Evaluation and Comparison of the Common Land Model and the Community Land Model by Using In Situ Soil Moisture Observations from the Soil Climate Analysis Network
Abstract
:1. Introduction
2. Models and Data
2.1. Models
2.1.1. CLM Version 5
2.1.2. CoLM Version 2014
2.2. Data
2.2.1. Forcing Data
2.2.2. Validation Data
2.3. Experimental Design and Variables Evaluated
2.4. Data Processing and Evaluation Metrics
3. Results
3.1. Soil Moisture Time Series Comparison
3.2. Soil Moisture Simulation Variance Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Walker, J.; Rowntree, P.R. The effect of soil moisture on circulation and rainfall in a tropical model. Q. J. R. Meteorol. Soc. 1977, 103, 29–46. [Google Scholar] [CrossRef]
- Rind, D. The Influence of Ground Moisture Conditions in North America on Summer Climate as Modeled in the GISS GCM. Mon. Weather. Rev. 1982, 110, 1487–1494. [Google Scholar] [CrossRef] [Green Version]
- Manabe, S. Climate and the ocean circulation: I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Weather. Rev. 1969, 97, 739–774. [Google Scholar] [CrossRef]
- Yeh, T.-C.; Wetherald, R.T.; Manabe, S. The Effect of Soil Moisture on the Short-Term Climate and Hydrology Change—A Numerical Experiment. Mon. Weather. Rev. 1984, 112, 474–490. [Google Scholar] [CrossRef] [Green Version]
- Fatichi, S.; Katul, G.G.; Ivanov, V.Y.; Pappas, C.; Paschalis, A.; Consolo, A.; Kim, J.; Burlando, P. Abiotic and biotic controls of soil moisture spatiotemporal variability and the occurrence of hysteresis. Water Resour. Res. 2015, 51, 3505–3524. [Google Scholar] [CrossRef]
- Srivastava, A.; Saco, P.M.; Rodriguez, J.F.; Kumari, N.; Chun, K.P.; Yetemen, O. The role of landscape morphology on soil moisture variability in semi-arid ecosystems. Hydrol. Processes 2020, 35, e13990. [Google Scholar] [CrossRef]
- Vinnikov, K.Y.; Robock, A.; Speranskaya, N.A.; Schlosser, C.A. Scales of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res. Atmos. 1996, 101, 7163–7174. [Google Scholar] [CrossRef]
- Dickinson, R.E. Global change and terrestrial hydrology—A review. Tellus A Dyn. Meteorol. Oceanogr. 1991, 43, 176–181. [Google Scholar] [CrossRef]
- Pitman, A.J. The evolution of, and revolution in, land surface schemes designed for climate models. R. Meteorol. Soc. 2003, 23, 479–510. [Google Scholar] [CrossRef]
- Sellers, P.; Dickinson, R.; Randall, D.; Betts, A.; Hall, F.; Berry, J.; Collatz, G.; Denning, A.; Mooney, H.; Nobre, C. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [Green Version]
- Oleson, K.; Lawrence, D.; Bonan, G.; Drewniak, B.; Huang, M.; Koven, C.; Levis, S.; Li, F.; Riley, W.; Subin, Z.; et al. Technical Description of Version 4.5 of the Community Land Model (CLM); National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 2013. [Google Scholar]
- Bonan, G.B. Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and Users Guide; Technical note; National Center for Atmospheric Research: Boulder, CO, USA, 1996. [Google Scholar]
- Dickinson, E.; Henderson-Sellers, A.; Kennedy, J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 1993. [Google Scholar]
- Yongjiu, D.; Qingcun, Z. A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci. 1997, 14, 433–460. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, X.; Dickinson, R.E.; Baker, I.; Bonan, G.B.; Bosilovich, M.G.; Denning, A.S.; Dirmeyer, P.A.; Houser, P.R.; Niu, G. The common land model. Am. Meteorol. Soc. 2003, 84, 1013–1024. [Google Scholar] [CrossRef] [Green Version]
- Xin, Y.; Bian, L.G.; Zhang, X.H. The application of CoLM to Arid region of Northwest China and Qinghai-Xizang Plateau. Plateau Meteorol. 2006, 25, 567–574. [Google Scholar]
- Ma, L.; Tang, L.; Li, Z. Simulation of land ETs of China with CoLM; SPIE: Bellingham, WA, USA, 2006; Volume 6200. [Google Scholar]
- Zheng, J.; Xie, Z.H.; Dai, Y.J.; Yuan, X.; Bi, X.Q. Coupling of the Common Land Model(CoLM) with the Regional Climate Model (RegCM3) and Its Preliminary Validation. Chin. J. Atmos. Sci. 2009, 33, 737–750. [Google Scholar] [CrossRef]
- Zeng, X.; Shaikh, M.; Dai, Y.; Dickinson, R.E.; Myneni, R. Coupling of the Common Land Model to the NCAR Community Climate Model. J. Clim. 2002, 15, 1832–1854. [Google Scholar] [CrossRef]
- Li, M.; Ma, Z.; Niu, G.-Y. Modeling spatial and temporal variations in soil moisture in China. Chin. Sci. Bull. 2011, 56, 1809–1820. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Shi, C.; Xi, L.; Huang, X. Simulation and Assessment of Soil Moisture at Different Depths in China Area. Meteorol. Sci. Technol. 2013, 41, 529–536. [Google Scholar]
- Yuan, Y.; Xin, L.A.I.; Yuanfa, G.; Jun, W.E.N.; Xu, D.; Lihua, Z.H.U.; Yongli, Z.; Bingyun, W.; Xin, W.; Zuoliang, W.; et al. CLM4.5 Model Simulation of Soil Moisture over the Qinghai-Xizang Plateau and Its Performance Evaluation. Chin. J. Atmos. Sci. 2019, 43, 676–690. [Google Scholar] [CrossRef]
- Li, C.; Lu, H.; Yang, K.; Wright, J.S.; Yu, L.; Chen, Y.; Huang, X.; Xu, S. Evaluation of the common land model (CoLM) from the perspective of water and energy budget simulation: Towards inclusion in CMIP6. Atmosphere 2017, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Western, A.W.; Grayson, R.B.; Blöschl, G.; Willgoose, G.R.; McMahon, T.A.J.W.r.r. Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour. Res. 1999, 35, 797–810. [Google Scholar] [CrossRef] [Green Version]
- Wang, A.; Zeng, X.; Guo, D.J.J.o.H. Estimates of global surface hydrology and heat fluxes from the Community Land Model (CLM4. 5) with four atmospheric forcing datasets. J. Hydrometeorol. 2016, 17, 2493–2510. [Google Scholar] [CrossRef] [Green Version]
- Swenson, S.; Lawrence, D.; Lee, H. Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model. J. Adv. Modeling Earth Syst. 2012, 4, M08002. [Google Scholar] [CrossRef]
- Brunke, M.A.; Broxton, P.; Pelletier, J.; Gochis, D.; Hazenberg, P.; Lawrence, D.M.; Leung, L.R.; Niu, G.-Y.; Troch, P.A.; Zeng, X. Implementing and Evaluating Variable Soil Thickness in the Community Land Model, Version 4.5 (CLM4.5). J. Clim. 2016, 29, 3441–3461. [Google Scholar] [CrossRef]
- Clapp, R.B.; Hornberger, G.M. Empirical equations for some soil hydraulic properties. Water Resour. Res. 1978, 14, 601–604. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A global soil data set for earth system modeling. J. Adv. Modeling Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Köppen, W. Das gepgraphisca System der Klimate. In Handbuch der Klimatologie; Köppen, W., Geiger, G., Eds.; Gebr. Borntraeger: Stuttgart, Germany, 1936; pp. 1–44. [Google Scholar]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Geological Survey Professional Paper 964; United States Department of the Interior: Washington, DC, USA, 1976. [Google Scholar]
- Cosby, B.; Hornberger, G.; Clapp, R.; Ginn, T. A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resour. Res. 1984, 20, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Crow, W.T.; Wood, E.F. Multi-scale dynamics of soil moisture variability observed during SGP’97. Geophys. Res. Lett. 1999, 26, 3485–3488. [Google Scholar] [CrossRef]
- Entin, J.K.; Robock, A.; Vinnikov, K.Y.; Hollinger, S.E.; Liu, S.; Namkhai, A. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. Atmos. 2000, 105, 11865–11877. [Google Scholar] [CrossRef]
ID | Site | Climate Class | Climate Group | Latitude | Longitude | Period | Land-Cover Category (USGS) |
---|---|---|---|---|---|---|---|
1 | Glacial Ridge | Dfb | Temperate continental with warm summers | 47°43′ | 96°16′ | 2010–2014 | Cropland |
2 | Little River | Cfa | Subtropical-Mediterranean | 39°47′ | 99°20′ | 2010–2014 | Grassland |
3 | Nunn#1 | Bsk | Dry (arid and semi-arid) | 40°52′ | 104°44′ | 2010–2014 | Grassland |
4 | Phillipsburg | Dfa | Temperate continental with hot summers | 30°5′ | 95°59′ | 2010–2014 | Grassland |
5 | Powder Mill | Cfa | Subtropical-Mediterranean | 30°28′ | 88°28′ | 2010–2014 | Grassland |
6 | Prairie View | Cfa | Subtropical-Mediterranean | 39°1′ | 76°51′ | 2010–2014 | Grassland |
7 | Tnc Fort Bayou | Cfa | Subtropical-Mediterranean | 31°30′ | 83°33′ | 2010–2014 | Shrub |
Site | Model | Soil Depth | ||||
---|---|---|---|---|---|---|
0.0508 m | 0.1016 m | 0.2032 m | 0.5080 m | 1.016 m | ||
Glacial Ridge | CLM5 | 0.24 | 0.17 | 0.40 | 0.50 | 0.27 |
CoLM2014 | 0.10 | −0.10 | 0.16 | 0.16 | −0.04 | |
Little River | CLM5 | 0.70 | 0.66 | 0.63 | 0.50 | 0.55 |
CoLM2014 | 0.40 | 0.44 | 0.43 | 0.34 | 0.36 | |
Nunn#1 | CLM5 | 0.49 | 0.50 | 0.46 | 0.35 | 0.04 |
CoLM2014 | 0.00 | 0.03 | 0.10 | 0.06 | 0.11 | |
Phillipsburg | CLM5 | 0.32 | 0.41 | 0.40 | 0.55 | 0.42 |
CoLM2014 | −0.04 | 0.08 | 0.17 | 0.43 | 0.55 | |
Powder Mill | CLM5 | −0.06 | −0.07 | −0.02 | 0.01 | −0.01 |
CoLM2014 | −0.20 | −0.35 | −0.40 | −0.42 | −0.25 | |
Prairie View | CLM5 | 0.37 | 0.48 | 0.60 | 0.48 | 0.27 |
CoLM2014 | 0.06 | 0.27 | −0.04 | −0.26 | −0.25 | |
Tnc Fort Bayou | CLM5 | 0.44 | 0.44 | 0.43 | 0.45 | 0.52 |
CoLM2014 | 0.45 | 0.45 | 0.44 | 0.31 | 0.28 |
Site | Model | Soil Depth | ||||
---|---|---|---|---|---|---|
0.0508 m | 0.1016 m | 0.2032 m | 0.0508 m | 1.016 m | ||
Glacial Ridge | CLM5 | 0.0749 | 0.1005 | 0.0924 | 0.1264 | 0.0126 |
CoLM2014 | −0.0003 | 0.0196 | −0.0047 | 0.0519 | −0.0757 | |
Little River | CLM5 | 0.0654 | 0.0547 | 0.0293 | 0.0183 | −0.0419 |
CoLM2014 | 0.0244 | 0.0217 | 0.0083 | 0.0057 | −0.1476 | |
Nunn#1 | CLM5 | 0.0348 | 0.0112 | 0.0307 | 0.0386 | 0.0910 |
CoLM2014 | −0.0850 | −0.1138 | −0.0833 | −0.0713 | −0.0450 | |
Phillipsburg | CLM5 | 0.1963 | 0.1559 | 0.1521 | 0.1608 | 0.1969 |
CoLM2014 | 0.1119 | 0.0767 | 0.0602 | 0.0844 | 0.1533 | |
Powder Mill | CLM5 | 0.2020 | 0.2091 | 0.2271 | 0.2487 | 0.2716 |
CoLM2014 | −0.0008 | −0.0039 | −0.0117 | −0.0047 | 0.0230 | |
Prairie View | CLM5 | 0.1369 | 0.0557 | 0.0407 | 0.0192 | −0.0127 |
CoLM2014 | 0.0602 | −0.0182 | −0.0655 | −0.0728 | −0.0970 | |
Tnc Fort Bayou | CLM5 | −0.0577 | −0.0018 | 0.0222 | 0.0273 | 0.0502 |
CoLM2014 | −0.1447 | −0.0898 | −0.0920 | −0.0737 | −0.0584 |
Site | Model | Soil Depth | ||||
---|---|---|---|---|---|---|
0.0508 m | 0.1016 m | 0.2032 m | 0.0508 m | 1.016 m | ||
Glacial Ridge | CLM5 | 0.1044 | 0.1264 | 0.1102 | 0.1471 | 0.0841 |
CoLM2014 | 0.0779 | 0.0911 | 0.0692 | 0.0992 | 0.1185 | |
Little River | CLM5 | 0.0782 | 0.0682 | 0.0488 | 0.0429 | 0.0534 |
CoLM2014 | 0.0462 | 0.0418 | 0.0394 | 0.0397 | 0.1519 | |
Nunn#1 | CLM5 | 0.0612 | 0.0502 | 0.0511 | 0.0577 | 0.1004 |
CoLM2014 | 0.1090 | 0.1310 | 0.0988 | 0.0894 | 0.0634 | |
Phillipsburg | CLM5 | 0.2086 | 0.1665 | 0.1730 | 0.1666 | 0.1983 |
CoLM2014 | 0.1472 | 0.1112 | 0.1128 | 0.0990 | 0.1561 | |
Powder Mill | CLM5 | 0.2256 | 0.2305 | 0.2386 | 0.2524 | 0.2817 |
CoLM2014 | 0.0834 | 0.0902 | 0.0837 | 0.0749 | 0.0966 | |
Prairie View | CLM5 | 0.1542 | 0.0794 | 0.0620 | 0.0728 | 0.0737 |
CoLM2014 | 0.1002 | 0.0631 | 0.0937 | 0.1169 | 0.1304 | |
Tnc Fort Bayou | CLM5 | 0.1181 | 0.0793 | 0.0753 | 0.0825 | 0.0812 |
CoLM2014 | 0.1738 | 0.1082 | 0.1046 | 0.1005 | 0.0746 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, M.; Zhang, S. Evaluation and Comparison of the Common Land Model and the Community Land Model by Using In Situ Soil Moisture Observations from the Soil Climate Analysis Network. Land 2022, 11, 126. https://doi.org/10.3390/land11010126
Ou M, Zhang S. Evaluation and Comparison of the Common Land Model and the Community Land Model by Using In Situ Soil Moisture Observations from the Soil Climate Analysis Network. Land. 2022; 11(1):126. https://doi.org/10.3390/land11010126
Chicago/Turabian StyleOu, Minzhuo, and Shupeng Zhang. 2022. "Evaluation and Comparison of the Common Land Model and the Community Land Model by Using In Situ Soil Moisture Observations from the Soil Climate Analysis Network" Land 11, no. 1: 126. https://doi.org/10.3390/land11010126
APA StyleOu, M., & Zhang, S. (2022). Evaluation and Comparison of the Common Land Model and the Community Land Model by Using In Situ Soil Moisture Observations from the Soil Climate Analysis Network. Land, 11(1), 126. https://doi.org/10.3390/land11010126