Soil Quality Assessment after 25 Years of Sewage Sludge vs. Mineral Fertilization in a Calcareous Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Experimental Design
2.2. Soil Sampling and Analysis
2.2.1. Soil Physical Properties
2.2.2. Soil Chemical Properties
2.2.3. Soil Organic Matter and Biological Properties
2.3. Statistical Analysis
3. Results
3.1. Identification of Indicators
3.1.1. 0–15 cm Depth
3.1.2. 15–30 cm Depth
3.2. Sensitivity of PCA Factors to Treatment
3.3. Yield
4. Discussion
4.1. Selection of Soil Quality Indicators
4.1.1. Sensitivity to Management
4.1.2. Grouping and Selection of Indicators
4.2. Soil Quality Assessment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metcalf, E. Wastewater Engineering—Treatment, Disposal and Reuse, 3rd ed.; McGraw Hill: New York, NY, USA, 2003. [Google Scholar]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Annabi, M.; Le Bissonnais, Y.; Le Villio-Poitrenaud, M.; Houot, S. Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agric. Ecosyst. Environ. 2011, 144, 382–389. [Google Scholar] [CrossRef]
- Sommers, L.E. Chemical composition of sewage sludges and analysis of their potential use as fertilizers. J. Environ. Qual. 1977, 225–232. [Google Scholar] [CrossRef]
- Siebielec, G.; Siebielec, S.; Lipski, D. Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. J. Clean. Prod. 2018, 187, 372–379. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methods-A review. Renew. Sustain. Energy Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Roig, N.; Sierra, J.; Martí, E.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric. Ecosyst. Environ. 2012, 158, 41–48. [Google Scholar] [CrossRef]
- Soria, R.; Ortega, R.; Bastida, F.; Miralles, I. Role of organic amendment application on soil quality, functionality and greenhouse emission in a limestone quarry from semiarid ecosystems. Appl. Soil Ecol. 2021, 164, 103925. [Google Scholar] [CrossRef]
- Skowrońska, M.; Bielińska, E.J.; Szymański, K.; Futa, B.; Antonkiewicz, J.; Kołodziej, B. An integrated assessment of the long-term impact of municipal sewage sludge on the chemical and biological properties of soil. Catena 2020, 189, 104484. [Google Scholar] [CrossRef]
- Zaragüeta, A.; Enrique, A.; Virto, I.; Antón, R.; Urmeneta, H.; Orcaray, L. Effect of the long-term application of sewage sludge to a calcareous soil on its total and bioavailable content in trace elements, and their transfer to the crop. Minerals 2021, 11, 356. [Google Scholar] [CrossRef]
- Obriot, F.; Stauffer, M.; Goubard, Y.; Cheviron, N.; Peres, G.; Eden, M.; Revallier, A.; Vieublé-Gonod, L.; Houot, S. Multi-criteria indices to evaluate the effects of repeated organic amendment applications on soil and crop quality. Agric. Ecosyst. Environ. 2016, 232, 165–178. [Google Scholar] [CrossRef]
- Zoghlami, R.I.; Hamdi, H.; Mokni-Tlili, S.; Hechmi, S.; Khelil, M.N.; Ben Aissa, N.; Moussa, M.; Bousnina, H.; Benzarti, S.; Jedidi, N. Monitoring the variation of soil quality with sewage sludge application rates in absence of rhizosphere effect. Int. Soil Water Conserv. Res. 2020, 8, 245–252. [Google Scholar] [CrossRef]
- Abreu-Junior, C.H.; de Lima Brossi, M.J.; Monteiro, R.T.; Cardoso, P.H.S.; da Silva Mandu, T.; Nogueira, T.A.R.; Ganga, A.; Filzmoser, P.; de Oliveira, F.C.; Firme, L.P.; et al. Effects of sewage sludge application on unfertile tropical soils evaluated by multiple approaches: A field experiment in a commercial Eucalyptus plantation. Sci. Total Environ. 2019, 655, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Collivignarelli, M.C.; Abbà, A.; Frattarola, A.; Miino, M.C.; Padovani, S.; Katsoyiannis, I.; Torretta, V. Legislation for the reuse of biosolids on agricultural land in Europe: Overview. Sustainability 2019, 11, 6015. [Google Scholar] [CrossRef] [Green Version]
- Directive Council. European Comission Council Directive of 1 2 June 1986 on the Protection of the Environment, and in Particular of the Soil, when Sewage Sludge is Used in Agriculture. Off. J. Eur. Communities 1986, 181, 6–12. [Google Scholar]
- Guo, Z.; Zhang, Z.; Zhou, H.; Wang, D.; Peng, X. The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doran, J.W.; Parkin, T.B. Defining and Assessing Soil Quality. In Defining Soil Quality for a Sustainable Environment; Soil Science Society of America, Inc.: Madison, WI, USA, 1994. [Google Scholar]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Drobnik, T.; Greiner, L.; Keller, A.; Grêt-Regamey, A. Soil quality indicators—From soil functions to ecosystem services. Ecol. Indic. 2018, 94, 151–169. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; de Deyn, G.; de Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P.; et al. Soil quality—A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Gonzalez, M.R.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Ferreira, C.S.S.; et al. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Karlen, D.L.; Obrycki, J.F. Measuring rotation and manure effects in an iowa farm soil health assessment. Agron. J. 2019, 111, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Imaz, M.J.; Virto, I.; Bescansa, P.; Enrique, A.; Fernandez-Ugalde, O.; Karlen, D.L. Soil quality indicator response to tillage and residue management on semi-arid Mediterranean cropland. Soil Tillage Res. 2010, 107, 17–25. [Google Scholar] [CrossRef]
- Apesteguía, M.; Virto, I.; Orcaray, L.; Bescans, P.; Enrique, A.; Imaz, M.J.; Karlen, D.L. Tillage effects on soil quality after three years of irrigation in Northern Spain. Sustainability 2017, 9, 1476. [Google Scholar] [CrossRef] [Green Version]
- Lesschen, J.P.; Stoorvogel, J.J.; Smaling, E.M.A.; Heuvelink, G.B.M.; Veldkamp, A. A spatially explicit methodology to quantify soil nutrient balances and their uncertainties at the national level. Nutr. Cycl. Agroecosystems 2007, 78, 111–131. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P.; Kandeler, E.; Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003, 35, 453–461. [Google Scholar] [CrossRef]
- Hamdi, H.; Benzarti, S.; Manusadžianas, L.; Aoyama, I.; Jedidi, N. Solid-phase bioassays and soil microbial activities to evaluate PAH-spiked soil ecotoxicity after a long-term bioremediation process simulating landfarming. Chemosphere 2007, 70, 135–143. [Google Scholar] [CrossRef]
- Salomé, C.; Coll, P.; Lardo, E.; Metay, A.; Villenave, C.; Marsden, C.; Blanchart, E.; Hinsinger, P.; Le Cadre, E. The soil quality concept as a framework to assess management practices in vulnerable agroecosystems: A case study in Mediterranean vineyards. Ecol. Indic. 2016, 61, 456–465. [Google Scholar] [CrossRef]
- Andrews, S.S.; Carroll, C.R. Designing a Soil Quality Assessment Tool for Sustainable. Ecol. Soc. Am. 2001, 11, 1573–1585. [Google Scholar]
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil quality: Why and how? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Papadakis, J. Climatic Tables for the World. Soil Sci. 1961, 93, 76. [Google Scholar] [CrossRef]
- Gobierno de Navarra Meteorología y Climatología de Navarra. Available online: http://meteo.navarra.es/ (accessed on 25 May 2021).
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 5.1, 2nd ed.; Klute, A., Ed.; American Society of Agronomy, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 1986. [Google Scholar]
- FAO. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2014. [Google Scholar]
- Carter, M.R. Soil Sampling and Methods of Analysis; Lewis Publishers: Boca Raton, FL, USA, 1993. [Google Scholar]
- Bosch-Serra, D.; Yagüe, M.R.; Poch, R.M.; Molner, M.; Junyent, B.; Boixadera, J. Aggregate strength in calcareous soil fertilized with pig slurries. Eur. J. Soil Sci. 2017, 68, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Franzluebbers, A.J. Water infiltration and soil structure related to organic matter and its stratification with depth. Soil Tillage Res. 2002, 66, 197–205. [Google Scholar] [CrossRef]
- Bescansa, P.; Imaz, M.J.; Virto, I.; Enrique, A.; Hoogmoed, W.B. Soil water retention as affected by tillage and residue management in semiarid Spain. Soil Tillage Res. 2006, 87, 19–27. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Virto, I.; Bescansa, P.; Imaz, M.J.; Enrique, A.; Karlen, D.L. No-tillage improvement of soil physical quality in calcareous, degradation-prone, semiarid soils. Soil Tillage Res. 2009, 106, 29–35. [Google Scholar] [CrossRef]
- Rose, C.W. Agricultural Physics; Pergamon: New York, NY, USA, 1966. [Google Scholar]
- Benyarku, C.A.; Stoops, G. Guidelines for Preparation of Rock and Soil Thin Sections and Polished Sections; Departament de Medi Ambient i Ciències del Soòl, Universitat de Lleida: Lleida, Spain, 2005. [Google Scholar]
- Rasband, W. ImageJ, 1.40; Toronto Western Research Institute: Toronto, ON, Canada, 2015. [Google Scholar]
- Virto, I.; Fernández-Ugalde, O.; Barré, P.; Imaz, M.J.; Enrique, A.; Bescansa, P.; Poch, R.M. Análise micromorfológica da influencia da composição mineral do solo na agregação a curto prazo em solos semiáridos de clima mediterrânico. Spanish J. Soil Sci. 2013, 3, 116–129. [Google Scholar] [CrossRef]
- Vogel, H.J. Quantim4 C/C++ Library for Scientific Image Processing. Available online: https://www.ufz.eu/index.php?en=39198 (accessed on 25 May 2021).
- FAO. State of Knowledge of Soil Biodiversity–Status, Challenges and Potentialities; FAO: Rome, Italy, 2020; ISBN 9789251335826. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium, sodium, potassium. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar]
- Sherrod, L.A.; Dunn, G.; Peterson, G.A.; Kolberg, R.L. Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method. Soil Sci. Soc. Am. J. 2002, 66, 299–305. [Google Scholar] [CrossRef]
- ISO. Soil Quality—Extraction ofTrace Elements by Buffered DTPA Solution; ISO: Geneva, Switzerland, 2001. [Google Scholar]
- AENOR. Alimentos para Animales. Métodos de Muestreo y Análisis. Determinación de Elementos Traza, Metales Pesados y Otros Elementos en los Alimentos Para Animales por ICP-MS (UNE-EN 17053); AENOR: Madrid, Spain, 2008. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America and Agronomy Society of America: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Cambardella, C.A.; Elliott, E.T. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Virto, I.; Imaz, M.J.; Enrique, A.; Hoogmoed, W.; Bescansa, P. Burning crop residues under no-till in semi-arid land, Northern Spain—Effects on soil organic matter, aggregation, and earthworm populations. Aust. J. Soil Res. 2007, 45, 414–421. [Google Scholar] [CrossRef]
- Baker, G.H.; Lee, K.E. Earthworms. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Canadian Society of Soil Science and Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 359–371. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Eiol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Mijangos, I.; Becerril, J.M.; Albizu, I.; Epelde, L.; Garbisu, C. Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation-dependent and -independent methodologies. Soil Biol. Biochem. 2009, 41, 505–513. [Google Scholar] [CrossRef]
- Zak, J.C.; Willig, M.R.; Moorhead, D.L.; Wildman, H.G. Functional diversity of microbial communities: A quantitative approach. Soil Biol. Biochem. 1994, 26, 1101–1108. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. A minimum data set for soil quality assessment of wheat and maize cropping in the highlands of Mexico. Soil Tillage Res. 2006, 87, 163–174. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Brejda, J.J.; Karlen, D.L.; Smith, J.L.; Allan, D.L. Identification of Regional Soil Quality Factors and Indicators. Soil Sci. Soc. Am. J. 2000, 64, 2125. [Google Scholar] [CrossRef] [Green Version]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- SPSS Inc. Statistical Software, SPSS 27.0.; SPSS: Chicago, IL, USA, 2021. [Google Scholar]
- Stockfisch, N.; Forstreuter, T.; Ehlers, W. Ploughing effects on soil organic matter after twenty years of conservation tillage in Lower Saxony, Germany. Soil Tillage Res. 1999, 52, 91–101. [Google Scholar] [CrossRef]
- Dimassi, B.; Cohan, J.P.; Labreuche, J.; Mary, B. Changes in soil carbon and nitrogen following tillage conversion in a long-term experiment in Northern France. Agric. Ecosyst. Environ. 2013, 169, 12–20. [Google Scholar] [CrossRef]
- Zuo, W.; Gu, C.; Zhang, W.; Xu, K.; Wang, Y.; Bai, Y.; Shan, Y.; Dai, Q. Sewage sludge amendment improved soil properties and sweet sorghum yield and quality in a newly reclaimed mudflat land. Sci. Total Environ. 2019, 654, 541–549. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Sekaran, U.; Sagar, K.L.; Kumar, S. Soil aggregates, aggregate-associated carbon and nitrogen, and water retention as influenced by short and long-term no-till systems. Soil Tillage Res. 2021, 208, 104885. [Google Scholar] [CrossRef]
- Kirchmann, H.; Gerzabek, M.H. Pore size changes in a long-term field experiment with organic amendments. Dev. Soil Sci. 2002, 28, 419–423. [Google Scholar] [CrossRef]
- Alvarenga, P.; Farto, M.; Mourinha, C.; Palma, P. Beneficial Use of Dewatered and Composted Sewage Sludge as Soil Amendments: Behaviour of Metals in Soils and Their Uptake by Plants. Waste Biomass Valorization 2016, 7, 1189–1201. [Google Scholar] [CrossRef]
- Mantovi, P.; Baldoni, G.; Toderi, G. Reuse of liquid, dewatered, and composted sewage sludge on agricultural land: Effects of long-term application on soil and crop. Water Res. 2005, 39, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Urra, J.; Alkorta, I.; Mijangos, I.; Epelde, L.; Garbisu, C. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Sci. Total Environ. 2019, 647, 1410–1420. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Gascó, G.; Gutiérrez, B.; Méndez, A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils 2012, 48, 511–517. [Google Scholar] [CrossRef]
- Vafa, H.J.; Raiesi, F.; Hosseinpur, A. Sewage sludge application strongly modifies earthworm impact on microbial and biochemical attributes in a semi-arid calcareous soil from Iran. Appl. Soil Ecol. 2016, 100, 45–56. [Google Scholar] [CrossRef]
- Sainju, U.M.; Caesar-TonThat, T.; Lenssen, A.W.; Evans, R.G.; Kolberg, R. Long-Term Tillage and Cropping Sequence Effects on Dryland Residue and Soil Carbon Fractions. Soil Sci. Soc. Am. J. 2007, 71, 1730–1739. [Google Scholar] [CrossRef]
- Bughio, M.A.; Wang, P.; Meng, F.; Qing, C.; Kuzyakov, Y.; Wang, X.; Junejo, S.A. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil. Geoderma 2016, 262, 12–19. [Google Scholar] [CrossRef]
- Tamir, G.; Shenker, M.; Heller, H.; Bloom, P.R.; Fine, P.; Bar-Tal, A. Organic N mineralization and transformations in soils treated with animal waste in relation to carbonate dissolution and precipitation. Geoderma 2013, 209–210, 50–56. [Google Scholar] [CrossRef]
- Huang, C.; Chen, Z.-S. Carbon and nitrogen mineralization of sewage sludge compost in soils with a different initial pH. Soil Sci. Plant Nutr. 2009, 55, 715–724. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Alamri, S.A.M.; Alrumman, S.A.; Hussain, A.A.; Sewelam, N.; Ragab, G.A. Monitored Sewage Sludge Application Improves Soil Quality, Enhances Plant Growth, and Provides Evidence for Metal Remediation by Sorghum bicolor L. J. Soil Sci. Plant Nutr. 2021. [Google Scholar] [CrossRef]
- Hamdi, H.; Hechmi, S.; Khelil, M.N.; Zoghlami, I.R.; Benzarti, S.; Mokni-Tlili, S.; Hassen, A.; Jedidi, N. Repetitive land application of urban sewage sludge: Effect of amendment rates and soil texture on fertility and degradation parameters. Catena 2019, 172, 11–20. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Navarro-Pedreño, J.; Gómez, I. Contribution of a sewage sludge application to the short-term carbon sequestration across a wide range of agricultural soils. Environ. Earth Sci. 2010, 61, 1613–1619. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R.; Ehlers, K. Soil organic carbon stock as an indicator for monitoring land and soil degradation in relation to United Nations’ Sustainable Development Goals. L. Degrad. Dev. 2019, 30, 824–838. [Google Scholar] [CrossRef]
- Paetsch, L.; Mueller, C.W.; Rumpel, C.; Houot, S.; Kögel-Knabner, I. Urban waste composts enhance OC and N stocks after long-term amendment but do not alter organic matter composition. Agric. Ecosyst. Environ. 2016, 223, 211–222. [Google Scholar] [CrossRef]
- Antolín, M.C.; Pascual, I.; García, C.; Polo, A.; Sánchez-Díaz, M. Growth, yield and solute content of barley in soils treated with sewage sludge under semiarid Mediterranean conditions. F. Crop. Res. 2005, 94, 224–237. [Google Scholar] [CrossRef]
- Xue, D.; Huang, X. The impact of sewage sludge compost on tree peony growth and soil microbiological, and biochemical properties. Chemosphere 2013, 93, 583–589. [Google Scholar] [CrossRef]
- Odlare, M.; Arthurson, V.; Pell, M.; Svensson, K.; Nehrenheim, E.; Abubaker, J. Land application of organic waste—Effects on the soil ecosystem. Appl. Energy 2011, 88, 2210–2218. [Google Scholar] [CrossRef]
- Picariello, E.; Pucci, L.; Carotenuto, M.; Libralato, G.; Lofrano, G.; Baldantoni, D. Compost and sewage sludge for the improvement of soil chemical and biological quality of mediterranean agroecosystems. Sustainability 2021, 13, 26. [Google Scholar] [CrossRef]
- Lloret, E.; Pascual, J.A.; Brodie, E.L.; Bouskill, N.J.; Insam, H.; Juárez, M.F.D.; Goberna, M. Sewage sludge addition modifies soil microbial communities and plant performance depending on the sludge stabilization process. Appl. Soil Ecol. 2016, 101, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Carter, M.R. The influence of tillage on the proportion of organic carbon and nitrogen in the microbial biomass of medium-textured soils in a humid climate. Biol. Fertil. Soils 1991, 11, 135–139. [Google Scholar] [CrossRef]
- Kabiri, V.; Raiesi, F.; Ghazavi, M.A. Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric. Ecosyst. Environ. 2016, 232, 73–84. [Google Scholar] [CrossRef]
- Bescansa, P.; Virto, I.; Fernández-Ugalde, O.; Imaz, M.J.; Enrique, A. Casting Activity of Scherotheca gigas in No-Till Mediterranean Soils: Role in Organic Matter Incorporation and Influence of Aridity. Appl. Environ. Soil Sci. 2010, 2010, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Valdez, A.S.A.S.; Bosch-Serra, À.D.À.D.; Yagüe, M.R.; Poch, R.M.R.M.; Puigpinós, E. Earthworm community and soil microstructure changes with long-term organic fertilization. Arch. Agron. Soil Sci. 2020, 66, 957–970. [Google Scholar] [CrossRef]
- Rasmussen, C.; Heckman, K.; Wieder, W.R.; Keiluweit, M.; Lawrence, C.R.; Berhe, A.A.; Blankinship, J.C.; Crow, S.E.; Druhan, J.L.; Hicks Pries, C.E.; et al. Beyond clay: Towards an improved set of variables for predicting soil organic matter content. Biogeochemistry 2018, 137, 297–306. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Virto, I.; Barré, P.; Gartzia-Bengoetxea, N.; Enrique, A.; Imaz, M.J.; Bescansa, P. Effect of carbonates on the hierarchical model of aggregation in calcareous semi-arid Mediterranean soils. Geoderma 2011, 164, 203–214. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Domingo-Olivé, F.; Bosch-Serra, À.D.; Yagüe, M.R.; Poch, R.M.; Boixadera, J. Long term application of dairy cattle manure and pig slurry to winter cereals improves soil quality. Nutr. Cycl. Agroecosyst. 2016, 104, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Antón, R.; Arricibita, F.J.; Ruiz-Sagaseta, A.; Enrique, A.; De Soto, I.; Orcaray, L.; Zaragüeta, A.; Virto, I. Soil organic carbon monitoring to assess agricultural climate change adaptation practices in Navarre, Spain. Reg. Environ. Chang. 2021, 21, 1–15. [Google Scholar] [CrossRef]
- Nicolás, C.; Kennedy, J.N.; Hernández, T.; García, C.; Six, J. Soil aggregation in a semiarid soil amended with composted and non-composted sewage sludge-A field experiment. Geoderma 2014, 219, 24–31. [Google Scholar] [CrossRef]
- Jordán, M.M.; Almendro-Candel, M.B.; Navarro-Pedreño, J.; Pardo, F.; García-Sánchez, E.; Bech, J. Bioavailability, mobility and leaching of phosphorus in a Mediterranean agricultural soil (ne Spain) amended with different doses of biosolids. Environ. Geochem. Health 2020, 3. [Google Scholar] [CrossRef] [PubMed]
- Phillips, H.R.P.; Guerra, C.A.; Bartz, M.L.C.; Briones, M.J.I.; Brown, G.; Crowther, T.W.; Ferlian, O.; Gongalsky, K.B.; van den Hoogen, J.; Krebs, J.; et al. Global distribution of earthworm diversity. Science 2019, 366, 480–485. [Google Scholar] [CrossRef] [Green Version]
- Van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; de Deyn, G.B.; van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaber, F.H.; Shukla, S.; Stoffella, P.J.; Obreza, T.A.; Hanlon, E.A. Impact of organic amendments on groundwater nitrogen concentrations for sandy and calcareous soils. Compost Sci. Util. 2005, 13, 194–202. [Google Scholar] [CrossRef]
- Cherif, H.; Ayari, F.; Ouzari, H.; Marzorati, M.; Brusetti, L.; Jedidi, N.; Hassen, A.; Daffonchio, D. Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate. Eur. J. Soil Biol. 2009, 45, 138–145. [Google Scholar] [CrossRef]
- Rorat, A.; Kacprzak, M.; Vandenbulcke, F.; Plytycz, B. Soil amendment with municipal sewage sludge affects the immune system of earthworms Dendrobaena veneta. Appl. Soil Ecol. 2013, 64, 237–244. [Google Scholar] [CrossRef]
- Barrera, I.; Andrés, P.; Alcañiz, J.M. Sewage sludge application on soil: Effects on two earthworm species. Water. Air Soil Pollut. 2001, 129, 319–332. [Google Scholar] [CrossRef]
- Postma-Blaauw, M.B.; de Goede, R.G.M.; Bloem, J.; Faber, J.H.; Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 2010, 91, 460–473. [Google Scholar] [CrossRef]
Soil Physical and Chemical Properties | |
---|---|
pH (water 1:2:5) | 8.67 ± 0.03 |
Electrical Conductivity (µs cm−3 at 25 °C) (soil:water extract 1:2.5) | 169 ± 10 |
Bulk density (g cm−3) | 1.59 ± 0.08 |
Carbonates (%) | 16.0 ± 2.1 |
Clay (%) | 27.72 ± 1.03 |
Organic Carbon (%) (Walkley–Black) | 1.35 ± 0.02 |
Sewage Sludge Physical and Chemical Properties | |
---|---|
pH | 8.16 ± 0.03 |
Electric Conductivity (µs cm−3) | 1795 ± 28 |
Dry material (%) | 18.1 ± 0.4 |
Volatile matter (% of dry substance) | 62.8 ± 1.9 |
C/N | 5.35 ± 0.08 |
Total N (%) | 5.85 ± 0.13 |
Ammonium-N (%) | 0.75 ± 0.02 |
Phosphorus (P2O5) (%) | 5.59 ± 0.22 |
Potassium (K2O) (%) | 0.62 ± 0.05 |
Iron (Fe) (%) | 1.68 ± 0.04 |
Calcium (CaO) (%) | 7.98 ± 0.29 |
Soil Quality Indicators | Depths Studied | R2 | Treatment (T) | Depth (D) | T × D |
---|---|---|---|---|---|
Physical | ANOVA (p-value) | ||||
Bulk density | 2 | 0.517 | 0.058 | 0.001 | 0.709 |
PR | 2 | 0.948 | 0.144 | 0.000 | 0.992 |
Ks | 2 | 0.310 | 0.543 | 0.150 | 0.538 |
Water −33 | 2 | 0.376 | 0.124 | 0.815 | 0.479 |
Water −50 | 2 | 0.730 | 0.000 | 0.001 | 0.000 |
Water −90 | 2 | 0.261 | 0.741 | 0.163 | 0.660 |
AWHC | 2 | 0.338 | 0.230 | 0.317 | 0.622 |
PØ < 0.2 | 2 | 0.613 | 0.018 | 0.000 | 0.397 |
PØ > 0.2–9 | 2 | 0.335 | 0.444 | 0.682 | 0.297 |
PØ > 9 | 2 | 0.687 | 0.010 | 0.000 | 0.029 |
PØ 0.2–9(>0.2) | 2 | 0.429 | 0.407 | 0.015 | 0.235 |
PØ 400–1000 | 1 | 0.223 | 0.704 | NA | NA |
MWD dry | 1 | 0.708 | 0.002 | NA | NA |
MWD wet | 1 | 0.567 | 0.033 | NA | NA |
WSA | 1 | 0.648 | 0.008 | NA | NA |
Chemical | |||||
Available P | 2 | 0.910 | 0.000 | 0.149 | 1.000 |
Total N | 1 | 0.701 | 0.000 | NA | NA |
Electrical conductivity | 2 | 0.827 | 0.000 | 0.543 | 0.208 |
pH | 2 | 0.831 | 0.000 | 0.000 | 0.973 |
Exchangeable K | 2 | 0.529 | 0.102 | 0.001 | 0.433 |
Exchangeable Na | 2 | 0.720 | 0.000 | 0.361 | 0.573 |
Carbonates (CaCO3) | 1 | 0.032 | 0.999 | NA | NA |
Available Mn | 1 | 0.531 | 0.055 | NA | NA |
Available Zn | 1 | 0.908 | 0.000 | NA | NA |
Available Cu | 1 | 0.870 | 0.000 | NA | NA |
Available Ni | 1 | 0.888 | 0.000 | NA | NA |
Available Cd | 1 | 0.696 | 0.003 | NA | NA |
Available Pb | 1 | 0.703 | 0.003 | NA | NA |
Organic matter and biological | |||||
SOC | 2 | 0.878 | 0.000 | 0.000 | 0.290 |
POM-C | 2 | 0.702 | 0.001 | 0.000 | 0.123 |
POM-C/SOC | 2 | 0.510 | 0.361 | 0.001 | 0.105 |
AWCD | 2 | 0.449 | 0.909 | 0.000 | 0.199 |
NSU | 2 | 0.571 | 0.335 | 0.000 | 0.173 |
MBC | 2 | 0.612 | 0.046 | 0.000 | 0.507 |
Earthworms’ biomass (g m−2) | 1 | 0.587 | 0.024 | NA | NA |
Earthworms’ abundance (ind/m−2) | 1 | 0.465 | 0.121 | NA | NA |
Earthworms’ average size (g/ind) | 1 | 0.725 | 0.001 | NA | NA |
Depth | Factors | Eigenvalue 1 | Percentage (%) | Cumulative (%) |
---|---|---|---|---|
0–15 cm | F1 | 9.562 | 43.463 | 43.463 |
F2 | 4.533 | 20.603 | 64.067 | |
F3 | 1.654 | 6.089 | 70.156 | |
15–30 cm | F4 | 5.005 | 50.046 | 50.046 |
F5 | 1.848 | 18.477 | 68.523 |
Soil Indicators | F1 | F2 | F3 | Communalities |
---|---|---|---|---|
PR | 0.954 | 0.175 | −0.125 | 0.612 |
Water −50 | 0.852 | −0.014 | −0.207 | 0.922 |
PØ 0.2–9 | 0.800 | 0.163 | −0.099 | 0.700 |
PØ > 9 | −0.765 | 0.212 | −0.108 | 0.862 |
PØ 0.2–9(>0.2) | 0.111 | 0.000 | −0.097 | 0.955 |
WSA | 0.980 | 0.053 | −0.116 | 0.595 |
MWD dry | 0.962 | 0.005 | −0.133 | 0.500 |
MWD wet | 0.949 | 0.104 | −0.112 | 0.603 |
Av P | 0.837 | −0.166 | −0.170 | 0.963 |
Total N | 0.059 | 0.949 | −0.022 | 0.768 |
EC | 0.079 | 0.797 | 0.138 | 0.831 |
pH | 0.010 | −0.910 | 0.152 | 0.647 |
Ext Na | 0.047 | 0.975 | −0.053 | 0.900 |
Av Zn | −0.535 | 0.362 | 0.306 | 0.982 |
Av Cu | 0.041 | 0.359 | −0.092 | 0.972 |
Av Ni | 0.087 | −0.629 | 0.183 | 0.947 |
Av Cd | −0.659 | −0.319 | 0.256 | 0.912 |
SOC | 0.933 | −0.004 | −0.097 | 0.948 |
POM-C | 0.553 | −0.125 | −0.272 | 0.783 |
Earthworms g/m2 | −0.304 | −0.004 | 0.851 | 0.846 |
Earthworms g/i | −0.196 | −0.214 | 0.866 | 0.863 |
Soil Indicators | F4 | F5 | Communalities |
---|---|---|---|
PØ > 0.2 | 0.955 | 0.032 | 0.925 |
Av P | 0.891 | 0.082 | 0.836 |
Total N | 0.954 | −0.008 | 0.934 |
EC | −0.865 | −0.360 | 0.881 |
pH | 0.173 | 0.825 | 0.728 |
Ext K | −0.114 | 0.859 | 0.753 |
Ext Na | 0.031 | −0.008 | 0.888 |
SOC | 0.898 | 0.033 | 0.836 |
POM-C | 0.684 | −0.005 | 0.468 |
MBC | 0.318 | 0.522 | 0.708 |
Mean Scores | |||||
---|---|---|---|---|---|
Treatment | F1 | F2 | F3 | F4 | F5 |
40-1 | 0.310 b | −1.321 a | 0.828 bc | −0.139 b | 1.485 c |
40-2 | −0.244 b | −1.247 a | −0.939 a | −0.637 ab | 0.564 bc |
40-4 | 0.257 b | 0.818 b | −0.205 ab | 0.377 c | 0.757 bc |
80-1 | 1.896 c | 0.546 b | 0.064 ab | 1.963 d | −0.169 ab |
80-2 | 0.367 b | 0.842 b | −0.490 a | 0.792 c | −0.781 a |
80-4 | −0.215 b | −0.996 a | −0.011 ab | −0.323 b | −0.795 a |
MF | −1.162 a | 0.794 b | −0.907 a | −0.909 a | −1.075 a |
C | −1.121 a | 0.564 b | 1.660 c | −1.123 a | 0.015 ab |
Treatment (p-value) | < 0.001 | < 0.001 | 0.002 | 0.000 | 0.002 |
Treatment | Yield (kg ha−1) |
---|---|
40-1 | 8408 ± 921 c |
40-2 | 8752 ± 473 c |
40-4 | 8722 ± 460 c |
80-1 | 6470 ± 1265 b |
80-2 | 7558 ± 480 bc |
80-4 | 7783 ± 782 bc |
MF | 8877 ± 462 c |
C | 3505 ± 824 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simoes-Mota, A.; Poch, R.M.; Enrique, A.; Orcaray, L.; Virto, I. Soil Quality Assessment after 25 Years of Sewage Sludge vs. Mineral Fertilization in a Calcareous Soil. Land 2021, 10, 727. https://doi.org/10.3390/land10070727
Simoes-Mota A, Poch RM, Enrique A, Orcaray L, Virto I. Soil Quality Assessment after 25 Years of Sewage Sludge vs. Mineral Fertilization in a Calcareous Soil. Land. 2021; 10(7):727. https://doi.org/10.3390/land10070727
Chicago/Turabian StyleSimoes-Mota, Ana, Rosa Maria Poch, Alberto Enrique, Luis Orcaray, and Iñigo Virto. 2021. "Soil Quality Assessment after 25 Years of Sewage Sludge vs. Mineral Fertilization in a Calcareous Soil" Land 10, no. 7: 727. https://doi.org/10.3390/land10070727
APA StyleSimoes-Mota, A., Poch, R. M., Enrique, A., Orcaray, L., & Virto, I. (2021). Soil Quality Assessment after 25 Years of Sewage Sludge vs. Mineral Fertilization in a Calcareous Soil. Land, 10(7), 727. https://doi.org/10.3390/land10070727