Developing an Integrative Theoretical Framework for Climate Proofing Spatial Planning across Sectors, Policy Levels, and Planning Areas
Abstract
:1. Introduction
2. Background—Specific Challenges for Climate Proofing in Spatial Planning
2.1. Challenges for Climate Proofing in Spatial Planning Across Planning Levels and Areas (Scopes)
2.2. Integral Spatial Planning to Enhance Climate Proofing
2.3. Challenges of Climate Proofing Processes Across Sectors, Policy Levels, and Planning Areas
3. Methodological Approach
3.1. Description of the Case Study
3.2. Multi-Method Approach to the Development of the Framework
- Opportunities of multi-level CP across planning level (particularly regional and local levels) with focus on tiering of planning objectives, a hierarchy of measures for climate proofing, and coordination across sectors (e.g., for research “Raumforschung” and data acquisition).
- Need for improvement in horizontal cooperation, particularly across federal state borders with a focus on the compatibility of planning systems and differences in the application of planning instruments, as well as strategies to cope with these diverse preconditions.
- Entry points for climate proofing (spatial planning regulations and their implementation including recent amendments) as well as cross-sectoral opportunities (novel legal framing conditions and sectoral instruments delivering important information, data, or options for implementation of climate proofing measures).
4. Presentation of the Novel Theoretical and Methodological Framework
- existing (overarching/superordinate) policies and goals,
- specific climatic, geographical, and territorial conditions,
- other active “drivers of change” (land-use changes, population dynamics, economic aspects, etc.),
- intermediary goals achieved hitherto regarding climate change adaptation or climate proofing,
- state of integration of relevant institutions for cross-sectoral coordination.
4.1. Cross-Level Coordination of Climate Proofing Options
- Securing of areas (risk or favourable areas or those with regulatory functions),
- Reduction of damage to buildings and infrastructure as well as risks to their users or inhabitants (technical and nature-based approaches),
- Securing the continuation of operational processes (especially with respect to critical infrastructure or transport-related accessibility).
4.2. Integration of Cross-Sectoral Perspectives
- When defining climate proofing objectives and identifying possible areas of conflict,
- When aiming to obtain and coordinate spatially appropriate data,
- For narrowing down the spatial “focus areas” to be considered for the particular climate proofing measures,
- Throughout the analysis of planning alternatives,
- In the process of identifying measures,
- When monitoring the effects of climate change impacts on different spatial contexts and in the assessment of the achievement of objectives of the gradual measures implemented.
4.3. Re-Integration and Long-Term Coordination across Planning Levels and Planning Areas
5. Discussion
6. Concluding Thoughts and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Goosen, H.; de Groot-Reichwein, M.A.M.; Masselink, L.; Koekoek, A.; Swart, R.; Bessembinder, J.; Witte, J.M.P.; Stuyt, L.; Blom-Zandstra, G.; Immerzeel, W. Climate Adaptation Services for the Netherlands: An operational approach to support spatial adaptation planning. Reg. Environ. Chang. 2014, 14, 1035–1048. [Google Scholar] [CrossRef]
- Swart, R.; Sedee, A.G.J.; de Pater, F.; Goosen, H.; Pijnappels, M.; Vellinga, P. Climate-Proofing Spatial Planning and Water Management Projects: An Analysis of 100 Local and Regional Projects in the Netherlands. J. Environ. Policy Plan. 2014, 16, 55–74. [Google Scholar] [CrossRef]
- Van den Brink, M.; Meijerink, S.; Termeer, C.; Gupta, J. Climate-proof planning for flood-prone areas: Assessing the adaptive capacity of planning institutions in the Netherlands. Reg. Environ. Chang. 2014, 14, 981–995. [Google Scholar] [CrossRef]
- Labedens, S.; Scartezzini, J.; Mauree, D. Modeling the effects of future urban planning scenarios on the Urban Heat Island in a complex region. Submitted to Urban Clim. 2018, 1–41. Available online: https://eartharxiv.org/repository/view/1204/ (accessed on 15 March 2021).
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef] [PubMed]
- Alcoforado, M.J.; Andrade, H.; Lopes, A.; Vasconcelos, J. Application of climatic guidelines to urban planning. The example of Lisbon (Portugal). Landsc. Urban Plan. 2009, 90, 56–65. [Google Scholar] [CrossRef]
- Stoffel, M.; Tiranti, D.; Huggel, C. Climate change impacts on mass movements—Case studies from the European Alps. Sci. Total Environ. 2014, 493, 1255–1266. [Google Scholar] [CrossRef]
- Schlögel, R.; Kofler, C.; Gariano, S.L.; Van Campenhout, J.; Plummer, S. Changes in climate patterns and their association to natural hazard distribution in South Tyrol (Eastern Italian Alps). Sci. Rep. 2020, 10, 5022. [Google Scholar] [CrossRef] [Green Version]
- Gruber, M.; Kanonier, A.; Pohn-Weidinger, S.; Schindelegger, A. Spatial Planning in Austria with References to Spatial Development and Regional Policy; ÖROK: Vienna, Austria, 2018; ISBN 9783950414639. [Google Scholar]
- BMU. Dem Klimawandel Begegnen. Die Deutsche Anpassungsstrategie; Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Berlin, Germany, 2009. [Google Scholar]
- BMU. Aktionsplan Anpassung der Deutschen Anpassungsstrategie an den Klimawandel. Available online: https://www.bmu.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/aktionsplan_anpassung_klimawandel_bf.pdf (accessed on 5 April 2021).
- Altvater, S.; van de Sandt, K.; Marinova, N.; de Block, D.; Klostermann, J.; Swart, R.; Bouwma, I.; McCallum, S.; Dworak, T.; Osberghaus, D. Assessment of the Most Significant Threats to the EU Posed by the Changing Climate in the Short, Medium and Long Term—Task 1 Report; Ecologic: Berlin, Germany, 2011. [Google Scholar]
- Bollinger, L.A.; Bogmans, C.W.J.; Chappin, E.J.L.; Dijkema, G.P.J.; Huibregtse, J.N.; Maas, N.; Schenk, T.; Snelder, M.; van Thienen, P.; de Wit, S.; et al. Climate adaptation of interconnected infrastructures: A framework for supporting governance. Reg. Environ. Chang. 2014, 14, 919–931. [Google Scholar] [CrossRef] [Green Version]
- Lomba-Fernández, C.; Hernantes, J.; Labaka, L. Guide for climate-resilient cities: An urban critical infrastructures approach. Sustainability 2019, 11, 4727. [Google Scholar] [CrossRef] [Green Version]
- Hurlimann, A.C.; March, A.P. The role of spatial planning in adapting to climate change. Wiley Interdiscip. Rev. Clim. Chang. 2012, 3, 477–488. [Google Scholar] [CrossRef]
- Pütz, M.; Kruse, S.; Butterling, M. Bewertung der Klimawandel-Fitness der Raumplanung: Ein Leitfaden für PlanerInnen; Projekt CLISP, ETC Alpine Space Programm: Birmendorf/Bern, Switzerland, 2011; pp. 1–43. [Google Scholar]
- De Groot-Reichwein, M.A.M.; Goosen, H.; van Steekelenburg, M.G.N. Climate proofing the Zuidplaspolder: A guiding model approach to climate adaptation. Reg. Environ. Chang. 2014, 14, 909–918. [Google Scholar] [CrossRef]
- Birkmann, J.; Greiving, S.; Serdeczny, O.M. Das Assessment von Vulnerabilitäten, Risiken und Unsicherheiten. In Klimawandel in Deutschland: Entwicklung, Folgen, Risiken und Perspektiven; Brasseur, G.P., Jacob, D., Schuck-Zöller, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 267–276. ISBN 978-3-662-50397-3. [Google Scholar]
- Houghton, A.; Castillo-Salgado, C. Analysis of correlations between neighborhood-level vulnerability to climate change and protective green building design strategies: A spatial and ecological analysis. Build. Environ. 2020, 168, 106523. [Google Scholar] [CrossRef]
- Kruse, S.; Pütz, M. Adaptive Capacities of Spatial Planning in the Context of Climate Change in the European Alps. Eur. Plan. Stud. 2014, 22, 2620–2638. [Google Scholar] [CrossRef]
- Saunders, F.; Gilek, M.; Day, J.; Hassler, B.; McCann, J.; Smythe, T. Examining the role of integration in marine spatial planning: Towards an analytical framework to understand challenges in diverse settings. Ocean Coast. Manag. 2019, 169, 1–9. [Google Scholar] [CrossRef]
- UBA. Klimaanpassung in der Räumlichen Planung Starkregen, Hochwasser, Massenbewegungen, Hitze, Dürre; Umweltbundesamt: Dessau-Rößlau, Germany, 2016. [Google Scholar]
- UBA. Klimaanpassung im Raumordnungs-, Städtebau- und Umweltfachplanungsrecht Sowie im Recht der Kommunalen Daseinsvorsorge-Grundlagen, Aktuelle Entwicklungen und Perpektiven; Umweltbundesamt: Dessau-Rößlau, Germany, 2018. [Google Scholar]
- Hurlimann, A.; Wilson, E. Sustainable urban water management under a changing climate: The role of spatial planning. Water 2018, 10, 546. [Google Scholar] [CrossRef] [Green Version]
- Birkmann, J.; Fleischhauer, M. Anpassungsstrategien der Raumentwicklung an den Klimawandel: “Climate Proofing”-Konturen eines neuen Instruments. Raumforsch. Raumordn. 2009, 67, 114–127. [Google Scholar] [CrossRef]
- Pieterse, A.; Van Niekerk, W.; du Toit, J. Creating Resilient Settlements through Climate Change Adaptation Planning. In Proceedings of the Planning Africa Conference 2018, Cape Town, South Africa, 15–17 October 2018. [Google Scholar]
- Bush, J.; Doyon, A. Building urban resilience with nature-based solutions: How can urban planning contribute? Cities 2019, 95, 102483. [Google Scholar] [CrossRef]
- Von Haaren, C.; Haller, C. Einleitung. In Zukunftsfähiger Umgang mit Wasser im Raum; von Haaren, C., Haller, C., Eds.; VSB Verlagsservice Braunschweig GmbH: Hannover, Germany, 2011; pp. 11–15. ISBN 9783888380631. [Google Scholar]
- Grafakos, S.; Pacteau, C.; Delgado, M.; Landauer, M.; Lucon, O.; Driscoll, P. Integrating Mitigation and Adaptation Opportunities and Challenges. In Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network; Rosenzweig, C., Solecki, W., Romero-Lankao, P., Mehrotra, S., Dhakal, S., Ibrahim, S.A., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 101–138. ISBN 978-1316603338. [Google Scholar]
- Landauer, M.; Juhola, S.; Klein, J. The role of scale in integrating climate change adaptation and mitigation in cities. J. Environ. Plan. Manag. 2019, 62, 741–765. [Google Scholar] [CrossRef] [Green Version]
- Probst, T.; Hohmann, R. Climate Adaptation Governance in Switzerland Final Country Report. 2018. Available online: https://www.alpine-space.eu/projects/goapply/results/results_revised/goapply_d.t1.2.1_d.t1.3.1_wp1_transntional-synthesis-report_foen-wsl_final.pdf (accessed on 13 March 2021).
- Van Buuren, A.; van Buuren, A.; Driessen, P.P.J.; van Buuren, A.; Driessen, P.P.J.; van Rijswick, M.; van Buuren, A.; Driessen, P.P.J.; van Rijswick, M.; Rietveld, P.; et al. Towards Adaptive Spatial Planning for Climate Change: Balancing Between Robustness and Flexibility. J. Eur. Environ. Plan. Law 2013, 10, 29–53. [Google Scholar] [CrossRef] [Green Version]
- Bauer, A.; Feichtinger, J.; Steurer, R. The Governance of Climate Change Adaptation in 10 OECD Countries: Challenges and Approaches. J. Environ. Policy Plan. 2012, 14, 279–304. [Google Scholar] [CrossRef]
- Widmer, A.M. Mainstreaming climate adaptation in Switzerland: How the national adaptation strategy is implemented differently across sectors. Environ. Sci. Policy 2018, 82, 71–78. [Google Scholar] [CrossRef]
- GIZ. Guiding Urban Concepts and Climate Change in Germany’s Urban Planning Practice: A Review of the Recent Academic Discourse; Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ): Bonn, Germany, 2018. [Google Scholar]
- Pietrapertosa, F.; Salvia, M.; De Gregorio Hurtado, S.; D’Alonzo, V.; Church, J.M.; Geneletti, D.; Musco, F.; Reckien, D. Urban climate change mitigation and adaptation planning: Are Italian cities ready? Cities 2019, 91, 93–105. [Google Scholar] [CrossRef]
- Floater, G.; Heeckt, C.; Ulterino, M.; Mackie, L.; Rode, P.; Bhardwaj, A.; Carvalho, M.; Gill, D.; Bailey, T.; Huxley, R.; et al. Co-Benefits of Urban Climate Action: A Framework for Cities. 2016. Available online: https://www.c40.org/researches/c40-lse-cobenefits (accessed on 12 June 2021).
- Rannow, S.; Loibl, W.; Greiving, S.; Gruehn, D.; Meyer, B.C. Potential impacts of climate change in Germany-Identifying regional priorities for adaptation activities in spatial planning. Landsc. Urban Plan. 2010, 98, 160–171. [Google Scholar] [CrossRef]
- Araos, M.; Berrang-Ford, L.; Ford, J.D.; Austin, S.E.; Biesbroek, R.; Lesnikowski, A. Climate change adaptation planning in large cities: A systematic global assessment. Environ. Sci. Policy 2016, 66, 375–382. [Google Scholar] [CrossRef]
- Widmer, A.M. The Governance of Climate Change Adaption in Switzerland Issues, Actors, and Processes at the National and Cantonal Level and in Land-Use Relevant Policies. Ph.D. Thesis, ETH Zürich, Zurich, Switzerland, 2014. [Google Scholar]
- Widmer, A.M. Integrating Climate Change Adaptation Policy in Switzerland. In Proceedings of the ECPR General Conference, Prague, Czech Republic, 7–10 September 2016; pp. 1–32. [Google Scholar]
- Scheltema, M. Mainstreaming Urban Climate Adaptation into Urban Planning and Design. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2017. [Google Scholar]
- Rechid, D.; Petersen, J.; Schoetter, R.; Jacob, D. Klimaprojektionen für Die Metropolregion Hamburg; TuTech Verlag: Hamburg, Germany, 2014; Volume 1. [Google Scholar]
- InKoKa Leitfaden zur Klimaanpassung: Ein Nachschlagewerk für Kommunen der Metropolregion Nordwest. Metropolregion Metropolregion Bremen-Oldenburg im Nordwesten e. V., Delmenhorst, Germany. 2016. Available online: https://www.metropolregion-nordwest.de/downloads/datei/OTAwMDAwNTg3Oy07L3Vzci9sb2NhbC9odHRwZC92aHRkb2NzL2Ntc3gvbWV0cm9wb2xyZWdpb24vbWVkaWVuL2Rva3VtZW50ZS9sZWl0ZmFkZW5fenVyX2tsaW1hYW5wYXNzdW5nX3dlYi5wZGY%3D (accessed on 8 March 2021).
- Vogt, V.; Atzl, S.; Klimopass, F. Entwicklung Modellhafter Anpassungsstrategien der Regionalen Straßeninfrastruktur in der Metropolregion Stuttgart an den Klimawandel. Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg (LUBW), Karlsruhe, Germany. 2016. Available online: https://pudi.lubw.de/detailseite/-/publication/57980 (accessed on 2 April 2021).
- Wachsmuth, J. Cross-sectoral integration in regional adaptation to climate change via participatory scenario development. Clim. Chang. 2015, 132, 387–400. [Google Scholar] [CrossRef]
- Van Eerd, M.C.J.; Wiering, M.A.; Dieperink, C. Exploring the prospects for cross-border climate change adaptation between North Rhine-Westphalia and the Netherlands. Utr. Law Rev. 2014, 10, 91–106. [Google Scholar] [CrossRef]
- Vinke-de Kruijf, J.; Pahl-Wostl, C. A multi-level perspective on learning about climate change adaptation through international cooperation. Environ. Sci. Policy 2016, 66, 242–249. [Google Scholar] [CrossRef]
- Von Haaren, C.; Moss, T. Voraussetzungen für ein integriertes Management: Koordination und Kooperation der wasserrelevanten Akteure und Organisationen in Deutschland. In Zukunftsfähiger Umgang mit Wasser im Raum; von Haaren, C., Haller, C., Eds.; VSB Verlagsservice Braunschweig GmbH: Hannover, Germany, 2011; pp. 67–81. ISBN 9783888380631. [Google Scholar]
- UN Water. Climate Change and Water—UN-Water Policy Briefs. UN-Water Technical Advisory Unit, Geneva. 2019, pp. 1–28. Available online: https://www.unwater.org/publications/un-water-policy-brief-on-climate-change-and-water/ (accessed on 11 March 2021).
- Persson, Å. Environmental Policy Integration: An Introduction; Stockholm Environmental Institute (SEI): Stockholm, Sweden, 2004. [Google Scholar]
- Ingram, J.; Hamilton, C. Planning for Climate Change: A Strategic, Values-Based Approach For Urban Planners; UN-Habitat: Nairobi, Kenya, 2012; ISBN 9789211324006. [Google Scholar]
- Calliari, E.; Staccione, A.; Mysiak, J. An assessment framework for climate-proof nature-based solutions. Sci. Total Environ. 2019, 656, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, F.C.; Bentz, J.; Silva, J.M.N.; Fonseca, A.L.; Swart, R.; Santos, F.D.; Penha-Lopes, G. Adaptation to climate change at local level in Europe: An overview. Environ. Sci. Policy 2018, 86, 38–63. [Google Scholar] [CrossRef]
- Harrison, P.A.; Dunford, R.W.; Holman, I.P.; Rounsevell, M.D.A. Climate change impact modelling needs to include cross-sectoral interactions. Nat. Clim. Chang. 2016, 6, 885–890. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2015; ISBN 9789291691432. [Google Scholar]
- Rotterdam Climate Initiative. Rotterdam: Climate Change Adaptation Strategy; Rotterdam, The Netherlands. 2013. Available online: http://www.urbanisten.nl/wp/wp-content/uploads/UB_RAS_EN_lr.pdf (accessed on 27 March 2021).
- Kim, D.; Lim, U. Urban resilience in climate change adaptation: A conceptual framework. Sustainability 2016, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Serrao-Neumann, S.; Crick, F.; Harman, B.; Sano, M.; Sahin, O.; van Staden, R.; Schuch, G.; Baum, S.; Low Choy, D. Improving cross-sectoral climate change adaptation for coastal settlements: Insights from South East Queensland, Australia. Reg. Environ. Chang. 2014, 14, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Valente, S.; Veloso-Gomes, F. Coastal climate adaptation in port-cities: Adaptation deficits, barriers, and challenges ahead. J. Environ. Plan. Manag. 2020, 63, 389–414. [Google Scholar] [CrossRef]
- Juhola, S.; Westerhoff, L. Challenges of adaptation to climate change across multiple scales: A case study of network governance in two European countries. Environ. Sci. Policy 2011, 14, 239–247. [Google Scholar] [CrossRef]
- Van Eerd, M.C.J.; Wiering, M.A.; Meijerink, S. Integrated, Transboundary Climate-Adaptation Governance: Exploring Essential Steps for the Development of a Cross-Border and Integrated Climate Adaptation Strategy; National Research Programme Knowledge for Climate: Nijmegen, The Netherlands, 2014; ISBN 9789492100115. [Google Scholar]
- Steele, W.; Sporne, I.; Dale, P.; Shearer, S.; Singh-Peterson, L.; Serrao-Neumann, S.; Crick, F.; Choy, D.L.; Eslami-Andargoli, L. Learning from cross-border arrangements to support climate change adaptation in Australia. J. Environ. Plan. Manag. 2014, 57, 682–703. [Google Scholar] [CrossRef]
- Ledda, A.; Di Cesare, E.A.; Satta, G.; Cocco, G.; Calia, G.; Arras, F.; Congiu, A.; Manca, E.; De Montis, A. Adaptation to climate change and regional planning: A scrutiny of sectoral instruments. Sustainability 2020, 12, 3804. [Google Scholar] [CrossRef]
- PGO. Zwischenbericht Stadtregion+ (SRO+); Vienna. 2011. Available online: https://www.planungsgemeinschaft-ost.at/no_cache/studien/ansicht/detail/studie/zwischenbericht-stadtregion-sro/ (accessed on 5 April 2021).
- Reniu, M.G. Evapotranspiration Projections in Austria under Different Climate Change Scenarios. Master’s Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2017. [Google Scholar]
- Žuvela-Aloise, M.; Koch, R.; Buchholz, S.; Früh, B. Modelling the potential of green and blue infrastructure to reduce urban heat load in the city of Vienna. Clim. Chang. 2016, 135, 425–438. [Google Scholar] [CrossRef] [Green Version]
- Stadt Wien-MA 22 Urban Heat Island Strategy City of Vienna, Stadt Wien. 2018. Available online: https://www.wien.gv.at/umweltschutz/raum/pdf/uhi-strategieplan-englisch.pdf (accessed on 5 April 2021).
- Willows, R.I.; Reynard, N.; Meadowcroft, I.; Connell, R.K. Climate adaptation: Risk, uncertainty and decisionmaking. In UKCIP Technical Report; Willows, R.I., Connell, R.K., Eds.; Climate Impacts Programme: Uxford, UK, 2003; pp. 41–87. [Google Scholar]
- EC. Guidelines on Developing Adaptation Strategies; European Commission: Brussels, Belgium, 2013; Available online: https://ec.europa.eu/clima/sites/clima/files/adaptation/what/docs/swd_2013_134_en.pdf (accessed on 27 March 2021).
- UN-Habitat. Planning for Climate Change: A Strategic, Values-Based Approach for Urban Planners-Toolkit; United Nations Human Settlements Programme (UN-Habitat): Nairobi, Kenya, 2014; ISBN 978-92-1-132597-3. [Google Scholar]
- Raymond, C.M.; Frantzeskaki, N.; Kabisch, N.; Berry, P.; Breil, M.; Nita, M.R.; Geneletti, D.; Calfapietra, C. A framework for assessing and implementing the co-benefits of nature-based solutions in urban areas. Environ. Sci. Policy 2017, 77, 15–24. [Google Scholar] [CrossRef]
- Neely, B.; Mccarthy, P.; Cross, M.; Enquist, C.; Garfin, G.; Gori, D.; Hayward, G.; Schulz, T. Climate Change Adaptation Workshop for Natural Resource Managers in the Gunnison Basin: Summary; Southwest Climate Change Initiative: Gunnison, CO, USA, 2010. [Google Scholar]
- GIZ; UNEP-WCMC; FEBA. Guidebook for Monitoring and Evaluating Ecosystem-Based Adaptation Interventions; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Bonn, Germany, 2020. [Google Scholar]
- World Bank. Implementing Nature Based Flood Protection: Principles and Implementation Guidance; The World Bank Group: Washington, DC, USA, 2017. [Google Scholar]
- GIZ; CMP. Conservation Standards Applied to Ecosystem-based Adaptation; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: Bonn, Germany, 2020. [Google Scholar]
- Gan, G.; Liu, Y.; Sun, G. Understanding interactions among climate, water, and vegetation with the Budyko framework. Earth Sci. Rev. 2021, 212, 103451. [Google Scholar] [CrossRef]
- Fini, A.; Frangi, P.; Mori, J.; Donzelli, D.; Ferrini, F. Nature based solutions to mitigate soil sealing in urban areas: Results from a 4-year study comparing permeable, porous, and impermeable pavements. Environ. Res. 2017, 156, 443–454. [Google Scholar] [CrossRef] [PubMed]
- Podhrázská, J.; Kučera, J.; Karásek, P.; Szturc, J.; Konečná, J. The Effect of Land Management on the Retention Capacity of Agricultural Land in the Conditions of Climate Change—Case Study. J. Ecol. Eng. 2020, 22, 258–266. [Google Scholar] [CrossRef]
- Reinwald, F.; Ring, Z.; Kraus, F.; Kainz, A.; Tötzer, T.; Damyanovic, D. Green Resilient City—A framework to integrate the Green and Open Space Factor and climate simulations into everyday planning to support a green and climate-sensitive landscape and urban development. In IOP Conference Series: Earth and Environmental Science, Vol. 323: Sustainable Built Environment Conference 2019, 11–14 September 2019, Graz, Austria; IOP Publishing Ltd: Bristol, UK, 2019. [Google Scholar]
- Vartholomaios, A.; Kalogirou, N.; Athanassiou, E.; Papadopoulou, M. The green space factor as a tool for regulating the urban microclimate in vegetation-deprived Greek cities. In Proceedings of the International Conference on “Changing Cities”: Spatial, Morphological, Formal & Socio-Economic Dimensions, Skiathos Island, Greece, 18–21 June 2013. [Google Scholar] [CrossRef]
- UNISDR. How To Make Cities More Resilient. A Handbook For Local Government Leaders; United Nations International Strategy for Disaster Risk Reduction: Geneva, Switzerland, 2012; ISBN 978-92-1-101496-9. [Google Scholar]
- Chapman, E.; Nieuwenhuijs, A. User Guide: The Resin Decision Support Tools for Climate Change Adaption; Freiburg, Germany. 2018. Available online: https://resin-cities.eu/fileadmin/user_upload/Handbooks/RESIN-D4-3-guide-ENGLISH-www.pdf (accessed on 5 April 2021).
- Nalau, J.; Preston, B.L.; Maloney, M.C. Is adaptation a local responsibility? Environ. Sci. Policy 2015, 48, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Damyanovic, D.; Reinwald, F.; Brandenburg, C.; Allex, B.; Gantner, B.; Morawetz, U.; Preiss, J. Pilot Action City of Vienna—UHI-STRAT Vienna. In Counteracting Urban Heat Island Effects in a Global Climate Change Scenario; Musco, F., Ed.; Springer International Publishing: Cham, Germany, 2016; pp. 257–280. ISBN 978-3-319-10425-6. [Google Scholar]
- Amt der NÖ Landesregierung. NÖ Klima- und Energiefahrplan 2020 bis 2030. 2020. Available online: https://www.noe.gv.at/noe/Energie/Energiefahrplan_2030.html (accessed on 5 April 2021).
- England, M.I.; Dougill, A.J.; Stringer, L.C.; Vincent, K.E.; Pardoe, J.; Kalaba, F.K.; Mkwambisi, D.D.; Namaganda, E.; Afionis, S. Climate change adaptation and cross-sectoral policy coherence in southern Africa. Reg. Environ. Chang. 2018, 18, 2059–2071. [Google Scholar] [CrossRef] [Green Version]
- Biesbroek, G.R.; Swart, R.J.; Knaap, W.G.M. Van Der The mitigation—Adaptation dichotomy and the role of spatial planning. Habitat Int. 2009, 33, 230–237. [Google Scholar] [CrossRef]
- Adger, W.N.; Arnell, N.W.; Tompkins, E.L. Successful adaptation to climate change across scales. Glob. Environ. Chang. 2005, 15, 77–86. [Google Scholar] [CrossRef]
- Vitale, C.; Meijerink, S.; Moccia, F.D.; Ache, P. Urban flood resilience, a discursive-institutional analysis of planning practices in the Metropolitan City of Milan. Land Use Policy 2020, 95, 104575. [Google Scholar] [CrossRef]
- Gill, S.; Forest, T.M.; Ennos, R. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef] [Green Version]
- EC. Guidance on Integrating Climate Change and Biodiversity into Environmental Impact Assessment; European Commission: Brussels, Belgium, 2013; Available online: http://ec.europa.eu/environment/eia/pdf/EIA%20Guidance.pdf (accessed on 5 April 2021).
- Carter, J.G.; Cavan, G.; Connelly, A.; Guy, S.; Handley, J.; Kazmierczak, A. Climate change and the city: Building capacity for urban adaptation. Prog. Plann. 2015, 95, 1–66. [Google Scholar] [CrossRef]
- Vincent, K.; Colenbrander, W. Developing and applying a five step process for mainstreaming climate change into local development plans: A case study from Zambia. Clim. Risk Manag. 2018, 21, 26–38. [Google Scholar] [CrossRef]
- Wamsler, C.; Johannessen, Å. Meeting at the crossroads? Developing national strategies for disaster risk reduction and resilience: Relevance, scope for, and challenges to, integration. Int. J. Disaster Risk Reduct. 2020, 45. [Google Scholar] [CrossRef]
- Steurer, R.; Clar, C.; Casado-Asensio, J. Climate change mitigation in Austria and Switzerland: The pitfalls of federalism in greening decentralized building policies. Nat. Resour. Forum 2020, 44, 89–108. [Google Scholar] [CrossRef]
- Biesbroek, G.R.; Klostermann, J.E.M.; Termeer, C.J.A.M.; Kabat, P. On the nature of barriers to climate change adaptation. Reg. Environ. Chang. 2013, 13, 1119–1129. [Google Scholar] [CrossRef]
- Simonet, G.; Leseur, A. Barriers and drivers to adaptation to climate change—A field study of ten French local authorities. Clim. Chang. 2019, 155, 621–637. [Google Scholar] [CrossRef]
Categories | Opportunities of Integrative Spatial Planning | Challenges of Integrative Spatial Planning |
---|---|---|
Institutionalisation of CP | More strategic, long-term coordination and increased level of harmonisation of processes/legal frameworks to avoid maladaptation [59]. Spatial Planning can act as a “hub” connecting different sectors and stakeholders [62]. | Most current cooperation processes across planning areas are short-term/project-based, driven by individuals and not institutionalised [34,38], at least not during early stages [63]. |
Data | Data and knowledge exchange on the interpretation of data reduces uncertainties with regard to vulnerability assessments and increases the avoidance of conflicts as well as options for the identification of co-benefits [50,61,62]. | Different data formats or analysis software impeding easy transfer. Lack of know-how regarding relevant indicators, analysis methods or analysed time frames/spatial scales represent further challenges [46,60]. Lack of knowledge or uncertainties regarding sectoral or regional climate change impacts [46,59,60], which is partly caused by inefficient use of available knowledge or insufficient inclusion of local knowledge [60]. |
Networks and Communication (internal and external) | The development of networks and continuous communication represents the basis for an improved exchange of knowledge, the identification of shared interests, and the building of (formalised) cooperation processes across scopes [62,63]. | Stakeholders may display varying perceptions of risk related to climate change and trust related to scientific assessments [60]. Different regions may generally display competing interests caused by different local prerequisites, cultural differences (i.e., urban-rural), and traditions [60,63]. Different perceptions on acceptable measures and required burden-sharing (of costs and benefits) [60]. |
Commitment, motivation, and trust | The creation of a trustful atmosphere and mutual interests are crucial for cross-sectoral cooperation. Vital networks can enhance political commitment, despite lacking institutionalisations [61]. | Personal, institutional, or structural inertia or resistance can repress CP initiatives/cooperation [60]. |
Visions, objectives, and consensus | Synchronised policy priorities and joint resources for thematic coordination and prioritisation allow the maximisation of co-benefits or synergies [28] and avoidance of lock-in effects, even though the role of consensus varies across different countries and institutional settings [61]. | It may be hard to reach a consensus on the need for adaptation [60]. For some sectors, climate change adaptation is an “integral part of their agenda”, for others it is not [41]. Differing interests or policy priorities (e.g., prioritisation of economic or specific sectoral objectives) [34,49,59]. Unclear guidance/goal-setting for mainstreaming of adaptation measures/integration into lower-level policies [60]. Lack of knowledge on synergies, co-benefits, and trade-offs of climate proofing measures across sectors [59]. |
Legal frameworks/instruments | Possibility of joint measures within similar legal structures/exchange of expertise on entry points for consideration of climate change adaptation [28]. | Non-harmonised or non-binding planning frameworks or strategies may impede integrative climate proofing [59], as well as lacking or diverging levels of detail within specific planning instruments [28,59]. When regulations appear as “negotiable”, higher risk may be taken by stakeholders in favour of construction/developments [60]. |
Resources | Shared cost burden, at least for parts of the risk assessment and adaptation process [50]. Possibility for efficient use of human and financial resources as well as space (in the case of multi-functional measures) [28]. | Uncertainties/ambiguities regarding cost sharing [50] and limited financial resources in different regions [64]. Different internal structures, hierarchies, and responsibilities. Asymmetries in political commitment and cultures between different partners may impede uptake of administrative processes [59]. |
Categories | Novel Aspects of the Presented Integrative Framework | Steps of the Framework Process (See Figure 1) |
---|---|---|
Data | Integration of a recursive knowledge exchange process across stakeholders at different levels regarding relevant impact factors and available databases; feedback loops through monitoring (of climate change impacts and the implementation of climate proofing measures). | 1a, 1b, and 2a, 2b, 2c, 3d |
Visioning | Integration of an inclusive and iterative process of goal setting/visioning with regard to both: general climate proofing objectives and sectoral and regional spatial planning objectives; Additional process to strengthen knowledge and exchange among stakeholders regarding the co-benefits and lock-in effects of sectoral measures. | 1c and 2d, 3b |
Commitment, motivation, and trust | Established cross-sectoral cooperation at various planning levels can foster the commitment for the implementation of climate proofing measures; institutionalised feedback loops (established monitoring) allow multi-sectoral perspectives for balanced goal-setting and identification of the future need for climate proofing in a more integrative manner to create confidence in the relevance and at the same time survey the actual success (achievement of objectives) of these measures. | 1b, c, 2d, 3a, 3b, 5 |
Communication (internal and external) | This involves the exchange regarding data mentioned initially and above but also the joint identification of synergistic goals and conflicting interests, as well as the maximisation of co-benefits along the hierarchy of measures for climate proofing. | 2b and d, 3a-c, 4b, 5 |
Legal frameworks/instruments | Integration of an analysis and subsequent consideration of the current state of harmonisation and overlaps between different planning instruments across planning areas and sectors, serves as a basis for the definition of possible entry points for climate proofing within different planning institutions. | 3a |
Institutionalisation of CP | Integration of an institutionalised and systematic process of cooperation across different spatial planning institutions across sectors, policy levels, and planning areas, taking into account different co-benefits and interaction effects across sectors. | Entire framework, especially 4a, 4b, and 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juschten, M.; Reinwald, F.; Weichselbaumer, R.; Jiricka-Pürrer, A. Developing an Integrative Theoretical Framework for Climate Proofing Spatial Planning across Sectors, Policy Levels, and Planning Areas. Land 2021, 10, 772. https://doi.org/10.3390/land10080772
Juschten M, Reinwald F, Weichselbaumer R, Jiricka-Pürrer A. Developing an Integrative Theoretical Framework for Climate Proofing Spatial Planning across Sectors, Policy Levels, and Planning Areas. Land. 2021; 10(8):772. https://doi.org/10.3390/land10080772
Chicago/Turabian StyleJuschten, Maria, Florian Reinwald, Roswitha Weichselbaumer, and Alexandra Jiricka-Pürrer. 2021. "Developing an Integrative Theoretical Framework for Climate Proofing Spatial Planning across Sectors, Policy Levels, and Planning Areas" Land 10, no. 8: 772. https://doi.org/10.3390/land10080772
APA StyleJuschten, M., Reinwald, F., Weichselbaumer, R., & Jiricka-Pürrer, A. (2021). Developing an Integrative Theoretical Framework for Climate Proofing Spatial Planning across Sectors, Policy Levels, and Planning Areas. Land, 10(8), 772. https://doi.org/10.3390/land10080772