Spaceborne Estimation of Leaf Area Index in Cotton, Tomato, and Wheat Using Sentinel-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Sites and Field Measurements
2.2. Satellite Imagery
2.3. Model Calibration and Validation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Gadash 2019 | Gadot 2019 | Gadot 2020 | Megido 2020 | Saad 2018 | Yavne 2019 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tomato | Tomato | Tomato | Cotton | Wheat | Wheat | |||||||||||||
Sentinel-2 Images | LAI Measurements | LAI Value | Sentinel-2 Images | LAI Measurements | LAI Value | Sentinel-2 Images | LAI Measurements | LAI Value | Sentinel-2 Images | LAI Measurements | LAI Value | Sentinel-2 Images | LAI Measurements | LAI Value | Sentinel-2 Images | LAI Measurements | LAI Value | |
1 | 21 May | 16 May | 0.6 | 21 May | 16 May | 0.3 | 20 May | 20 May | 0.8 | 30 May 2 | 25 May 2 | 0.3 2 | 2 March | 1 March | 7.0 | 11 January | 6 January | 3.5 |
2 | 26 May | 28 May | 2.5 | 26 May | 28 May | 1.3 | 30 May | 27 May | 2.3 | 4 June 2 | 9 June 2 | 1.1 2 | 7 March | 14 March | 7.1 | 16 January | 20 February | 6.6 |
3 | 31 May | 12 June | 3.0 | 31 May | 4 June | 1.8 | 4 June | 14 June | 6.2 | 9 June 2 | 17 June 2 | 2.3 2 | 17 March | 25 March | 7.5 | 21 January | 7 March | 7.7 |
4 | 10 June 1 | 27 June | 3.6 | 10 June 1 | 12 June | 3.6 | 9 June | 24 June | 8.8 | 14 June 2 | 2 July 2 | 5.3 2 | 22 March | 9 April | 5.0 | 26 January | 21 March | 6.8 |
5 | 25 June | 10 July | 3.5 | 25 June | 27 June | 8.2 | 14 June | 14 July | 7.8 | 4 July 20 2 | 19 July 2 | 9.6 2 | 27 March | 31 January | 28 March | 7.3 | ||
6 | 5 July | 25 July | 4.7 | 5 July | 3 July | 8.9 | 24 June | 21 July | 5.0 | 14 July 2 | 2 August 2 | 8.7 2 | 6 April | 5 February | 7 April | 6.4 | ||
7 | 15 July | 15 July | 10 July | 9.7 | 29 June | 19 July 2 | 25 February | 11 April | 4.4 | |||||||||
8 | 20 July | 20 July | 25 July | 5.6 | 4 July | 24 July 2 | 11 April | |||||||||||
9 | 25 July | 25 July | 7 August | 4.8 | 14 July | 29 July 2 | ||||||||||||
10 | 30 July | 11 August | 5.8 | 19 July | 30 May 3 | 25 May 3 | 0.6 3 | |||||||||||
11 | 4 August | 15 August | 4.9 | 4 June 3 | 9 June 3 | 1.3 3 | ||||||||||||
12 | 9 August | 9 June 3 | 17 June 3 | 2.2 3 | ||||||||||||||
13 | 14 August | 14 June 3 |
References
- Ewert, F. Modelling plant responses to elevated CO2: How important is leaf area index? Ann. Bot. 2004, 93, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Peng, Y.; Gitelson, A.A.; Arkebauer, T.J.; Pimstein, A.; Herrmann, I.; Karnieli, A.; Rundquist, D.C.; Bonfil, D.J. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014, 192–193, 140–148. [Google Scholar] [CrossRef]
- Heuvelink, E.; Bakker, M.J.; Elings, A.; Kaarsemaker, R.; Marcelis, L.F.M. Effect of leaf area on tomato yield. Acta Hortic. 2005, 691, 43–50. [Google Scholar] [CrossRef]
- Sadeh, Y.; Zhu, X.; Dunkerley, D.; Walker, J.P.; Zhang, Y.; Rozenstein, O.; Manivasagam, V.S.; Chenu, K. Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI monitoring. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102260. [Google Scholar] [CrossRef]
- Manivasagam, V.S.; Rozenstein, O. Practices for upscaling crop simulation models from field scale to large regions. Comput. Electron. Agric. 2020, 175, 105554. [Google Scholar] [CrossRef]
- Simic Milas, A.; Romanko, M.; Reil, P.; Abeysinghe, T.; Marambe, A. The importance of leaf area index in mapping chlorophyll content of corn under different agricultural treatments using UAV images. Int. J. Remote Sens. 2018, 39, 5415–5431. [Google Scholar] [CrossRef]
- Kang, Y.; Özdoğan, M.; Zipper, S.C.; Román, M.O.; Walker, J.; Hong, S.Y.; Marshall, M.; Magliulo, V.; Moreno, J.; Alonso, L.; et al. How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop Leaf Area Index? A Global Assessment. Remote Sens. 2016, 8, 597. [Google Scholar] [CrossRef] [Green Version]
- Kamenova, I.; Dimitrov, P. Evaluation of Sentinel-2 vegetation indices for prediction of LAI, fAPAR and fCover of winter wheat in Bulgaria. Eur. J. Remote Sens. 2020, 54, 89–108. [Google Scholar] [CrossRef]
- Sener, M.; Arslanoğlu, M.C. Selection of the most suitable Sentinel-2 bands and vegetation index for crop classification by using Artificial Neural Network (ANN) and Google Earth Engine (GEE). Fresenius Environ. Bull. 2019, 28, 9348–9358. [Google Scholar]
- Kaplan, G.; Fine, L.; Lukyanov, V.; Manivasagam, V.S.; Malachy, N.; Tanny, J.; Rozenstein, O. Estimating Processing Tomato Water Consumption, Leaf Area Index, and Height Using Sentinel-2 and VENµS Imagery. Remote Sens. 2021, 13, 1046. [Google Scholar] [CrossRef]
- Asrar, G.; Fuchs, M.; Kanemasu, E.T.; Hatfield, J.L. Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat. Agron. J. 1984, 76, 300. [Google Scholar] [CrossRef]
- Reichenau, T.G.; Korres, W.; Montzka, C.; Fiener, P.; Wilken, F.; Stadler, A.; Waldhoff, G.; Schneider, K. Spatial heterogeneity of Leaf Area Index (LAI) and its temporal course on arable land: Combining field measurements, remote sensing and simulation in a Comprehensive Data Analysis Approach (CDAA). PLoS ONE 2016, 11, e0158451. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Qin, Q.; Ren, H.; Zhang, T.; Chen, S. Red-Edge Band Vegetation Indices for Leaf Area Index Estimation from Sentinel-2/MSI Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 58, 826–840. [Google Scholar] [CrossRef]
- Zheng, G.; Moskal, L.M. Retrieving Leaf Area Index (LAI) Using Remote Sensing: Theories, Methods and Sensors. Sensors 2009, 9, 2719–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, A.C.; Vettorazzi, C.A. Monitoring leaf area index at watershed level through NDVI from Landsat-7/ETM+ data. Sci. Agric. 2004, 61, 243–252. [Google Scholar] [CrossRef]
- Ho, P.-G.P. (Ed.) Geoscience and Remote Sensing, 1st ed.; InTech: Vukovar, Croatia, 2009; ISBN 978-953-307-003-2. [Google Scholar]
- Lemoine, G.; Defourny, P.; Gallego, J.; Davidson, A.M.; Fisette, T.; Mcnairn, H.; Daneshfar, B.; Ray, S.; Neetu; Rojas, O.; et al. Handbook on Remote Sensing for Agricultural Statistics; GSARS: Rome, Italy, 2017; Available online: http://www.fao.org/3/ca6394en/ca6394en.pdf (accessed on 8 May 2021).
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Cui, Z.; Kerekes, J.P. Potential of red edge spectral bands in future landsat satellites on agroecosystem canopy green leaf area index retrieval. Remote Sens. 2018, 10, 1458. [Google Scholar] [CrossRef] [Green Version]
- Verrelst, J.; Rivera, J.P.; Veroustraete, F.; Muñoz-Marí, J.; Clevers, J.G.P.W.; Camps-Valls, G.; Moreno, J. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods-A comparison. ISPRS J. Photogramm. Remote Sens. 2015, 108, 260–272. [Google Scholar] [CrossRef]
- Kganyago, M.; Mhangara, P.; Alexandridis, T.; Laneve, G.; Ovakoglou, G.; Mashiyi, N. Validation of Sentinel-2 leaf area index (LAI) product derived from SNAP toolbox and its comparison with global LAI products in an African semi-arid agricultural landscape. Remote Sens. Lett. 2020, 11, 883–892. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.C.; Brown, L.; Shi, Y.; et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Revill, A.; Florence, A.; MacArthur, A.; Hoad, S.P.; Rees, R.M.; Williams, M. The value of Sentinel-2 spectral bands for the assessment of winter wheat growth and development. Remote Sens. 2019, 11, 2050. [Google Scholar] [CrossRef] [Green Version]
- Amin, E.; Verrelst, J.; Rivera-Caicedo, J.P.; Pipia, L.; Ruiz-Verdú, A.; Moreno, J. Prototyping Sentinel-2 green LAI and brown LAI products for cropland monitoring. Remote Sens. Environ. 2021, 255, 112168. [Google Scholar] [CrossRef]
- Sun, Y.; Qin, Q.; Ren, H.; Zhang, Y. Decameter Cropland LAI/FPAR Estimation From Sentinel-2 Imagery Using Google Earth Engine. IEEE Trans. Geosci. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Beeri, O.; Netzer, Y.; Munitz, S.; Mintz, D.F.; Pelta, R.; Shilo, T.; Horesh, A.; Mey-tal, S. Kc and LAI estimations using optical and SAR remote sensing imagery for vineyards plots. Remote Sens. 2020, 12, 3478. [Google Scholar] [CrossRef]
- Verma, A.; Kumar, A.; Lal, K. Kharif crop characterization using combination of SAR and MSI Optical Sentinel Satellite datasets. J. Earth Syst. Sci. 2019, 128, 230. [Google Scholar] [CrossRef] [Green Version]
- Revill, A.; Florence, A.; Macarthur, A.; Hoad, S.; Rees, R.; Williams, M. Quantifying uncertainty and bridging the scaling gap in the retrieval of leaf area index by coupling Sentinel-2 and UAV observations. Remote Sens. 2020, 12, 1843. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 Sen2cor: L2a processor for users. Proceedings Living Planet Symposium 2016. Available online: https://elib.dlr.de/107381/1/LPS2016_sm10_3louis.pdf (accessed on 8 May 2021).
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Van Beek, J.; Tits, L.; Somers, B.; Coppin, P. Stem Water Potential Monitoring in Pear Orchards through WorldView-2 Multispectral Imagery. Remote Sens. 2013, 5, 6647–6666. [Google Scholar] [CrossRef] [Green Version]
- Dash, J.; Curran, P.J. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W. Application of a weighted infrared-red vegetation index for estimating Leaf Area Index by Correcting for Soil Moisture. Remote Sens. Environ. 1989, 29, 25–37. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Rinaldi, M.; Moreno, J. Multi-crop green LAI estimation with a new simple Sentinel-2 LAI index (SeLI). Sensors 2019, 19, 904. [Google Scholar] [CrossRef] [Green Version]
- Meyer, L.H.; Heurich, M.; Beudert, B.; Premier, J.; Pflugmacher, D. Comparison of Landsat-8 and Sentinel-2 data for estimation of leaf area index in temperate forests. Remote Sens. 2019, 11, 1160. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S.; et al. Vegetation Indices Combining the Red and Red-Edge Spectral Information for Leaf Area Index Retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1482–1492. [Google Scholar] [CrossRef] [Green Version]
- Clevers, J.; Kooistra, L.; van den Brande, M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Lanfri, S. Vegetation Analysis Using Remote Sensing; Cordoba National University (UNC): Cordoba, Argentina, 2010. [Google Scholar]
- Broge, N.H.; Thomsen, A.G.; Andersen, P.B. Comparison of selected vegetation indices as indicators of crop status. Geoinf. Eur. Integr. 2003, 591–596. [Google Scholar]
- Rozenstein, O.; Haymann, N.; Kaplan, G.; Tanny, J. Estimating cotton water consumption using a time series of Sentinel-2 imagery. Agric. Water Manag. 2018, 207, 44–52. [Google Scholar] [CrossRef]
- Rozenstein, O.; Haymann, N.; Kaplan, G.; Tanny, J. Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements. Agric. Water Manag. 2019, 223, 105715. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Weiss, M.; Baret, F. S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER. Available online: http://step.esa.int/docs/extra/ATBD_S2ToolBox_L2B_V1.1.pdf (accessed on 21 February 2021).
- Zaeen, A.A.; Sharma, L.; Jasim, A.; Bali, S.; Buzza, A.; Alyokhin, A. In-season potato yield prediction with active optical sensors. Agrosyst. Geosci. Environ. 2020, 3, e20024. [Google Scholar] [CrossRef] [Green Version]
- Manivasagam, V.S.; Kaplan, G.; Rozenstein, O. Developing Transformation Functions for VENμS and Sentinel-2 Surface Reflectance over Israel. Remote Sens. 2019, 11, 1710. [Google Scholar] [CrossRef] [Green Version]
Band | Sentinel-2A | Sentinel-2B | |||
---|---|---|---|---|---|
Central Wavelength (nm) | Bandwidth (nm) | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) | |
Band 1—Coastal aerosol | 442.7 | 21 | 442.2 | 21 | 60 |
Band 2—Blue | 492.4 | 66 | 492.1 | 66 | 10 |
Band 3—Green | 559.8 | 36 | 559.0 | 36 | 10 |
Band 4—Red | 664.6 | 31 | 664.9 | 31 | 10 |
Band 5—Vegetation red edge 1 | 704.1 | 15 | 703.8 | 16 | 20 |
Band 6—Vegetation red edge 1 | 740.5 | 15 | 739.1 | 15 | 20 |
Band 7—Vegetation red edge 3 | 782.8 | 20 | 779.7 | 20 | 20 |
Band 8—NIR | 832.8 | 106 | 832.9 | 106 | 10 |
Band 8A—Narrow NIR | 864.7 | 21 | 864.0 | 22 | 20 |
Band 9—Water vapour | 945.1 | 20 | 943.2 | 21 | 60 |
Band 11—SWIR | 1613.7 | 91 | 1610.4 | 94 | 20 |
Band 12—SWIR | 2202.4 | 175 | 2185.7 | 185 | 20 |
Area | Crop | Period * | # of Images | Polygon Size (Sentinel-2 Pixels) | # LAI Measurements | Range of Measured LAI |
---|---|---|---|---|---|---|
Saad | Wheat | 02-March-2019 06-April-2019 | 6 | 260 | 4 | 4.8–7.1 |
Yavne | Wheat | 11-January-2019 11-April-2019 | 8 | 550 | 7 | 3.8–7.0 |
Gadash | Tomato | 3-May-2019 24-July-2019 | 8–9 ** | 425 | 6 | 1.4–4.7 |
Gadot | Tomato | 25-April-2019 14-August-2019 | 12–13 ** | 249 | 11 | 0.7–9.1 |
Gadot | Tomato | 7-May-2020 3-August-2020 | 11 | 332 | 6 | 0.9–8.6 |
Megido | Cotton | 30-May-2020 29-July-2020 | 9 4 | 268 (Centre) 17 (NW Corner) | 6 3 | 0.6–9.6 0.8–1.9 |
Tomato | Cotton | Wheat | ||||
---|---|---|---|---|---|---|
Band/VI | R2 | RMSE | R2 | RMSE | R2 | RMSE |
Band 1—Coastal aerosol | 0.08 | 2.4 | 0.58 | 2.4 | 0.17 | 1.1 |
Band 2—Blue | 0.13 | 2.3 | 0.52 | 2.5 | 0.02 | 1.2 |
Band 3—Green | 0.00 | 2.5 | 0.57 | 2.4 | 0.06 | 1.2 |
Band 4—Red | 0.65 | 1.5 | 0.81 | 1.6 | 0.02 | 1.2 |
Band 5—Vegetation red edge | 0.00 | 2.5 | 0.75 | 1.8 | 0.22 | 1.1 |
Band 6—Vegetation red edge | 0.79 | 1.1 | 0.93 | 1.0 | 0.01 | 1.2 |
Band 7—Vegetation red edge | 0.78 | 1.2 | 0.96 | 0.7 | 0.26 | 1.0 |
Band 8—NIR | 0.78 | 1.2 | 0.96 | 0.7 | 0.23 | 1.1 |
Band 8A—Narrow NIR | 0.82 | 1.1 | 0.97 | 0.7 | 0.34 | 1.0 |
Band 9—Water vapour | 0.80 | 1.1 | 0.97 | 0.7 | 0.29 | 1.0 |
Band 11—SWIR | 0.01 | 2.5 | 0.12 | 3.4 | 0.00 | 1.2 |
Band 12—SWIR | 0.61 | 1.6 | 0.82 | 1.5 | 0.00 | 1.2 |
NDVI | 0.66 | 1.4 | 0.83 | 1.5 | 0.05 | 1.2 |
NDVI8A | 0.71 | 1.3 | 0.87 | 1.3 | 0.05 | 1.2 |
reNDVI | 0.79 | 1.1 | 0.98 | 0.6 | 0.83 | 0.5 |
MTCI | 0.16 | 2.3 | 0.95 | 0.8 | 0.53 | 0.8 |
WDVI | 0.76 | 1.2 | 0.94 | 0.9 | 0.29 | 1.0 |
EVI | 0.78 | 1.2 | 0.95 | 0.8 | 0.26 | 1.0 |
SAVI | 0.73 | 1.3 | 0.92 | 1.0 | 0.14 | 1.1 |
MSAVI | 0.75 | 1.2 | 0.93 | 1.0 | 0.15 | 1.5 |
DVI | 0.77 | 1.2 | 0.94 | 0.9 | 0.19 | 1.1 |
WEVI | 0.81 | 1.1 | 0.96 | 0.7 | 0.71 | 0.6 |
WNEVI | 0.79 | 1.1 | 0.98 | 0.6 | 0.79 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaplan, G.; Rozenstein, O. Spaceborne Estimation of Leaf Area Index in Cotton, Tomato, and Wheat Using Sentinel-2. Land 2021, 10, 505. https://doi.org/10.3390/land10050505
Kaplan G, Rozenstein O. Spaceborne Estimation of Leaf Area Index in Cotton, Tomato, and Wheat Using Sentinel-2. Land. 2021; 10(5):505. https://doi.org/10.3390/land10050505
Chicago/Turabian StyleKaplan, Gregoriy, and Offer Rozenstein. 2021. "Spaceborne Estimation of Leaf Area Index in Cotton, Tomato, and Wheat Using Sentinel-2" Land 10, no. 5: 505. https://doi.org/10.3390/land10050505
APA StyleKaplan, G., & Rozenstein, O. (2021). Spaceborne Estimation of Leaf Area Index in Cotton, Tomato, and Wheat Using Sentinel-2. Land, 10(5), 505. https://doi.org/10.3390/land10050505