The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Setup
2.3. Stakeholder Engagement
3. Results
3.1. Impacts on Soil Erosion
3.1.1. Olive Orchard Site
3.1.2. Vineyard Site
3.1.3. Fruit Orchard Field
3.2. Impacts on Soil Properties
3.2.1. Olive Orchard Site
3.2.2. Vineyard Site
3.2.3. Fruit Orchard Field
3.3. Assessment of Stakeholder Engagement
3.3.1. First Stakeholder Workshop (21 March 2017)
3.3.2. Research Activity (April to June 2019)
3.3.3. Final Stakeholder Workshop (February and March 2021)
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelagay, H.S.; Minale, A.S. Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia. Int. Soil Water Conserv. Res. 2016, 4, 126–136. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.R.; Shi, Z.H.; Chongfa, C. Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies. Ecol. Modell. 2009, 220, 1724–1734. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Beguería, S. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean Olive Groves to Climate Change through Sustainable Cultivation Practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- Kavvadias, V.; Papadopoulou, M.; Vavoulidou, E.; Theocharopoulos, S.; Koubouris, G.; Psarras, G.; Manolaraki, C.; Giakoumaki, G.; Vasiliadis, A. Effect of sustainable management of olive tree residues on soil fertility in irrigated and rain-fed olive orchards. J. Water Clim. Chang. 2018, 9, 764–774. [Google Scholar] [CrossRef]
- Kazamias, A.P.; Sapountzis, M. Spatial and temporal assessment of potential soil erosion over Greece. Eur. Water 2017, 59, 315–321. [Google Scholar]
- Karydas, C.G.; Panagos, P. Modelling monthly soil losses and sediment yields in Cyprus. Int. J. Dig. Earth 2016, 9, 766–787. [Google Scholar] [CrossRef]
- Panagos, P.; Christos, K.; Cristiano, B.; Ioannis, G. Seasonal monitoring of soil erosion at regional scale: An application of the G2 model in Crete focusing on agricultural land uses. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 147–155. [Google Scholar] [CrossRef]
- Kourgialas, N.N.; Koubouris, G.C.; Karatzas, G.P.; Metzidakis, I. Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: The effect of climate change. Nat. Hazards 2016, 83, 65–81. [Google Scholar] [CrossRef]
- Kouli, M.; Soupios, P.; Vallianatos, F. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece. Environ. Geol. 2008, 57, 483–497. [Google Scholar] [CrossRef]
- Alexakis, D.D.; Tapoglou, E.; Vozinaki, A.-E.K.; Tsanis, I.K. Integrated Use of Satellite Remote Sensing, Artificial Neural Networks, Field Spectroscopy, and GIS in Estimating Crucial Soil Parameters in Terms of Soil Erosion. Remote Sens. 2019, 11, 1106. [Google Scholar] [CrossRef] [Green Version]
- Polykretis, C.; Alexakis, D.D.; Grillakis, M.G.; Manoudakis, S. Assessment of Intra-Annual and Inter-Annual Variabilities of Soil Erosion in Crete Island (Greece) by Incorporating the Dynamic “Nature” of R and C-Factors in RUSLE Modeling. Remote Sens. 2020, 12, 2439. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Polykretis, C.; Alexakis, D.D. Past and projected climate change impacts on rainfall erosivity: Advancing our knowledge for the eastern Mediterranean island of Crete. CATENA 2020, 193, 104625. [Google Scholar] [CrossRef]
- Tsanis, I.K.; Koutroulis, A.G.; Daliakopoulos, I.N.; Jacob, D. Severe climate-induced water shortage and extremes in Crete. Clim. Chang. 2011, 106, 667–677. [Google Scholar] [CrossRef]
- Chartzoulakis, K.S.; Paranychianakis, N.V.; Angelakis, A.N. Water resources management in the Island of Crete, Greece, with emphasis on the agricultural use. Water Policy 2001, 3, 193–205. [Google Scholar] [CrossRef]
- Tzortzakakis, E.A. On the occurrence of Xiphinema index Thorne et Allen in grapevine areas of the Heraklion province, Crete, Greece. Nematol. Mediterr. 2012, 40, 67–68. [Google Scholar]
- Karydas, C.G.; Sekuloska, T.; Silleos, G.N. Quantification and site-specification of the support practice factor when mapping soil erosion risk associated with olive plantations in the Mediterranean island of Crete. Environ. Monit. Assess. 2009, 149, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Arnaez, J.; Lasanta, T.; Ruiz-Flaño, P.; Ortigosa, L. Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil Tillage Res. 2007, 93, 324–334. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Davis, J.; Keesstra, S.D.; Cerdà, A. Updated Measurements in Vineyards Improves Accuracy of Soil Erosion Rates. Agron. J. 2018, 110, 411–417. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Gómez, J.A.; Llewellyn, C.; Basch, G.; Sutton, P.B.; Dyson, J.S.; Jones, C.A. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manag. 2011, 27, 502–514. [Google Scholar] [CrossRef] [Green Version]
- Schütte, R.; Plaas, E.; Gómez, J.A.; Guzmán, G. Profitability of erosion control with cover crops in European vineyards under consideration of environmental costs. Environ. Dev. 2020, 35, 100521. [Google Scholar] [CrossRef]
- López-Vicente, M.; Calvo-Seas, E.; Álvarez, S.; Cerdà, A. Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard. Land 2020, 9, 230. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Guaitoli, F.; Santoro, A.; Cerdà, A. Managing soil nitrate with cover crops and buffer strips in Sicilian vineyards. Solid Earth 2013, 4, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Ragkos, A.; Papoutsi, G.; Bardounioti, M. Why invest on innovative production? A qualitative evaluation of the emerging avocado sector in Crete, Greece. In Proccedings of the X International Agriculture Symposium, Agrosym 2019, Jahorina, Bosnia and Herzegovina, 3–6 October 2019; pp. 1686–1691. [Google Scholar]
- Kourgialas, N.N.; Dokou, Z. Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate. Agric. Water Manag. 2021, 252, 106923. [Google Scholar] [CrossRef]
- Koutroulis, A.G.; Tsanis, I.K.; Daliakopoulos, I.N.; Jacob, D. Impact of climate change on water resources status: A case study for Crete Island, Greece. J. Hydrol. 2013, 479, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Koutroulis, A.G.; Vrohidou, A.-E.K.; Tsanis, I.K. Spatiotemporal characteristics of meteorological drought for the Island of Crete. J. Hydrometeorol. 2011, 12, 206–226. [Google Scholar] [CrossRef]
- Staff, S.S.D. Soil Survey Manual. Agriculture Handbook No. 18; United States Department of Agriculture: Washington, DC, USA, 2017.
- Bagarello, V.; Di Prima, S.; Iovino, M.; Provenzano, G. Estimating field-saturated soil hydraulic conductivity by a simplified Beerkan infiltration experiment. Hydrol. Process. 2014, 28, 1095–1103. [Google Scholar] [CrossRef]
- Braud, I.; De Condappa, D.; Soria, J.M.; Haverkamp, R.; Angulo-Jaramillo, R.; Galle, S.; Vauclin, M. Use of scaled forms of the infiltration equation for the estimation of unsaturated soil hydraulic properties (the Beerkan method). Eur. J. Soil Sci. 2005, 56, 361–374. [Google Scholar] [CrossRef]
- Emerson, W.W. A classification of soil aggregates based on their coherence in water. Soil Res. 1967, 5, 47–57. [Google Scholar] [CrossRef]
- Burt, R. Soil Survey Staff. Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report 42, Version 5.0; United States Department of Agriculture—Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Janssen, H.-I.; Koopmann, R. Determination of Ammonium and Nitrate in Soil, Biowaste and Sewage Sludge. European Standard. 2005. Available online: https://horizontal.ecn.nl/docs/society/horizontal/STD6162_NH4-N.pdf (accessed on 23 July 2021).
- Bremner, J.M.; Mulvaney, C.S. Total Nitrogen Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Ed. CA Black. Amer. Soc. Agron. Inc. Pub. Agron. Ser. 1982, 9, 595–624. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus Methods of Soil Analysis. Part. 2. Chemical and Microbiological Properties; American Society of Agronomy Inc.: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Sager, M. A simplified extraction schema to for the analytical characterization of apple orchard soils. J. Soils Sedim. 2016, 16, 1193–1202. [Google Scholar] [CrossRef]
- Wakley, H.; Black, I.A. An examination of the method for determining soil organic matter and a proposed modification of the chromic acid method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Reeuwijk, L. Procedures for Soil Analysis, 5th ed.; ISRIC: Wageningen, The Netherlands, 1995; ISBN 9789066720527. [Google Scholar]
- He, Y.; DeSutter, T.; Hopkins, D.; Jia, X.; Wysocki, D.A. Predicting ECe of the saturated paste extract from value of EC1: 5. Can. J. Soil Sci. 2013, 93, 585–594. [Google Scholar] [CrossRef]
- Valckx, J.; Govers, G.; Hermy, M.; Muys, B. Optimizing earthworm sampling in ecosystems. In Biology of Earthworms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 19–38. [Google Scholar]
- Bouyoucos, G.J. Improved hydrometer method for making particle size analysis. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Lassabatère, L.; Angulo-Jaramillo, R.; Ugalde, J.M.S.; Cuenca, R.; Braud, I.; Haverkamp, R. Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments—BEST. Soil Sci. Soc. Am. J. 2006, 70, 521–532. [Google Scholar] [CrossRef]
- Alaoui, A.; Schwilch, G.; Bachmann, F.; Panagea, I.; Wyseure, G.; Hessel, R. Monitoring Plan for Study Sites; Scientific Report 10, Deliverable D4.2, Work Package 4 of the EU-project SoilCare; University of Bern: Bern, Switzerland, 2018. [Google Scholar]
- Thomas, G.W. Exchangeable Cations, Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Rhoades, J.D. Salinity: Electrical conductivity and total dissolved solids. Methods Soil Anal. Part 3 Chem. Methods 1996, 5, 417–435. [Google Scholar]
Station | Period/year | Tmax (°C) | Tmin (°C) | Precip (mm) | ET0 (mm) |
---|---|---|---|---|---|
Vrysses | 2018 | 24 | 12 | 759 | 1304 |
Kolympari | 2018 | 23 | 14 | 704 | 1129 |
Vrysses | 2019 | 23 | 11 | 1867 | 1296 |
Kolympari | 2019 | 23 | 14 | 1332 | 1137 |
Vrysses | 2020 | 23 | 11 | 1454 | 1306 |
Kolympari | 2020 | 23 | 14 | 667 | 1155 |
Alikianos | 2020 | 23 | 13 | 1166 | 1220 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsanis, I.K.; Seiradakis, K.D.; Sarchani, S.; Panagea, I.S.; Alexakis, D.D.; Koutroulis, A.G. The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment. Land 2021, 10, 964. https://doi.org/10.3390/land10090964
Tsanis IK, Seiradakis KD, Sarchani S, Panagea IS, Alexakis DD, Koutroulis AG. The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment. Land. 2021; 10(9):964. https://doi.org/10.3390/land10090964
Chicago/Turabian StyleTsanis, Ioannis K., Konstantinos D. Seiradakis, Sofia Sarchani, Ioanna S. Panagea, Dimitrios D. Alexakis, and Aristeidis G. Koutroulis. 2021. "The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment" Land 10, no. 9: 964. https://doi.org/10.3390/land10090964
APA StyleTsanis, I. K., Seiradakis, K. D., Sarchani, S., Panagea, I. S., Alexakis, D. D., & Koutroulis, A. G. (2021). The Impact of Soil-Improving Cropping Practices on Erosion Rates: A Stakeholder-Oriented Field Experiment Assessment. Land, 10(9), 964. https://doi.org/10.3390/land10090964