −0.328 *** | −0.065 *** | −0.348 *** | −0.130 *** | −0.195 *** | −0.109 *** | −0.419 *** | −0.231 *** | −0.308 *** | −0.108 *** | −0.555 *** | −0.254 *** |
(0.026) | (0.024) | (0.037) | (0.030) | (0.031) | (0.032) | (0.044) | (0.040) | (0.034) | (0.032) | (0.048) | (0.040) | |
Bandwidth 7 | ||||||||||||
Sdperiod | −0.435 *** | −0.071 *** | −0.419 *** | −0.083 *** | −0.171 *** | −0.086 *** | −0.387 *** | −0.188 *** | −0.271 *** | −0.064 ** | −0.474 *** | −0.173 *** |
(0.026) | (0.025) | (0.037) | (0.030) | (0.030) | (0.033) | (0.041) | (0.039) | (0.033) | (0.033) | (0.044) | (0.038) | |
Polynomial | binomial | binomial | trinomial | trinomial | binomial | binomial | trinomial | trinomial | binomial | binomial | trinomial | trinomial |
Control variables | excluded | included | excluded | included | excluded | included | excluded | included | excluded | included | excluded | included |
Lag order | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
SO2(Log) | CO(Log) | O3(Log) | ||||||||||
(13) | (14) | (15) | (16) | (17) | (18) | (19) | (20) | (21) | (22) | (23) | (24) | |
Bandwidth 3 | ||||||||||||
Sdperiod | 0.055 | 0.036 | −0.075 | −0.045 | 0.009 | 0.003 | −0.022 | −0.010 | 0.089 *** | 0.072 ** | −0.005 | −0.004 |
(0.041) | (0.042) | (0.049) | (0.049) | (0.033) | (0.032) | (0.038) | (0.036) | (0.031) | (0.032) | (0.036) | (0.036) | |
Bandwidth 4 | ||||||||||||
Sdperiod | −0.025 | −0.005 | −0.268 *** | −0.188 *** | −0.097 *** | −0.084 *** | −0.206 *** | −0.173 *** | 0.029 | 0.034 | −0.139 *** | −0.111 *** |
(0.039) | (0.039) | (0.050) | (0.048) | (0.034) | (0.032) | (0.042) | (0.039) | (0.028) | (0.028) | (0.036) | (0.034) | |
Bandwidth 5 | ||||||||||||
Sdperiod | −0.042 | 0.002 | −0.307 *** | −0.177 *** | −0.155 *** | −0.073 ** | −0.339 *** | −0.216 *** | 0.036 | 0.066 ** | −0.114 *** | −0.058 * |
(0.037) | (0.037) | (0.048) | (0.045) | (0.032) | (0.030) | (0.043) | (0.037) | (0.026) | (0.026) | (0.033) | (0.031) | |
Bandwidth 6 | ||||||||||||
Sdperiod | −0.010 | 0.016 | −0.234 *** | −0.113 *** | −0.188 *** | −0.040 | −0.386 *** | −0.194 *** | 0.041 * | 0.080 *** | −0.045 | 0.005 |
(0.034) | (0.035) | (0.045) | (0.042) | (0.031) | (0.029) | (0.042) | (0.035) | (0.024) | (0.025) | (0.031) | (0.030) | |
Bandwidth 7 | ||||||||||||
Sdperiod | 0.034 | 0.033 | −0.131 *** | −0.033 | −0.200 *** | −0.025 | −0.361 *** | −0.111 *** | 0.046 ** | 0.080 *** | 0.032 | 0.055 ** |
(0.032) | (0.033) | (0.041) | (0.039) | (0.028) | (0.028) | (0.039) | (0.033) | (0.023) | (0.023) | (0.029) | (0.028) | |
Polynomial | binomial | binomial | trinomial | Trinomial | binomial | binomial | trinomial | trinomial | binomial | binomial | trinomial | trinomial |
Control variables | excluded | included | excluded | Included | excluded | included | excluded | included | excluded | included | excluded | included |
Lag order | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Cheng, Z.; Jiang, C. Could Air Quality Get Better during Epidemic Prevention and Control in China? An Analysis Based on Regression Discontinuity Design. Land 2021, 10, 373. https://doi.org/10.3390/land10040373
Zhao X, Cheng Z, Jiang C. Could Air Quality Get Better during Epidemic Prevention and Control in China? An Analysis Based on Regression Discontinuity Design. Land. 2021; 10(4):373. https://doi.org/10.3390/land10040373
Chicago/Turabian StyleZhao, Xinghua, Zheng Cheng, and Chen Jiang. 2021. "Could Air Quality Get Better during Epidemic Prevention and Control in China? An Analysis Based on Regression Discontinuity Design" Land 10, no. 4: 373. https://doi.org/10.3390/land10040373
APA StyleZhao, X., Cheng, Z., & Jiang, C. (2021). Could Air Quality Get Better during Epidemic Prevention and Control in China? An Analysis Based on Regression Discontinuity Design. Land, 10(4), 373. https://doi.org/10.3390/land10040373