Agroforestry-Based Ecosystem Services
1. Introduction
- Quantify change in ecosystem services in forest–agriculture interface landscapes and relate such to stakeholder concerns and farmer/manager decisions;
- Analyze efforts to increase the feedback from external stakeholders to land use decisions (including ‘agroforestry’) within landscapes; and/or
- Describe and analyze efforts to transcend an existing forestry versus agriculture dichotomy in land use policies.
2. Quantifying Ecosystem Services
3. Co-Investment in Ecosystem Service Provision by External Stakeholders
4. Addressing the Agricultural-Forestry Policy Interface
5. Re-Imagining Agroforestry-Based Ecosystem Services
Funding
Acknowledgments
Conflicts of Interest
References
- Fakhech, A.; Genin, D.; Ait-El-Mokhtar, M.; Outamamat, E.M.; M’Sou, S.; Alifriqui, M.; Meddich, A.; Hafidi, M. Traditional Pollarding Practices for Dimorphic Ash Tree (Fraxinus dimorpha) Support Soil Fertility in the Moroccan High Atlas. Land 2020, 9, 334. [Google Scholar] [CrossRef]
- Gusli, S.; Sumeni, S.; Sabodin, R.; Muqfi, I.H.; Nur, M.; Hairiah, K.; Useng, D.; van Noordwijk, M. Soil Organic Matter, Mitigation of and Adaptation to Climate Change in Cocoa–Based Agroforestry Systems. Land 2020, 9, 323. [Google Scholar] [CrossRef]
- Mulia, R.; Hoang, S.V.; Dinh, V.M.; Duong, N.B.T.; Nguyen, A.D.; Lam, D.H.; Hoang, D.T.; van Noordwijk, M. Earthworm diversity impacts of forest conversion and agroforestry in Quang Nam province, Viet Nam. Land 2021, 10, 36. [Google Scholar] [CrossRef]
- Magaju, C.; Winowiecki, L.; Crossland, M.; Frija, A.; Ouerghemmi, H.; Hagazi, N.; Sola, P.; Ochenje, I.; Kiura, E.; Kuria, A.; et al. Assessing Context-Specific Factors to Increase Tree Survival for Scaling Ecosystem Restoration Efforts in East Africa. Land 2020, 9, 494. [Google Scholar] [CrossRef]
- Hairiah, K.; Widianto, W.; Suprayogo, D.; Van Noordwijk, M. Tree Roots Anchoring and Binding Soil: Reducing Landslide Risk in Indonesian Agroforestry. Land 2020, 9, 256. [Google Scholar] [CrossRef]
- Suprayogo, D.; van Noordwijk, M.; Hairiah, K.; Meilasari, N.; Rabbani, A.L.; Ishaq, R.M.; Widianto, W. Infiltration-Friendly Agroforestry Land Uses on Volcanic Slopes in the Rejoso Watershed, East Java, Indonesia. Land 2020, 9, 240. [Google Scholar] [CrossRef]
- Khasanah, N.; Tanika, L.; Pratama, L.D.Y.; Leimona, B.; Prasetiyo, E.; Marulani, F.; Hendriatna, A.; Zulkarnain, M.T.; Toulier, A.; van Noordwijk, M. Groundwater-extracting rice production in the Rejoso watershed (Indonesia) reducing urban water availability: Characterization and intervention priorities. Land 2021, 10, 586. [Google Scholar] [CrossRef]
- Do, V.H.; La, N.; Mulia, R.; Bergkvist, G.; Dahlin, A.S.; Nguyen, V.T.; Pham, H.T.; Öborn, I. Fruit Tree-Based Agroforestry Systems for Smallholder Farmers in Northwest Vietnam—A Quantitative and Qualitative Assessment. Land 2020, 9, 451. [Google Scholar] [CrossRef]
- Nguyen, M.P.; Vaast, P.; Pagella, T.; Sinclair, F. Local Knowledge about Ecosystem Services Provided by Trees in Coffee Agroforestry Practices in Northwest Vietnam. Land 2020, 9, 486. [Google Scholar] [CrossRef]
- Sari, R.R.; Saputra, D.D.; Hairiah, K.; Rozendaal, D.; Roshetko, J.M.; van Noordwijk, M. Gendered Species Preferences Link Tree Diversity and Carbon Stocks in Cacao Agroforest in Southeast Sulawesi, Indonesia. Land 2020, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Cahyono, E.D.; Fairuzzana, S.; Willianto, D.; Pradesti, E.; McNamara, N.P.; Rowe, R.L.; Noordwijk, M.V. Agroforestry Innovation through Planned Farmer Behavior: Trimming in Pine–Coffee Systems. Land 2020, 9, 363. [Google Scholar] [CrossRef]
- Mulyoutami, E.; Lusiana, B.; van Noordwijk, M. Gendered migration and agroforestry in Indonesia: Livelihoods, labor, know-how, networks. Land 2020, 9, 529. [Google Scholar] [CrossRef]
- Nyberg, Y.; Musee, C.; Wachiye, E.; Jonsson, M.; Wetterlind, J.; Öborn, I. Effects of Agroforestry and Other Sustainable Practices in the Kenya Agricultural Carbon Project (KACP). Land 2020, 9, 389. [Google Scholar] [CrossRef]
- Chizmar, S.; Castillo, M.; Pizarro, D.; Vasquez, H.; Bernal, W.; Rivera, R.; Sills, E.; Abt, R.; Parajuli, R.; Cubbage, F. A Discounted Cash Flow and Capital Budgeting Analysis of Silvopastoral Systems in the Amazonas Region of Peru. Land 2020, 9, 353. [Google Scholar] [CrossRef]
- Aynekulu, E.; Suber, M.; van Noordwijk, M.; Arango, J.; Roshetko, J.M.; Rosenstock, T.S. Carbon Storage Potential of Silvopastoral Systems of Colombia. Land 2020, 9, 309. [Google Scholar] [CrossRef]
- Mulia, R.; Nguyen, D.D.; Nguyen, M.P.; Steward, P.; Pham, V.T.; Le, H.A.; Rosenstock, T.; Simelton, E. Enhancing Vietnam’s Nationally Determined Contribution with Mitigation Targets for Agroforestry: A Technical and Economic Estimate. Land 2020, 9, 528. [Google Scholar] [CrossRef]
- Purwanto, E.; Santoso, H.; Jelsma, I.; Widayati, A.; Nugroho, H.Y.; van Noordwijk, M. Agroforestry as policy option for forest-zone oil palm production in Indonesia. Land 2020, 9, 531. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Gitz, V.; Minang, P.A.; Dewi, S.; Leimona, B.; Duguma, L.; Pingault, N.; Meybeck, A. People-Centric Nature-Based Land Restoration through Agroforestry: A Typology. Land 2020, 9, 251. [Google Scholar] [CrossRef]
- Wainaina, P.; Minang, P.A.; Gituku, E.; Duguma, L. Cost-Benefit Analysis of Landscape Restoration: A Stocktake. Land 2020, 9, 465. [Google Scholar] [CrossRef]
- Van Noordwijk, M.; Speelman, E.; Hofstede, G.J.; Farida, A.; Abdurrahim, A.Y.; Miccolis, A.; Hakim, A.L.; Wamucii, C.N.; Lagneaux, E.; Andreotti, F.; et al. Sustainable Agroforestry Landscape Management: Changing the Game. Land 2020, 9, 243. [Google Scholar] [CrossRef]
- Van Noordwijk, M. Agroforestry-Based ecosystem services: Reconciling values of humans and nature in sustainable development. Land 2021, 10, 699. [Google Scholar] [CrossRef]
- United Nations Environment Programme. Making Peace with Nature: A Scientific Blueprint to Tackle the Climate, Biodiversity and Pollution Emergencies. Nairobi. 2021. Available online: https://www.unep.org/resources/making-peace-nature (accessed on 1 July 2021).
Biodiversity-Related | ||||
---|---|---|---|---|
Title and Reference | Provisioning, Economic | Soil & Water | Carbon-Related | Biodiversity-Related |
Biophysical focus: | ||||
Traditional pollarding practices for dimorphic ash tree (Fraxinus dimorpha) support soil fertility in the Moroccan High Atlas [1] | Traditional tree management | Mycorrhiza | Local tree species | |
Soil organic matter, and mitigation of and adaptation to climate change in cocoa–based agroforestry systems [2] | Corg, water holding capacity | Carbon stocks | Comparing land use systems | |
Earthworm diversity, forest conversion, and agro-forestry in Quang Nam province, Viet Nam [3] | LU impacts on ‘soil engineers’ | Earthworm diversity | ||
Assessing context-specific factors to increase tree survival for scaling ecosystem restoration efforts in East Africa [4] | Farmer’s technology tested | Tree seedling management | ||
Tree roots anchoring and binding soil: reducing landslide risk in Indonesian agroforestry [5] | Slope stabilization | Functional tree diversity | ||
Infiltration-friendly agroforestry land uses on volcanic slopes in the Rejoso watershed, East Java, Indonesia. [6] | Infiltration and erosion control | Comparing land use systems | ||
Groundwater-extracting rice production in the Rejoso watershed (Indonesia) reducing urban water availability: characterization and intervention priorities [7] | Rice production using ground-water from AF hillslopes | Water balance effects of lowland water use | ||
Focus on farmers/managers: | ||||
Fruit tree-based agroforestry systems for smallholder farmers in northwest Vietnam—a quantitative and qualitative assessment [8] | Farmer knowledge, economic analysis | |||
Local knowledge about ecosystem services provided by trees in coffee agroforestry practices in Northwest Vietnam [9] | Farmer knowledge, preferences | Soil & water protection | Functional tree diversity | |
Gendered species preferences link tree diversity and carbon stocks in cacao agroforest in Southeast Sulawesi, Indonesia [10] | Gendered tree preferences | Carbon stocks | Functional tree diversity | |
Agroforestry innovation through planned farmer behavior: trimming in pine–coffee system [11] | Constraints to farmer tree management | |||
Gendered migration and agroforestry in Indonesia: livelihoods, labor, know-how, networks [12] | Human migration~AF knowledge |
Ecosystem Services | ||||
---|---|---|---|---|
Title and Reference | Provisioning, Economic | Soil & Water-Related | Carbon-Related | Biodiversity-Related |
Effects of agroforestry and other sustainable practices in the Kenya Agricultural Carbon Project (KACP) [13] | Project impact study | Co-investment in carbon stocks | ||
Discounted cash flow and capital budgeting analysis of silvopastoral systems in the Amazonas region of Peru [14] | Farm economic analysis | |||
Carbon storage potential of silvopastoral systems of Colombia [15] | Options for national climate policy | Potential increase in silvopastoral tree density | ||
Enhancing Vietnam’s nationally determined contribution with mitigation targets for agroforestry: a technical and economic estimate [16] | Options for national climate policy | Potential increase in various AF systems |
Ecosystem Services | ||||
---|---|---|---|---|
Title and Reference | Provisioning, Economic | Soil & Water-Related | Carbon-Related | Biodiversity-Related |
Agroforestry as policy option for forest-zone oil palm (OP) production in Indonesia [17] | Smallholder OP as AF option | Concerns over OP disturbing hydrology | Concerns over C emissions | Concerns over OP causing deforestation |
People-centric nature-based land restoration through agroforestry: a typology [18] | Range of restoration intensities | Subsoil recovery slow | Realistic expectations of tradeoffs | Realistic expectations of tradeoffs |
Cost-benefit analysis of landscape restoration: a stocktake [19] | Efficient use of scarce public funds | Realistic expectations of benefits | Realistic expectations of tradeoffs | |
Sustainable agroforestry landscape management: changing the game [20] | Social-ecological systems perspective | Need for shared understanding | ||
Agroforestry-based eco-system services: reconciling values of humans and nature in sustainable development [21] | Relational values (both + and −) of biodiversity are under-studied |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Noordwijk, M. Agroforestry-Based Ecosystem Services. Land 2021, 10, 770. https://doi.org/10.3390/land10080770
van Noordwijk M. Agroforestry-Based Ecosystem Services. Land. 2021; 10(8):770. https://doi.org/10.3390/land10080770
Chicago/Turabian Stylevan Noordwijk, Meine. 2021. "Agroforestry-Based Ecosystem Services" Land 10, no. 8: 770. https://doi.org/10.3390/land10080770
APA Stylevan Noordwijk, M. (2021). Agroforestry-Based Ecosystem Services. Land, 10(8), 770. https://doi.org/10.3390/land10080770