The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions
2.2. Digestate and Soil Sampling
2.3. Chemical Analyses
2.4. Chemical Composition of the Digestate
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Different Phases of Separated Digestates
3.2. SOC Amounts in Different Soil Types and Land-Use
3.3. Humic Substances in Different Soil Types and Land-Uses as Influenced by Different Phases of Digestate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EU. A European Green Deal. Comm 640 Final; European Commission: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN (accessed on 11 December 2021).
- EU. A Farm to Fork Strategy. Comm 381 Final; European Commission: Brussels, Belgium, 2020; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0381 (accessed on 11 December 2021).
- Slepetiene, A.; Volungevicius, J.; Jurgutis, L.; Liaudanskiene, I.; Amaleviciute-Volunge, K.; Slepetys, J.; Ceseviciene, J. The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Manag. 2020, 102, 441–451. [Google Scholar] [CrossRef]
- EU. Soil Strategy for 2030. Comm 699 Final; European Commission: Brussels, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0699 (accessed on 11 December 2021).
- Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Liaudanskienė, I.; Šlepetienė, A.; Velykis, A. Changes in soil humified carbon content as influenced by tillage and crop rotation. Zemdirbyste 2011, 98, 227–234. [Google Scholar]
- Liaudanskiene, I.; Zukaitis, T.; Velykis, A.; Satkus, A.; Parasotas, I. The impact of tillage practices on the distribution of humified organic carbon in a clay loam. Zemdirbyste 2021, 108, 11–18. [Google Scholar] [CrossRef]
- Smith, P.; Soussana, J.F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Change Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, M.E.; Galantini, J.A.; Iglesias, J.O.; Canelo, S.; Martinez, J.M.; Wall, L. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil Tillage Res. 2013, 131, 11–19. [Google Scholar] [CrossRef]
- Lefèvre, C.; Rekik, F.; Alcantara, V.; Wiese, L. Soil Organic Carbon: The Hidden Potential; FAO: Rome, Italy, 2017; Available online: https://www.fao.org/3/I6937EN/i6937en.pdf. (accessed on 11 December 2021).
- Dynarski, K.A.; Bossio, D.A.; Scow, K.M. Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration. Front. Environ. Sci. 2020, 8, 218. [Google Scholar] [CrossRef]
- Ponomareva, V.V.; Plotnikova, T.A. Humus and Soil Formation; Nauka: Leningrad, Russia, 1980. [Google Scholar]
- Gilbert, J.; Ricci-Jürgensen, M.; Ramola, A. Benefits of Compost and Anaerobic Digestate When Applied to Soil. Report ISWA. 2020. Available online: https://www.altereko.it/wp-content/uploads/2020/03/Report-2-Benefits-of-Compost-and-Anaerobic-Digestate.pdf. (accessed on 11 December 2021).
- Marcato, C.E.; Mohtar, R.; Revel, J.C.; Pouech, P.; Hafidi, M.; Guiresse, M. Impact of anaerobic digestion on organic matter quality in pig slurry. Int. Biodeterior. Biodegrad. 2009, 63, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Makádi, M.; Tomócsik, A.; Orosz, V. Digestate: A New Nutrient Source-Review. In Biogas; Kumar, S., Ed.; InTech: Rijeka, Croatia, 2012; p. 295. ISBN 978-953-51-0204-5. [Google Scholar]
- Wang, X.; Muhmood, A.; Lyu, T.; Dong, R.; Liu, H.; Wu, S. Mechanisms of genuine humic acid evolution and its dynamic interaction with methane production in anaerobic digestion processes. Chem. Eng. J. 2021, 408, 127322. [Google Scholar] [CrossRef]
- Tambone, F.; Genevini, P.; D’Imporzano, G.; Adani, F. Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour. Technol. 2009, 100, 3140–3142. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Li, C. Evolution of humic substances during anaerobic sludge digestion. Environ. Eng. Manag. J. 2017, 16, 1577–1582. [Google Scholar] [CrossRef]
- Möller, K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review. Agron. Sustain. Dev. 2015, 35, 1021–1041. [Google Scholar] [CrossRef]
- Zirkler, D.; Peters, A.; Kaupenjohann, M. Elemental composition of biogas residues: Variability and alteration during anaerobic digestion. Biomass Bioenergy 2014, 67, 89–98. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Caruso, C.; Sambo, P.; Borin, M. Effects of digestate solid fraction fertilisation on yield and soil carbon dioxide emission in a horticulture succession. Ital. J. Agron. 2017, 12, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Askri, A.; Laville, P.; Trémier, A.; Houot, S. Influence of Origin and Post-treatment on Greenhouse Gas Emissions after Anaerobic Digestate Application to Soil. Waste Biomass Valorization 2015, 7, 293–306. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; de La Fuente, C.; Bernal, M.P. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric. Ecosyst. Environ. 2012, 160, 15–22. [Google Scholar] [CrossRef]
- Group WRB. World Reference Base for Soil Resources 2014, Update 2015; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; p. 193. [Google Scholar]
- Nikitin, B.A. A method for soil humus determination. Agric. Chem. 1999, 3, 156–158. [Google Scholar]
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Levin, K.S.; Auerswald, K.; Reents, H.J.; Hülsbergen, K.-J. Effects of Organic Energy Crop Rotations and Fertilisation with the Liquid Digestate Phase on Organic Carbon in the Topsoil. Agronomy 2021, 11, 1393. [Google Scholar] [CrossRef]
- Witing, F.; Prays, N.; O’Keeffe, S.; Gründling, R.; Gebel, M.; Kurzer, H.J.; Daniel-Gromke, J.; Franko, U. Biogas production and changes in soil carbon input-A regional analysis. Geoderma 2018, 320, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Barłóg, P.; Hlisnikovský, L.; Kunzová, E. Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy 2020, 10, 379. [Google Scholar] [CrossRef] [Green Version]
- Hobley, E.U.; Wilson, B. The depth distribution of organic carbon in the soils of eastern Australia. Ecosphere 2016, 7, e01214. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.H.B. Evolution of concepts of environmental natural nonliving organic matter. In Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems; Senesi, N., Xing, B., Huang, P.M., Eds.; Wiley Interscience: New York, NY, USA, 2009; p. 2. ISBN 978-0-470-41300-5. [Google Scholar]
- Slepetiene, A.; Slepetys, J.; Liaudanskiene, I.; Kadziuliene, Z.; Velykis, A.; Adamovics, A. Changes of soil organic carbon and mobile humic acids in response to different agricultural management. Agraarteadus J. Agric. Sci. 2011, 22, 64–70. [Google Scholar]
- Horta, C.; Carneiro, J.P. Use of Digestate as Organic Amendment and Source of Nitrogen to Vegetable Crops. Appl. Sci. 2022, 12, 248. [Google Scholar] [CrossRef]
Location of Biogas Plant | Date of Sampling | Indicators | ||||||
---|---|---|---|---|---|---|---|---|
pH | TS, % | OM, % | N g kg−1 | Corg g kg−1 | MHS g kg−1 | MHA g kg−1 | ||
Liquid digestate | ||||||||
Vievis | 26 Apil 2019 | 7.8 | 4.8 | 4.7 | 4.7 | 20.2 | 7.5 | 2.3 |
30 April 2020 | 7.6 | 5.8 | 5.7 | 6.2 | 31.3 | 19.1 | 2.6 | |
Krekenava | 29 April 2019 | 7.9 | 3.6 | 3.5 | 3.9 | 9.6 | 3.1 | 0.5 |
15 May 2020 | 7.4 | 2.3 | 2.3 | 3.9 | 9.7 | 4.2 | 0.8 | |
Solid digestate | ||||||||
Vievis | 26 April 2019 | 8.6 | 29.1 | 87.4 | 25.7 | 489.4 | 18.4 | 2.2 |
30 April 2020 | 8.2 | 26.3 | 86.1 | 21.1 | 465.3 | 57.5 | 0.7 | |
Krekenava | 29 April 2019 | 8.4 | 31.3 | 75.2 | 17.1 | 426.4 | 18.5 | 0.8 |
15 May 2020 | 8.9 | 29.7 | 87.8 | 15.7 | 526.6 | 24.4 | 0.8 |
Land Use | Fertilization | HD, % |
---|---|---|
Crop rotation field in Fluvisol | No fertilizer | 12.06 |
85N solid | 11.58 | |
85N liquid | 11.78 | |
170N solid | 11.77 | |
170N liquid | 12.31 | |
Grassland in Fluvisol | No fertilizer | 23.94 |
85N solid | 19.84 | |
85N liquid | 21.41 | |
170N solid | 20.15 | |
170N liquid | 19.54 | |
Grassland in Retisol | No fertilizer | 5.87 |
85N solid | 3.86 | |
85N liquid | 3.75 | |
170N solid | 5.08 | |
170N liquid | 4.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slepetiene, A.; Kochiieru, M.; Jurgutis, L.; Mankeviciene, A.; Skersiene, A.; Belova, O. The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania. Land 2022, 11, 133. https://doi.org/10.3390/land11010133
Slepetiene A, Kochiieru M, Jurgutis L, Mankeviciene A, Skersiene A, Belova O. The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania. Land. 2022; 11(1):133. https://doi.org/10.3390/land11010133
Chicago/Turabian StyleSlepetiene, Alvyra, Mykola Kochiieru, Linas Jurgutis, Audrone Mankeviciene, Aida Skersiene, and Olgirda Belova. 2022. "The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania" Land 11, no. 1: 133. https://doi.org/10.3390/land11010133
APA StyleSlepetiene, A., Kochiieru, M., Jurgutis, L., Mankeviciene, A., Skersiene, A., & Belova, O. (2022). The Effect of Anaerobic Digestate on the Soil Organic Carbon and Humified Carbon Fractions in Different Land-Use Systems in Lithuania. Land, 11(1), 133. https://doi.org/10.3390/land11010133