Spatiotemporal Variation and Influence Factors of Habitat Quality in Loess Hilly and Gully Area of Yellow River Basin: A Case Study of Liulin County, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Habitat Quality Assessment
2.3.2. Exploration on Influencing Factors of Spatial Distribution of Habitat Quality
2.3.3. Gradient Analysis of Influencing Factors of Spatial Distribution
3. Results
3.1. Habitat Quality Assessment
3.1.1. Land Use Change Analysis
3.1.2. Temporal Variation of Habitat Quality
3.1.3. Spatial Variation of Habitat Quality
3.2. Influencing Factors of Spatial Differences in Habitat Quality
3.2.1. Single Factor Analysis of Detection Factors
3.2.2. Interaction of Detection Factors
3.3. Gradient Analysis of Influencing Factors
4. Discussion
4.1. Temporal and Spatial Variation of Habitat Quality
4.2. Influencing Factors of Habitat Quality
4.3. Implications for Habitat Quality Improvement and Ecological Protection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xi, J. Speech at the symposium on ecological protection and high-quality development of the Yellow River Basin. China Water Resour. 2019, 20, 1–3. [Google Scholar]
- Yanyan, J.; Shaojie, W. Land use change and its correlation with habitat quality in high efficiency 350 Eco-economic zone of Yellow River Delta. Bull. Soil Water Conserv. 2020, 40, 351. [Google Scholar]
- Ma, L.; Tian, H.; Kang, L. Eco-environmental impact and spatial control of mineral resources exploitation in the Yellow River Basin. Resour. Sci. 2020, 42, 137–149. [Google Scholar] [CrossRef]
- Yong, X.; Chuansheng, W. Ecological protection and high-quality development in the Yellow River Basin: Framework, path, and countermeasure. Bull. Chin. Acad. Sci. (Chin. Version) 2020, 35, 875–883. [Google Scholar]
- Fellman, J.B.; Hood, E.; Dryer, W.; Pyare, S. Stream physical characteristics impact habitat quality for Pacific salmon in two temperate coastal watersheds. PLoS ONE 2015, 10, e0132652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duraiappah, A.K.; Naeem, S.; Agardy, T.; Ash, N.J.; Cooper, H.D.; Diaz, S.; Van Jaarsveld, A. Ecosystems and Human Well-Being: Biodiversity Synthesis; A Report of the Millennium Ecosystem Assessment; World Resource Institute: Washington, DC, USA, 2005. [Google Scholar]
- Gao, Y.; Ma, L.; Liu, J.; Zhuang, Z.; Huang, Q.; Li, M. Constructing ecological networks based on habitat quality assessment: A case study of Changzhou, China. Sci. Rep. 2017, 7, 1–11. [Google Scholar]
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 1997, 25, 173–182. [Google Scholar]
- Weber, D.; Schaepman-Strub, G.; Ecker, K. Predicting habitat quality of protected dry grasslands using Landsat NDVI phenology. Ecol. Indic. 2018, 91, 447–460. [Google Scholar] [CrossRef]
- Horcajada-Sánchez, F.; Escribano-Ávila, G.; Lara-Romero, C.; Virgós, E.; Barja, I. The effect of livestock on the physiological condition of roe deer (Capreolus capreolus) is modulated by habitat quality. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Fabris, L.; Buddendorf, W.B.; Soulsby, C. Assessing the seasonal effect of flow regimes on availability of Atlantic salmon fry habitat in an upland Scottish stream. Sci. Total Environ. 2019, 696, 133857. [Google Scholar] [CrossRef]
- Reis, E.; López-Iborra, G.M.; Pinheiro, R.T. Changes in bird species richness through different levels of urbanization: Implications for biodiversity conservation and garden design in Central Brazil. Landsc. Urban Plan. 2012, 107, 31–42. [Google Scholar] [CrossRef]
- Tang, F.; Fu, M.; Wang, L.; Zhang, P. Land-use change in Changli County, China: Predicting its spatiotemporal evolution in habitat quality. Ecol. Indic. 2020, 117, 106719. [Google Scholar] [CrossRef]
- Wu, J.; Li, X.; Luo, Y.; Zhang, D. Spatiotemporal Effects of Urban Sprawl on Habitat Quality in the Pearl River Delta from 1990 to 2018. Sci. Rep. 2021, 11, 13981. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Hwang, G.W.; Mayfield, A.B.; Chen, C.P.; Lin, H.J. The development of habitat suitability models for fiddler crabs residing in subtropical tidal flats. Ocean. Coast. Manag. 2019, 182, 104931. [Google Scholar] [CrossRef]
- Duflot, R.; Avon, C.; Roche, P.; Bergès, L. Combining habitat suitability models and spatial graphs for more effective landscape conservation planning: An applied methodological framework and a species case study. J. Nat. Conserv. 2018, 46, 38–47. [Google Scholar] [CrossRef]
- Yu, W.; Ji, R.; Han, X.; Chen, L.; Feng, R.; Wu, J.; Zhang, Y. Evaluation of the Biodiversity Conservation Function in Liaohe Delta Wetland, Northeastern China. J. Meteorol. Res. 2020, 34, 798–805. [Google Scholar] [CrossRef]
- Brown, G.; Brabyn, L. The extrapolation of social landscape values to a national level in New Zealand using landscape character classification. Appl. Geogr. 2012, 35, 84–94. [Google Scholar] [CrossRef]
- Sherrouse, B.C.; Semmens, D.J.; Clement, J.M. An application of Social Values for Ecosystem Services (SolVES) to three national forests in Colorado and Wyoming. Ecol. Indic. 2014, 36, 68–79. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Feng, J.; Wang, Y.; Liu, K. Evaluation of social values for ecosystem services in urban riverfront space based on the solves model: A case study of the fenghe river, Xi’an, China. Int. J. Environ. Res. Public Health 2021, 18, 2765. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, B.T.; Lyu, Y.P.; Yang, K.; Che, Y. Assessment of the social values of ecosystem services based on SolVES model: A case study of Wusong Paotaiwan Wetland Forest Park, Shanghai, China. J. Appl. Ecol. 2016, 27, 1767–1774. [Google Scholar]
- Hong, H.J.; Kim, C.K.; Lee, H.W.; Lee, W.K. Conservation, Restoration, and Sustainable Use of Biodiversity Based on Habitat Quality Monitoring: A Case Study on Jeju Island, South Korea (1989–2019). Land 2021, 10, 774. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the Characteristic Spatiotemporal Variation in Habitat Quality Using the InVEST Model—A Case Study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Berta Aneseyee, A.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef] [Green Version]
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecol. Indic. 2014, 36, 552–562. [Google Scholar] [CrossRef]
- Song, Y.; Wang, M.; Sun, X.; Fan, Z. Quantitative assessment of the habitat quality dynamics in Yellow River Basin, China. Environ. Monit. Assess. 2021, 193, 1–17. [Google Scholar] [CrossRef]
- Zhong, L.; Wang, J. Evaluation on effect of land consolidation on habitat quality based on InVEST model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 250–255. [Google Scholar]
- Zhang, Y.; Chen, R.; Wang, Y. Tendency of land reclamation in coastal areas of Shanghai from 1998 to 2015. Land Use Policy 2020, 91, 104370. [Google Scholar] [CrossRef]
- Gu, Y.; Huang, X.; Zou, C.; Ye, X.; Lin, N.; Zhang, W. Monitoring habitat quality changes in Yuanjiangyuan Nature Reserve based on Landsat images. J. Ecol. Rural Environ. 2019, 35, 764–772. [Google Scholar]
- Ding, Q.; Chen, Y.; Bu, L.; Ye, Y. Multi-Scenario Analysis of Habitat Quality in the Yellow River Delta by Coupling FLUS with InVEST Model. Int. J. Environ. Res. Public Health 2021, 18, 2389. [Google Scholar] [CrossRef]
- Wang, H.; Tang, L.; Qiu, Q.; Chen, H. Assessing the impacts of urban expansion on habitat quality by combining the concepts of land use, landscape, and habitat in two urban agglomerations in China. Sustainability 2020, 12, 4346. [Google Scholar] [CrossRef]
- Ling, X.; Qun’ou, J.; Meilin, W.; Kexin, L. Coupling coordination and prediction analysis of ecological infrastructure, habitat quality and industrial development in the Beijing-Tianjin-Hebei region of northern China. J. Beijing For. Univ. 2021, 43, 96–105. [Google Scholar]
- Feng, S.; Sun, R.H.; Chen, L.D. Spatio-temporal variability of habitat quality based on land use pattern change in Beijing. Acta Ecol. Sin 2018, 38, 4167–4179. [Google Scholar]
- Liu, Z.; Tang, L.; Qiu, Q.; Xiao, L.; Xu, T.; Yang, L. Temporal and spatial changes in habitat quality based on land-use change in Fujian Province. Acta Ecol. Sin. 2017, 37, 4538–4548. [Google Scholar]
- Yang, Y. Evolution of habitat quality and association with land-use changes in mountainous areas: A case study of the Taihang Mountains in Hebei Province, China. Ecol. Indic. 2021, 129, 107967. [Google Scholar] [CrossRef]
- Yang, J.; Xie, B.; Zhang, D. Spatial-temporal evolution of habitat quality and its influencing factors in the Yellow River Basin based on InVEST model and GeoDetector. J. Desert Res. 2021, 41, 12. [Google Scholar]
- Upadhaya, S.; Dwivedi, P. Conversion of forestlands to blueberries: Assessing implications for habitat quality in Alabaha river watershed in Southeastern Georgia, United States. Land Use Policy 2019, 89, 104229. [Google Scholar] [CrossRef]
- Chen, M.; Bai, Z.; Wang, Q.; Shi, Z. Habitat quality effect and driving mechanism of land use transitions: A case study of Henan water source area of the middle route of the south-to-north water transfer project. Land 2021, 10, 796. [Google Scholar] [CrossRef]
- Peng, C.; Min, M.; Wei, Z.; Ke, Z. Spatial Differentiation Pattern of Habitat Quality and Mechanism of Factors Influencing in Resource-Based Cities: A Case Study of Tangshan City, China. J. Resour. Ecol. 2021, 12, 636–649. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Ahrends, A.; Hollingsworth, P.M.; Ziegler, A.D.; Fox, J.M.; Chen, H.; Su, Y.; Xu, J. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Chang. 2015, 34, 48–58. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Kasimu, A. Spatial-Temporal evolution of habitat quality in Yili Valley based on geographical detectors and its influencing factors. Chin. J. Ecol. 2020, 39, 3408–3420. [Google Scholar]
- Tian, F.; Liu, L.; Yang, J.; Wu, J. Vegetation greening in more than 94% of the Yellow River Basin (YRB) region in China during the 21st century caused jointly by warming and anthropogenic activities. Ecol. Indic. 2021, 125, 107479. [Google Scholar] [CrossRef]
- Xu, L.; Du, H.; Zhang, X. Driving forces of carbon dioxide emissions in China’s cities: An empirical analysis based on the geodetector method. J. Clean. Prod. 2021, 287, 125169. [Google Scholar] [CrossRef]
- Sun, D.; Hong, B.; Ren, P. Study on the spatiotemporal evolution and driving factors of rural settlements in Dujiangyan City. Resour. Environ. Yangtze Basin 2020, 29, 2167–2176. [Google Scholar]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Bao, Y.; Liu, K.; Li, T.; Hu, S. Effects of Land Use Change on Habitat Based on In VEST Model—Taking Yellow River Wetland Nature Reserve in Shaanxi Province as an Example. Arid Zone Res. 2015, 32, 622–629. [Google Scholar]
- Wu, L.; Liu, X.; Ma, X.Y. Spatiotemporal distribution of rainfall erosivity in the Yanhe River watershed of hilly and gully region, Chinese Loess Plateau. Environ. Earth Sci. 2016, 75, 315. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.; Wei, W.; Chen, L.; Huang, Z. Effects of landscape pattern on watershed soil erosion and sediment delivery in hilly and gully region of the Loess Plateau of China: Patch class-level. Shengtai Xuebao/Acta Ecol. Sin. 2011, 31, 5739–5748. [Google Scholar]
- Liu, D.; Liang, X.; Chen, H.; Zhang, H.; Mao, N. A quantitative assessment of comprehensive ecological risk for a loess erosion gully: A case study of Dujiashi Gully, Northern Shaanxi province, China. Sustainability 2018, 10, 3239. [Google Scholar] [CrossRef] [Green Version]
- Sharp, R.; Douglass, J.; Wolny, S.; Arkema, K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.8.7. User’s Guide; Collaborative Publication by the Natural Capital Project, Stanford University, University of Minnesota, the Nature Conservancy, World Wildlife Fund; Stanford University: Stanford, CA, USA, 2020. [Google Scholar]
- Dai, L.; Li, S.; Lewis, B.J.; Wu, J.; Yu, D.; Zhou, W.; Zhou, L.; Wu, S. The influence of land use change on the spatial–temporal variability of habitat quality between 1990 and 2010 in Northeast China. J. For. Res. 2019, 30, 2227–2236. [Google Scholar] [CrossRef]
- Xu, L.; Chen, S.S.; Xu, Y.; Li, G.; Su, W. Impacts of land-use change on habitat quality during 1985–2015 in the Taihu Lake Basin. Sustainability 2019, 11, 3513. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [Google Scholar] [CrossRef]
- Bai, L.; Xiu, C.; Feng, X.; Liu, D. Influence of urbanization on regional habitat quality: A case study of Changchun City. Habitat Int. 2019, 93, 102042. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Liu, C.; Hang, A.; Lu, L.; Zheng, W. Response of Habitat Quality to Land Use Change Based on Geographical Weighted Regression. Beijing Da Xue Xue Bao 2019, 55, 509–518. [Google Scholar]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y. Evaluation and Dynamics Analysis of Habitat Quality Based on InVEST Model in the Sanjiang Plain. Ph.D. Thesis, University of Chinese Academy of Sciences, Changchun, China, May 2017. [Google Scholar]
Threat Factor | Maximum Impact Distance (km) | Weight | Decay Type |
---|---|---|---|
Dry land | 6 | 0.6 | linear |
Urban land | 10 | 1 | exponential |
Rural residential area | 8 | 0.8 | exponential |
Other construction land | 9 | 0.9 | exponential |
Land Use Type | Habitat Suitability | Dry Land | Urban Land | Rural Residential Area | Other Construction Land |
---|---|---|---|---|---|
Forest | 1 | 0.6 | 0.8 | 0.8 | 0.8 |
Shrub | 0.8 | 0.5 | 0.7 | 0.6 | 0.7 |
Sparse forest | 0.6 | 0.4 | 0.5 | 0.4 | 0.55 |
Other forest | 0.6 | 0.2 | 0.2 | 0.2 | 0.45 |
High coverage grassland | 0.9 | 0.4 | 0.65 | 0.6 | 0.4 |
Medium coverage grassland | 0.7 | 0.3 | 0.55 | 0.5 | 0.6 |
Low coverage grassland | 0.5 | 0.2 | 0.5 | 0.4 | 0.55 |
Canal | 0.8 | 0.65 | 0.8 | 0.7 | 0.9 |
Reservoirs pond | 0.8 | 0.65 | 0.8 | 0.7 | 0.9 |
Tidal flat | 0.5 | 0.2 | 0.3 | 0.2 | 0.3 |
Beach | 0.5 | 0.2 | 0.3 | 0.2 | 0.3 |
Description | Interaction |
---|---|
q(x1∩x2) < Min(q(x1), q(x2)) | Weaken, nonlinear |
Min(q(x1), q(x2)) < q(x1∩x2) < Max(q(x1), q(x2)) | Weaken, uni- |
q(x1∩x2) > Max(q(x1), q(x2)) | Enhance, bi- |
q(x1∩x2) = q(x1) + q(x2) | Independent |
q(x1∩x2) > q(x1) + q(x2) | Enhance, nonlinear |
Year | Arable Land | Forest | Grassland | Waters | Construction |
---|---|---|---|---|---|
2000 | 50,394.99 | 6113.86 | 69,683.16 | 1956.98 | 620.84 |
2010 | 50,371.40 | 6113.88 | 69,766.52 | 1887.25 | 629.50 |
2020 | 49,184.77 | 3788.14 | 67,832.33 | 2013.48 | 5949.81 |
Grade | Habitat Quality | 2000 | 2010 | 2020 | |||
---|---|---|---|---|---|---|---|
Proportion of Area (%) | Mean Habitat Quality | Proportion of Area (%) | Mean Habitat Quality | Proportion of Area (%) | Mean Habitat Quality | ||
Low | 0–0.2 | 39.73 | 0.318 | 39.72 | 0.319 | 42.90 | 0.298 |
Medium–low | 0.2–0.5 | 53.35 | 53.27 | 51.79 | |||
Medium | 0.5–0.7 | 2.59 | 2.59 | 2.60 | |||
Medium–high | 0.7–0.8 | 3.80 | 3.84 | 2.14 | |||
High | 0.8–1 | 0.52 | 0.58 | 0.57 |
Influencing Factors | Annual Average Temperature | Annual Average Rainfall | GDP | NDVI | Population Density | Slope | Land Use | Elevation |
---|---|---|---|---|---|---|---|---|
Interpretation ability(q) | 0.0117 | 0.0210 | 0.0106 | 0.0068 | 0.0141 | 0.0056 | 0.0326 | 0.0219 |
Factors | Annual Average Temperature | Annual Average Rainfall | GDP | NDVI | Population Density | Slope | Land Use | Elevation |
---|---|---|---|---|---|---|---|---|
Annual average temperature | 0.0117 | |||||||
Annual average rainfall | 0.0434 | 0.0210 | ||||||
GDP | 0.0320 | 0.0370 | 0.0106 | |||||
NDVI | 0.0398 | 0.0442 | 0.0242 | 0.0068 | ||||
Population density | 0.0448 | 0.0507 | 0.0263 | 0.0293 | 0.0141 | |||
Slope | 0.0355 | 0.0407 | 0.0339 | 0.0271 | 0.0493 | 0.0057 | ||
Land use | 0.0520 | 0.0555 | 0.0452 | 0.0431 | 0.0500 | 0.0436 | 0.0326 | |
Elevation | 0.0431 | 0.0565 | 0.0401 | 0.0452 | 0.0441 | 0.0416 | 0.0505 | 0.0219 |
Influencing Factors | Gradient I | Gradient II | Gradient III | Gradient IV | Gradient V |
---|---|---|---|---|---|
DEM (m) | 598–810 | 810–923 | 923–1025 | 1025–1149 | 1149–472 |
Slope (°) | 0–7.14 | 7.14–12.2 | 12.2–17.17 | 17.17–23.07 | 23.07–55.48 |
Annual average rainfall (mm) | 477.04–478.97 | 478.97–480.6 | 480.6–482.1 | 482.1–483.56 | 483.56–486.36 |
Annual average temperature (°C) | 9.94–10.02 | 10.02–10.08 | 10.08–10.14 | 10.14–10.2 | 10.2–10.33 |
NDVI | 0.3–0.42 | 0.42–0.48 | 0.48–0.52 | 0.52–0.57 | 0.57–0.7 |
Influencing Factors | Habitat Condition | Gradient I | Gradient II | Gradient III | Gradient IV | Gradient V |
---|---|---|---|---|---|---|
DEM | Deterioration | 14.85 | 26.84 | 31.83 | 20.49 | 6.00 |
Improvement | 12.57 | 29.92 | 31.61 | 21.65 | 4.24 | |
Slope | Deterioration | 18.01 | 26.77 | 27.34 | 19.82 | 8.06 |
Improvement | 21.83 | 24.76 | 26.12 | 19.46 | 7.83 | |
Annual average rainfall | Deterioration | 13.83 | 25.64 | 27.13 | 21.43 | 11.96 |
Improvement | 13.50 | 28.04 | 29.72 | 19.30 | 9.45 | |
Annual average temperature | Deterioration | 19.45 | 26.07 | 21.91 | 21.86 | 10.70 |
Improvement | 17.31 | 23.89 | 23.23 | 27.09 | 8.49 | |
NDVI | Deterioration | 4.91 | 15.69 | 39.81 | 28.57 | 11.03 |
Improvement | 6.28 | 18.04 | 34.63 | 31.40 | 9.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Lyu, C.; Fan, X.; Bi, R.; Xia, L.; Xu, C.; Sun, B.; Li, T.; Jiang, C. Spatiotemporal Variation and Influence Factors of Habitat Quality in Loess Hilly and Gully Area of Yellow River Basin: A Case Study of Liulin County, China. Land 2022, 11, 127. https://doi.org/10.3390/land11010127
Zhang X, Lyu C, Fan X, Bi R, Xia L, Xu C, Sun B, Li T, Jiang C. Spatiotemporal Variation and Influence Factors of Habitat Quality in Loess Hilly and Gully Area of Yellow River Basin: A Case Study of Liulin County, China. Land. 2022; 11(1):127. https://doi.org/10.3390/land11010127
Chicago/Turabian StyleZhang, Xu, Chunjuan Lyu, Xiang Fan, Rutian Bi, Lu Xia, Caicai Xu, Bo Sun, Tao Li, and Chenggang Jiang. 2022. "Spatiotemporal Variation and Influence Factors of Habitat Quality in Loess Hilly and Gully Area of Yellow River Basin: A Case Study of Liulin County, China" Land 11, no. 1: 127. https://doi.org/10.3390/land11010127
APA StyleZhang, X., Lyu, C., Fan, X., Bi, R., Xia, L., Xu, C., Sun, B., Li, T., & Jiang, C. (2022). Spatiotemporal Variation and Influence Factors of Habitat Quality in Loess Hilly and Gully Area of Yellow River Basin: A Case Study of Liulin County, China. Land, 11(1), 127. https://doi.org/10.3390/land11010127